1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
/** \file apop_regression.c Generally, if it assumes something is Normally distributed, it's here.*/
/* Copyright (c) 2006--2007 by Ben Klemens. Licensed under the GPLv2; see COPYING. */
#include "apop_internal.h"
#include <search.h> //lsearch; bsearch is in stdlib.
/* For use by MLE, OLS, et al. Available for public use, but undocumented. */
void apop_estimate_parameter_tests (apop_model *est){
Nullcheck_p(est, )
if (!est->data) return;
apop_data *ep = apop_data_add_page(est->info, apop_data_alloc(est->parameters->vector->size, 2), "<test info>");
apop_name_add(ep->names, "p value", 'c');
apop_name_add(ep->names, "confidence", 'c');
apop_name_stack(ep->names, est->parameters->names, 'r', 'r');
Get_vmsizes(est->data); //msize1, vsize
int df = msize1 ? msize1 : vsize;
df -= est->parameters->vector->size;
df = df < 1 ? 1 : df; //some models aren't data-oriented.
apop_data_add_named_elmt(est->info, "df", df);
apop_data *one_elmt = apop_data_calloc(1, 1);
gsl_vector *param_v = apop_data_pack(est->parameters);
for (size_t i=0; i< est->parameters->vector->size; i++){
Apop_settings_add_group(est, apop_pm, .index=i);
apop_model *m = apop_parameter_model(est->data, est);
double zero = apop_cdf(one_elmt, m);
apop_model_free(m);
double conf = 2*fabs(0.5-zero); //parameter is always at 0.5 along a symmetric CDF
apop_data_set(ep, i, .colname="confidence", .val=conf);
apop_data_set(ep, i, .colname="p value", .val=1-conf);
}
gsl_vector_free(param_v);
apop_data_free(one_elmt);
}
//Cut and pasted from the GNU std library documentation, modified to consider NaNs:
static int compare_doubles (const void *a, const void *b) {
const double *da = (const double *) a;
const double *db = (const double *) b;
if (gsl_isnan(*da)) return gsl_isnan(*db) ? 0 : 1;
if (gsl_isnan(*db)) return -1;
return (*da > *db) - (*da < *db);
}
typedef const char * ccp;
static int strcmpwrap(const void *a, const void *b){
const ccp *aa = a;
const ccp *bb = b;
return strcmp(*aa, *bb);
}
/** Give me a vector of numbers, and I'll give you a sorted list of the unique elements.
This is basically running <tt>select distinct datacol from data order by datacol</tt>,
but without the aid of the database.
\param v a vector of items
\return a sorted vector of the distinct elements that appear in the input.
\li NaNs (if any) appear at the end of the sort order.
\see apop_text_unique_elements
*/
gsl_vector * apop_vector_unique_elements(const gsl_vector *v){
size_t prior_elmt_ctr = 107;
size_t elmt_ctr = 0;
double *elmts = NULL;
for (size_t i=0; i< v->size; i++){
if (prior_elmt_ctr != elmt_ctr)
elmts = realloc(elmts, sizeof(double)*(elmt_ctr+1));
prior_elmt_ctr = elmt_ctr;
double val = gsl_vector_get(v, i);
lsearch(&val, elmts, &elmt_ctr, sizeof(double), compare_doubles);
if (prior_elmt_ctr < elmt_ctr)
qsort(elmts, elmt_ctr, sizeof(double), compare_doubles);
}
gsl_vector *out = apop_array_to_vector(elmts, elmt_ctr);
free(elmts);
return out;
}
/** Give me a column of text, and I'll give you a sorted list of the unique elements.
This is basically running <tt>select distinct * from datacolumn</tt>, but without
the aid of the database.
\param d An \ref apop_data set with a text component
\param col The text column you want me to use.
\return An \ref apop_data set with a single sorted column of text, where each unique text input appears once.
\see apop_vector_unique_elements
*/
apop_data * apop_text_unique_elements(const apop_data *d, size_t col){
char **tval;
//first element for free
size_t prior_elmt_ctr, elmt_ctr = 1;
char **telmts = malloc(sizeof(char**)*2);
telmts[0] = d->text[0][col];
for (int i=1; i< d->textsize[0]; i++){
prior_elmt_ctr = elmt_ctr;
tval = &(d->text[i][col]);
lsearch (tval, telmts, &elmt_ctr, sizeof(char*), strcmpwrap);
if (prior_elmt_ctr < elmt_ctr){
qsort(telmts, elmt_ctr, sizeof(char*), strcmpwrap);
telmts = realloc(telmts, sizeof(char**)*(elmt_ctr+1));
}
}
//pack and ship
apop_data *out = apop_text_alloc(NULL, elmt_ctr, 1);
for (int j=0; j< elmt_ctr; j++)
apop_text_set(out, j, 0, telmts[j]);
free(telmts);
return out;
}
static char *apop_get_factor_basename(apop_data *d, int col, char type){
char *name;
char *catname = d->names == NULL ? NULL
: type == 't' && d->names && d->names->textct > col ? d->names->text[col]
: col == -1 && d->names && d->names->vector ? d->names->vector
: col >=0 && d->names && d->names->colct > col ? d->names->col[col]
: NULL;
if (catname){
Asprintf(&name, "%s", catname);
return name;
}
if (type == 't'){
Asprintf(&name, "text column %i", col);
return name;
}
if (col == -1) Asprintf(&name, "vector");
else Asprintf(&name, "column %i", col);
return name;
}
static char *make_catname (apop_data *d, int col, char type){
char *name, *subname = apop_get_factor_basename(d, col, type);
Asprintf(&name, "<categories for %s>", subname);
free(subname);
return name;
}
/** Factor names are stored in an auxiliary table with a name like
<tt>"<categories for your_var>"</tt>. Producing this name is annoying (and prevents us from eventually making it human-language independent), so use this function to get the list of factor names.
\param data The data set. (No default, must not be \c NULL)
\param col The column in the main data set whose name I'll use to check for the factor name list. Vector==-1. (default=0)
\param type If you are referring to a text column, use 't'. (default='d')
\return A pointer to the page in the data set with the given factor names.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_get_factor_names(apop_data *data, int col, char type){
#else
apop_varad_head(apop_data *, apop_data_get_factor_names){
apop_data *apop_varad_var(data, NULL)
Apop_stopif(!data, return NULL, 1, "You sent me a NULL data set. Returning NULL.");
int apop_varad_var(col, 0)
char apop_varad_var(type, 'd')
return apop_data_get_factor_names_base(data, col, type);
}
apop_data * apop_data_get_factor_names_base(apop_data *data, int col, char type){
#endif
char *name = make_catname (data, col, type);
apop_data *out = apop_data_get_page(data, name, .match='e');
free(name);
return out;
}
apop_data * create_factor_list(apop_data *d, int col, char type){
//first, create an ordered list of unique elements.
//Record that list for use in this function, and in a ->more page of the data set.
char *catname = make_catname(d, col, type);
apop_data *factor_list;
if (type == 't'){
factor_list = apop_data_add_page(d, apop_text_unique_elements(d, col), catname);
size_t elmt_ctr = factor_list->textsize[0];
//awkward format conversion:
factor_list->vector = gsl_vector_alloc(elmt_ctr);
for (size_t i=0; i< factor_list->vector->size; i++)
apop_data_set(factor_list, i, -1, i);
} else {
gsl_vector *delmts = apop_vector_unique_elements(Apop_cv(d, col));
factor_list = apop_data_add_page(d, apop_data_alloc(), catname);
factor_list->vector = delmts;
apop_text_alloc(factor_list, delmts->size, 1);
for (size_t i=0; i< factor_list->vector->size; i++){
//shift to the text, for conformity with the more common text version.
apop_text_set(factor_list, i, 0, "%g", gsl_vector_get(delmts, i));
}
}
free(catname);
return factor_list;
}
/* Producing dummies consists of finding the index of element i, for all i, then
setting (i, index) to one.
Producing factors consists of finding the index and then setting (i, datacol) to index.
Otherwise the work is basically identical.
Also, add a ->more page to the input data giving the translation.
*/
static apop_data * dummies_and_factors_core(apop_data *d, int col, char type,
int keep_first, int datacol, char dummyfactor,
apop_data **factor_list){
if (!(*factor_list=apop_data_get_factor_names(d, col, type)))
*factor_list = create_factor_list(d, col, type);
Get_vmsizes((*factor_list)); //maxsize
size_t elmt_ctr = maxsize;
//copy the strings to a single list-of-strings
apop_data *telmts = *(*factor_list)->textsize ? apop_data_transpose(*factor_list, .inplace='n'):NULL;
gsl_vector *delmts = (*factor_list)->vector;
//Now go through the input vector, and for row i find the posn of the vector's
//name in the element list created above (j), then change (i,j) in
//the dummy matrix to one.
int s = type == 't'
? d->textsize[0]
: (col >=0 ? d->matrix->size1 : d->vector->size);
apop_data *out = (dummyfactor == 'd')
? apop_data_calloc(0, s, (keep_first!='n' ? elmt_ctr : elmt_ctr-1))
: d;
size_t index;
for (size_t i=0; i< s; i++){
if (type == 'd'){
double val = apop_data_get(d, i, col);
size_t posn = (size_t)bsearch(&val, delmts->data, elmt_ctr, sizeof(double), compare_doubles);
if (posn )
index = (posn - (size_t)delmts->data)/sizeof(double);
else {
index = elmt_ctr++;
(*factor_list)->vector = apop_vector_realloc((*factor_list)->vector, elmt_ctr);
gsl_vector_set((*factor_list)->vector, index, val);
out->matrix = apop_matrix_realloc(out->matrix, out->matrix->size1, elmt_ctr);
gsl_vector_set_zero(Apop_cv(out, index));
}
} else {
size_t posn = (size_t)bsearch(&(d->text[i][col]), *telmts->text, elmt_ctr, sizeof(char**), strcmpwrap);
if (posn)
index = (posn - (size_t)*telmts->text)/sizeof(char**);
else {
index = elmt_ctr++;
*factor_list = apop_text_alloc(*factor_list, elmt_ctr, 1);
apop_text_set(*factor_list, index, 0, d->text[i][col]);
(*factor_list)->vector = apop_vector_realloc((*factor_list)->vector, elmt_ctr);
apop_data_set(*factor_list, index, -1, index);
telmts = apop_text_alloc(telmts, 1, elmt_ctr);
apop_text_set(telmts, 0, index, d->text[i][col]);
if (dummyfactor == 'd'){
out->matrix = apop_matrix_realloc(out->matrix, out->matrix->size1, out->matrix->size2+1);
gsl_vector_set_zero(Apop_cv(out, out->matrix->size2-1));
}
}
}
if (dummyfactor == 'd'){
if (keep_first!='n')
gsl_matrix_set(out->matrix, i, index,1);
else if (index > 0) //else don't keep first and index==0; throw it out.
gsl_matrix_set(out->matrix, i, index-1, 1);
} else
apop_data_set(out, i, datacol, index);
}
//Add names:
if (dummyfactor == 'd'){
char *basename = apop_get_factor_basename(d, col, type);
for (size_t i = (keep_first!='n') ? 0 : 1; i< elmt_ctr; i++){
char n[1000];
if (type =='d'){
sprintf(n, "%s dummy %g", basename, gsl_vector_get(delmts,i));
} else
sprintf(n, "%s", telmts->text[0][i]);
apop_name_add(out->names, n, 'c');
}
}
apop_data_free(telmts);
return out;
}
/** A utility to make a matrix of dummy variables. You give me a single
vector that lists the category number for each item, and I'll produce
a matrix with a single one in each row in the column specified.
After that, you have to decide what to do with the new matrix and the original data column.
\li You can manually join the dummy data set with your main data, e.g.:
\code
apop_data *dummies = apop_data_to_dummies(main_regression_vars, .col=8, .type='t');
apop_data_stack(main_regression_vars, dummies, 'c', .inplace='y');
\endcode
\li The <tt>.remove='y'</tt> option specifies that I should use \ref apop_data_rm_columns
to remove the column used to generate the dummies. Implemented only for <tt>type=='d'</tt>.
\li By specifying <tt>.append='y'</tt> or <tt>.append='e'</tt> I will run the above two lines for you. Your \ref apop_data pointer will not change, but its \c matrix element will be reallocated (via \ref apop_data_stack).
\li By specifying <tt>.append='i'</tt>, I will place the matrix of dummies in place,
immediately after the data column you had specified. You will probably use this with
<tt>.remove='y'</tt> to replace the single column with the new set of dummy columns.
Bear in mind that if there are two or more dummy columns, adding columns will change subsequent column numbers; use \ref apop_name_find to find columns instead of giving an explicit column number.
\li If <tt>.append='i'</tt> and you asked for a text column, I will append to the end of
the table, which is equivalent to <tt>append='e'</tt>.
\param d The data set with the column to be dummified (No default.)
\param col The column number to be transformed; -1==vector (default = 0)
\param type 'd'==data column, 't'==text column. (default = 't')
\param keep_first If \c 'n', return a matrix where each row has a one in the (column specified <em>minus
one</em>). That is, the zeroth category is dropped, the first category
has an entry in column zero, et cetera. If you don't know why this
is useful, then this is what you need. If you know what you're doing
and need something special, set this to \c 'y' and the first category won't be dropped. (default = \c 'n')
\param append If \c 'e' or \c 'y', append the dummy grid to the end of the original data
matrix. If \c 'i', insert in place, immediately after the original data column. (default = \c 'n')
\param remove If \c 'y', remove the original data or text column. (default = \c 'n')
\return An \ref apop_data set whose \c matrix element is the one-zero
matrix of dummies. If you used <tt>.append</tt>, then this is the main matrix.
Also, I add a page named <tt>"\<categories for your_var\>"</tt> giving a reference table of names and column numbers (where <tt>your_var</tt> is the appropriate column heading).
\exception out->error=='a' allocation error
\exception out->error=='d' dimension error
\li Use \ref apop_data_get_factor_names to get the list of category names.
\li NaNs (if any) appear at the end of the sort order.
\li See \ref fact for further discussion.
\li See the documentation for \ref apop_logit for a sample linear model using this function.
\li This function uses the \ref designated syntax for inputs.
\see \ref apop_data_to_factors
*/
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_to_dummies(apop_data *d, int col, char type, int keep_first, char append, char remove){
#else
apop_varad_head(apop_data *, apop_data_to_dummies){
apop_data *apop_varad_var(d, NULL)
Apop_stopif(!d, return NULL, 1, "You sent me a NULL data set for apop_data_to_dummies. Returning NULL.");
int apop_varad_var(col, 0)
char apop_varad_var(type, 't')
int apop_varad_var(keep_first, 'n')
char apop_varad_var(append, 'n')
char apop_varad_var(remove, 'n')
if (remove =='y' && type == 't') Apop_notify(1, "Remove isn't implemented for text source columns yet.");
return apop_data_to_dummies_base(d, col, type, keep_first, append, remove);
}
apop_data * apop_data_to_dummies_base(apop_data *d, int col, char type, int keep_first, char append, char remove){
#endif
if (type == 'd'){
Apop_stopif((col == -1) && d->vector, apop_return_data_error(d),
0, "You asked for the vector element "
"(col==-1) but the data's vector element is NULL.");
Apop_stopif((col != -1) && (col >= d->matrix->size2), apop_return_data_error(d),
0, "You asked for the matrix element %i "
"but the data's matrix element has only %zu columns.", col, d->matrix->size2);
} else Apop_stopif(col >= d->textsize[1], apop_return_data_error(d),
0, "You asked for the text element %i but "
"the data's text element has only %zu elements.", col, d->textsize[1]);
apop_data *fdummy;
apop_data *dummies= dummies_and_factors_core(d, col, type, keep_first, 0, 'd', &fdummy);
//Now process the append and remove options.
size_t orig_size = d->matrix ? d->matrix->size1 : 0;
int rm_list[orig_size+1];
memset (rm_list, 0, (orig_size+1)*sizeof(int));
if (append =='i'){
apop_data **split = apop_data_split(d, col+1, 'c');
//stack names, then matrices
for (int i=0; i < d->names->colct; i++)
free(d->names->col[i]);
apop_name_stack(d->names, split[0]->names, 'c');
for (int k = d->names->colct; k < (split[0]->matrix ? split[0]->matrix->size2 : 0); k++)
apop_name_add(d->names, "", 'c'); //pad so the name stacking is aligned (if needed)
apop_name_stack(d->names, dummies->names, 'c');
apop_name_stack(d->names, split[1]->names, 'c');
gsl_matrix_free(d->matrix);
d->matrix = apop_matrix_stack(split[0]->matrix, dummies->matrix, 'c');
apop_data_free(dummies);
apop_data_free(split[0]);
apop_matrix_stack(d->matrix, split[1]->matrix, 'c', .inplace='y');
apop_data_free(split[1]);
return d;
}
if (remove!='n' && type!='t'){
rm_list[col]=1;
apop_data_rm_columns(d, rm_list);
}
if (append =='y' || append == 'e' || append ==1 || (append=='i' && type=='t')){
d = apop_data_stack(d, dummies, 'c', .inplace='y');
apop_data_free(dummies);
return d;
}
return dummies;
}
/** Convert a column of text or numbers
into a column of numeric factors, which you can use for a multinomial probit/logit, for example.
If you don't run this on your data first, \ref apop_probit and \ref apop_logit default to running
it on the vector or (if no vector) zeroth column of the matrix of the input \ref apop_data set, because those models need a list of the unique values of the dependent variable.
\param data The data set to be modified in place. (No default. If \c NULL, returns \c NULL and a warning)
\param intype If \c 't', then \c incol refers to text, if \c 'd', refers to the vector or matrix. (default = \c 't')
\param incol The column in the text that will be converted. -1 is the vector. (default = 0)
\param outcol The column in the data set where the numeric factors will be written (-1 means the vector). (default = 0)
For example:
\code
apop_data *d = apop_query_to_mixed_data("mmt", "select 0, year, color from data");
apop_data_to_factors(d);
\endcode
Notice that the query pulled a column of zeros for the sake of saving room for the factors. It reads column zero of the text, and writes it to column zero of the matrix.
Another example:
\code
apop_data *d = apop_query_to_data("mmt", "select type, year from data");
apop_data_to_factors(d, .intype='d', .incol=0, .outcol=0);
\endcode
Here, the \c type column is converted to sequential integer factors and
those factors overwrite the original data. Since a reference table is
added as a second page of the \ref apop_data set, you can recover the
original values as needed.
\return A table of the factors used in the code. This is an \c apop_data set with only one column of text.
Also, I add a page named <tt>"<categories for your_var>"</tt> giving a reference table of names and column numbers (where <tt>your_var</tt> is the appropriate column heading) use \ref apop_data_get_factor_names to retrieve that table.
\exception out->error=='a' allocation error.
\exception out->error=='d' dimension error.
\li If the vector or matrix you wanted to write to is \c NULL, I will allocate it for you.
\li See \ref fact for further discussion.
\li See the documentation for \ref apop_logit for a sample linear model using this function.
\li This function uses the \ref designated syntax for inputs.
\see \ref apop_data_to_dummies
*/
#ifdef APOP_NO_VARIADIC
apop_data * apop_data_to_factors(apop_data *data, char intype, int incol, int outcol){
#else
apop_varad_head(apop_data *, apop_data_to_factors){
apop_data *apop_varad_var(data, NULL)
Apop_stopif(!data, return NULL, 1, "You sent me a NULL data set. Returning NULL.");
int apop_varad_var(incol, 0)
int apop_varad_var(outcol, 0)
char apop_varad_var(intype, 't')
return apop_data_to_factors_base(data, intype, incol, outcol);
}
apop_data * apop_data_to_factors_base(apop_data *data, char intype, int incol, int outcol){
#endif
if (intype=='t'){
Apop_stopif(incol >= data->textsize[1], apop_return_data_error(d),
0, "You asked for the text column %i but the "
"data's text has only %zu elements.", incol, data->textsize[1]);
} else {
Apop_stopif((incol == -1) && !data->vector, apop_return_data_error(d),
0, "You asked for the vector of the data set but there is none.");
Apop_stopif((incol != -1) && !data->matrix, apop_return_data_error(d),
0, "You asked for the matrix column %i but the matrix is NULL.", incol);
Apop_stopif((incol != -1) && (incol >= data->matrix->size2), apop_return_data_error(d),
0, "You asked for the matrix column %i but "
"the matrix has only %zu elements.", incol, data->matrix->size2);
}
if (!data->vector && outcol == -1) //allocate a vector for the user.
data->vector = gsl_vector_alloc(intype=='t' ? data->textsize[0] : data->matrix->size2);
if (!data->matrix && outcol >= 0) //allocate a matrxi for the user.
data->matrix = gsl_matrix_calloc(intype=='t' ? data->textsize[0] : data->matrix->size2, outcol+1);
apop_data *out;
dummies_and_factors_core(data, incol, intype, 1, outcol, 'f', &out);
return out;
}
/** Deprecated. Use \ref apop_data_to_factors.
Convert a column of text in the text portion of an \c apop_data set
into a column of numeric elements, which you can use for a multinomial probit, for example.
\param d The data set to be modified in place.
\param datacol The column in the data set where the numeric factors will be written (-1 means the vector, which I will allocate for you if it is \c NULL)
\param textcol The column in the text that will be converted.
For example:
\code
apop_data *d = apop_query_to_mixed_data("mmt", "select 1, year, color from data");
apop_text_to_factors(d, 0, 0);
\endcode
Notice that the query pulled a column of ones for the sake of saving room for the factors.
\return A table of the factors used in the code. This is an \c apop_data set with only one column of text.
Also, the <tt>more</tt> element is a reference table of names and column numbers.
\exception out->error=='d' dimension error.
*/
apop_data *apop_text_to_factors(apop_data *d, size_t textcol, int datacol){
Apop_stopif(textcol >= d->textsize[1], apop_return_data_error(d),
0, "You asked for the text element %i but the data's "
"text has only %zu elements.", datacol, d->textsize[1]);
if (!d->vector && datacol == -1) //allocate a vector for the user.
d->vector = gsl_vector_alloc(d->textsize[0]);
apop_data *out;
dummies_and_factors_core(d, textcol, 't', 1, datacol, 'f', &out);
return out;
}
/** Also known as \f$R^2\f$. Let \f$Y\f$ be the dependent variable,
\f$\epsilon\f$ the residual, \f$n\f$ the number of data points, and \f$k\f$ the number
of independent vars (including the constant). Returns an \ref apop_data set with the
following entries (in the vector element):
\li \f$ SST \equiv \sum (Y_i - \bar Y) ^2 \f$
\li \f$ SSE \equiv \sum \epsilon ^2 \f$
\li \f$ R^2 \equiv 1 - {SSE\over SST} \f$
\li \f$ R^2_{adj} \equiv R^2 - {(k-1)\over (n-k-1)}(1-R^2) \f$
Internally allocates (and frees) a vector the size of your data set.
\return A \f$5 \times 1\f$ apop_data table with the following fields:
\li "R squared"
\li "R squared adj"
\li "SSE"
\li "SST"
\li "SSR"
If the output is in \c sss, use <code>apop_data_get(sss, .rowname="SSE")</code> to get the SSE, and so on for the other items.
\param m A model. I use the pointer to the data set used for estimation and the info page named \c "<Predicted>".
The Predicted page should include observed, expected, and residual columns, which I use to
generate the sums of squared errors and residuals, et cetera. All generalized linear
models produce a page with this name and of this form, as do a host of other models. Nothing
keeps you from finding the \f$R^2\f$ of, say, a kernel smooth; it is up to you to determine
whether such a thing is appropriate to your given models and situation.
\li <tt>apop_estimate(yourdata, apop_ols)</tt> does this automatically
\li If I don't find a <tt>"<Predicted>"</tt> page, print an error (iff <tt>apop_opts.verbose >=0</tt>) and return \c NULL.
\li The number of observations equals the number of rows in the Predicted page
\li The number of independent variables, needed only for the adjusted \f$R^2\f$, is from the
number of columns in the main data set's matrix (i.e. the first page; i.e. the set of
parameters if this is the \c parameters output from a model estimation).
\li If your data (first page again) has a \c weights vector, I will find weighted SSE,
SST, and SSR (and calculate the \f$R^2\f$s using those values).
*/
apop_data *apop_estimate_coefficient_of_determination (apop_model *m){
double sse, sst, rsq, adjustment;
size_t indep_ct= m->data->matrix->size2 - 1;
apop_data *out = apop_data_alloc();
gsl_vector *weights = m->data->weights; //typically NULL.
apop_data *expected = apop_data_get_page(m->info, "<Predicted>");
Apop_stopif(!expected, return NULL, 0, "I couldn't find a \"<Predicted>\" page in your data set. Returning NULL.\n");
size_t obs = expected->matrix->size1;
Apop_col_tv(expected, "residual", v)
if (!weights)
gsl_blas_ddot(v, v, &sse);
else {
gsl_vector *v_times_w = apop_vector_copy(weights);
gsl_vector_mul(v_times_w, v);
gsl_blas_ddot(v_times_w, v, &sse);
gsl_vector_free(v_times_w);
}
gsl_vector *vv = Apop_cv(expected, 0);
sst = apop_vector_var(vv, m->data->weights) * (vv->size-1);
rsq = 1. - (sse/sst);
adjustment = ((obs -1.) /(obs - indep_ct)) * (1.-rsq) ;
apop_data_add_named_elmt(out, "R squared", rsq);
apop_data_add_named_elmt(out, "R squared adj", 1 - adjustment);
apop_data_add_named_elmt(out, "SSE", sse);
apop_data_add_named_elmt(out, "SST", sst);
apop_data_add_named_elmt(out, "SSR", sst - sse);
return out;
}
/** \def apop_estimate_r_squared(in)
A synonym for \ref apop_estimate_coefficient_of_determination, q.v.
\hideinitializer
*/
|