File: distribution_tests.c

package info (click to toggle)
apophenia 1.0%2Bds-7
  • links: PTS, VCS
  • area: main
  • in suites: buster, stretch
  • size: 2,904 kB
  • sloc: ansic: 19,479; makefile: 374; awk: 124; sh: 105; sed: 32
file content (217 lines) | stat: -rw-r--r-- 9,196 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/* These are tests of distributions. The basic idea is to 
 --assume a true set of parameters
 --generate a fake data set via a few thousand draws from your preferred model.
 --estimate the parameters of a new model using the fake data
 --assert that the estimated parameters are within epsilon of the true parameters.
*/
#include <apop.h>
#include <unistd.h>
#ifdef _OPENMP
#include <omp.h>
#endif

#define Diff(L, R, eps) Apop_assert(fabs((L)-(R))<(eps), "%g is too different from %g (abitrary limit=%g).", (double)(L), (double)(R), eps);

#define Print_dot if(verbose){printf(".");fflush(NULL);}
#define is_t(d) !strcmp((d)->name, "t distribution")
#define is_bernie(d) !strcmp((d)->name, "Bernoulli distribution")
#define is_binom(d) !strcmp((d)->name, "Binomial distribution")
#define is_beta(d) !strcmp((d)->name, "Beta distribution")
#define is_poisson(d) !strcmp((d)->name, "Poisson distribution")

int verbose = 1;

//The MLE of the t distribution may have non-integer value (why not?)
//Because we started with an integer value, we have to find the floor.
void tfloor(apop_model *dce){
    if (is_t(dce)) dce->parameters->vector->data[2] = floor(dce->parameters->vector->data[2]);
}

int estimate_model(apop_data *data, apop_model *dist, char *method, apop_data *true_params){
    double *starting_pt;
    if(is_bernie(dist))
        starting_pt = (double[]){.5};
    else starting_pt = (double[]) {1.6, 1.4, 10};

    Apop_settings_add_group(dist, apop_mle, 
        .starting_pt = starting_pt,
        .method       = method, .verbose   =0,
        .step_size    = 1e-1,
        .tolerance    = 1e-4,   .k         = 1.8,
        .t_initial    = 1,      .t_min     = .5
        );
    //Apop_model_add_group(dist, apop_parts_wanted);

    if((is_bernie(dist) || is_beta(dist))
       && !strcasecmp(method, "Newton hybrid"))
        return 0;
    apop_model *e = apop_estimate(data, dist);
    tfloor(e);
    Diff(0.0, apop_vector_distance(apop_data_pack(true_params), apop_data_pack(e->parameters)), 1e-1); 
    //if (is_poisson(dist)) Apop_settings_add(dist, apop_parts_wanted, covariance, 'y');
    Print_dot
    e = apop_estimate_restart(e);
    tfloor(e);
    Diff(0.0, apop_vector_distance(apop_data_pack(true_params),apop_data_pack(e->parameters)), 1e-1); 

        if (!strcmp(e->name, "Dirichlet distribution")
            || !strcmp(e->name, "Gamma distribution") //just doesn't work.
            ||(is_bernie(e) && !strcasecmp(method, "Newton hybrid"))
            ||(is_t(e)) //requires several restarts to work.
            ||(!strcmp(e->name, "Exponential distribution")) //imprecise
            || !strcmp(e->name, "Yule distribution")){
            //cycle takes all day.
            return 0;
        }

    apop_model *dc = apop_model_copy(dist);
    Apop_settings_add(dc, apop_mle, tolerance, 1e-4);
    Apop_settings_add(dc, apop_mle, dim_cycle_tolerance, fabs(apop_log_likelihood(data, e))/200.); //within .5%.
    Print_dot
    apop_model *dce = apop_estimate(data, dc);
    Print_dot
    Diff(0.0, apop_vector_distance(apop_data_pack(true_params),apop_data_pack(dce->parameters)), 1e-2); 
    return 0;
}

/*Produce random data, then try to recover the original params */
void test_one_distribution(gsl_rng *r, apop_model *model, apop_model *true_params){
    long int runsize = 1e5;
    //generate.
    apop_data *data = apop_data_calloc(runsize, model->dsize);
    if (!strcmp(model->name, "Wishart distribution")){
        data = apop_data_calloc(runsize,4);
        true_params->parameters->vector->data[0] = runsize-4;
        //Use Apop_r to get one row's data and fill it with a draw
        for (size_t i=0; i< runsize; i++){
            gsl_vector *v = Apop_rv(data, i);
            true_params->draw(v->data, r, true_params);
            assert(!isnan(apop_sum(v)));
        }
    } else {
        for (size_t i=0; i< runsize; i++){
            gsl_vector *v = Apop_rv(data, i);
            true_params->draw(v->data, r, true_params);
            assert(!isnan(apop_sum(v)));
        }
    }
    if (model->estimate) estimate_model(data, model, "", true_params->parameters);
    else { //try all the MLEs.
        estimate_model(data, model, "NM simplex", true_params->parameters);
        if(is_t(model)) return; //t distribution still v. slow to converge.
        estimate_model(data, model, "PR cg", true_params->parameters);
        estimate_model(data, model, "Newton Hybrid", true_params->parameters);
    }
    apop_data_free(data);
}

void test_cdf(gsl_rng *r, apop_model *m){//m is parameterized
    //Make random draws from the dist, then find the CDF at that draw
    //That should generate a uniform distribution.
    if (!m->cdf || is_bernie(m) || is_binom(m))
        return;
    int drawct = 1e4;
    apop_data *draws = apop_data_alloc(drawct, m->dsize);
    apop_data *cdfs = apop_data_alloc(drawct);
    for (int i=0; i< drawct; i++){
        Apop_stopif(apop_draw(Apop_r(draws, i)->matrix->data, r, m), abort(), 0, "bad draw.");
        apop_data_set(cdfs, i, -1, apop_cdf(Apop_r(draws, i), m));
    }
    apop_model *cdf = apop_estimate(apop_data_sort(cdfs), apop_pmf);
    apop_model *u01 = apop_model_set_parameters(apop_uniform, 0, 1);
    apop_data *ktest = apop_test_kolmogorov(cdf, u01);
    //apop_data_show(ktest);
    double maxdist = apop_data_get(ktest, .rowname="max distance");
    assert(maxdist < .03); //the K-S test has high confidence of rejection with large N
    apop_data_free(ktest); apop_data_free(draws); apop_data_free(cdfs);
    apop_model_free(u01);  apop_model_free(cdf);
}

double true_parameter_v[] = {1.82,2.1};

void test_distributions(gsl_rng *r){
    if (verbose) printf("\n");
    apop_model* true_params;
    apop_model *null_model = &(apop_model){"the null model"};

#define model_no_est(base) \
    apop_model * base ## _no_est = apop_model_copy(apop_##base);\
    base ## _no_est->estimate=NULL;

    model_no_est(beta);
    model_no_est(bernoulli);
    model_no_est(gamma);
    model_no_est(exponential);
    model_no_est(poisson);

    apop_t_distribution->estimate=NULL; //find df by MLE, not observation count.
    apop_model *dist[] = {
            apop_bernoulli, bernoulli_no_est, 
            apop_beta, beta_no_est,
            apop_binomial, apop_dirichlet,
            apop_exponential, exponential_no_est,
            apop_gamma, gamma_no_est,
            apop_lognormal, apop_multinomial, 
            apop_multivariate_normal,
            apop_normal, apop_poisson, poisson_no_est,
            apop_t_distribution, apop_uniform,
            apop_yule, apop_zipf, /*apop_wishart,*/
            null_model};

    for (int i=0; strcmp(dist[i]->name, "the null model"); i++){
        if (verbose) {printf("%s: ", dist[i]->name); fflush(NULL);}
        true_params = apop_model_copy(dist[i]);
        true_params->parameters = apop_data_fill_base(apop_data_alloc(dist[i]->vsize==1 ? 1 : 2), true_parameter_v);
        if (is_beta(dist[i]))
            true_params->parameters = apop_data_falloc((2), .5, .2);
        if (is_bernie(dist[i]))
            true_params->parameters = apop_data_falloc((1), .1);
        if (is_binom(dist[i])){
            true_params->parameters = apop_data_falloc((2), 15, .2);
            dist[i]->dsize=2;
        }
        if (!strcmp(dist[i]->name, "Dirichlet distribution"))
            dist[i]->dsize=2;
        if (!strcmp(dist[i]->name, "Multivariate normal distribution")){
            true_params->parameters = apop_data_falloc((2, 2, 2), 15, .5, .2,
                                                                   3, .2, .5);
            dist[i]->dsize=2;
        }
        if (!strcmp(dist[i]->name, "Multinomial distribution")){
            true_params->parameters = apop_data_falloc((4), 15, .5, .2, .1);
            dist[i]->dsize=4;
        }
        if (apop_regex(dist[i]->name, "gamma distribution"))
            true_params->parameters = apop_data_falloc((2), 1.5, 2.5);
        if (is_t(dist[i]))
            true_params->parameters = apop_data_falloc((3), 1, 3, 16);
        if (!strcmp(dist[i]->name, "Wishart distribution")){
            true_params->parameters = apop_data_falloc((2, 2, 2), 996, .2, .1,
                                                                    0, .1, .2);
            apop_vector_realloc(true_params->parameters->vector, 1);
        }
        test_one_distribution(r, dist[i], true_params);
        test_cdf(r, true_params);
        if (verbose) {printf("\nPASS.   "); fflush(NULL);}
    }
}
static void got_bored(){ exit(0); }

int main(int argc, char **argv){
#ifdef _OPENMP
    if (omp_get_num_procs()==1) omp_set_num_threads(2); //always at least 2 threads
#endif
    int c;
    char opts[] = "sqt:";
    if (argc==1)
        printf("\tDistribution tests. Each dot is an optimization run, including some methods known to be inefficient.\n\tFor quieter output, use -q. Default is two threads; change with -t1, -t3, ...\n");
    while((c = getopt(argc, argv, opts))!=-1)
        if (c == 'q')      verbose  --;
#ifdef _OPENMP
        else if (c == 't')  omp_set_num_threads(atoi(optarg));
#endif

    gsl_rng *r = apop_rng_alloc(213452);
    signal(SIGINT, got_bored);
    test_distributions(r);
}