1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/* These are tests of distributions. The basic idea is to
--assume a true set of parameters
--generate a fake data set via a few thousand draws from your preferred model.
--estimate the parameters of a new model using the fake data
--assert that the estimated parameters are within epsilon of the true parameters.
*/
#include <apop.h>
#include <unistd.h>
#ifdef _OPENMP
#include <omp.h>
#endif
#define Diff(L, R, eps) Apop_assert(fabs((L)-(R))<(eps), "%g is too different from %g (abitrary limit=%g).", (double)(L), (double)(R), eps);
#define Print_dot if(verbose){printf(".");fflush(NULL);}
#define is_t(d) !strcmp((d)->name, "t distribution")
#define is_bernie(d) !strcmp((d)->name, "Bernoulli distribution")
#define is_binom(d) !strcmp((d)->name, "Binomial distribution")
#define is_beta(d) !strcmp((d)->name, "Beta distribution")
#define is_poisson(d) !strcmp((d)->name, "Poisson distribution")
int verbose = 1;
//The MLE of the t distribution may have non-integer value (why not?)
//Because we started with an integer value, we have to find the floor.
void tfloor(apop_model *dce){
if (is_t(dce)) dce->parameters->vector->data[2] = floor(dce->parameters->vector->data[2]);
}
int estimate_model(apop_data *data, apop_model *dist, char *method, apop_data *true_params){
double *starting_pt;
if(is_bernie(dist))
starting_pt = (double[]){.5};
else starting_pt = (double[]) {1.6, 1.4, 10};
Apop_settings_add_group(dist, apop_mle,
.starting_pt = starting_pt,
.method = method, .verbose =0,
.step_size = 1e-1,
.tolerance = 1e-4, .k = 1.8,
.t_initial = 1, .t_min = .5
);
//Apop_model_add_group(dist, apop_parts_wanted);
if((is_bernie(dist) || is_beta(dist))
&& !strcasecmp(method, "Newton hybrid"))
return 0;
apop_model *e = apop_estimate(data, dist);
tfloor(e);
Diff(0.0, apop_vector_distance(apop_data_pack(true_params), apop_data_pack(e->parameters)), 1e-1);
//if (is_poisson(dist)) Apop_settings_add(dist, apop_parts_wanted, covariance, 'y');
Print_dot
e = apop_estimate_restart(e);
tfloor(e);
Diff(0.0, apop_vector_distance(apop_data_pack(true_params),apop_data_pack(e->parameters)), 1e-1);
if (!strcmp(e->name, "Dirichlet distribution")
|| !strcmp(e->name, "Gamma distribution") //just doesn't work.
||(is_bernie(e) && !strcasecmp(method, "Newton hybrid"))
||(is_t(e)) //requires several restarts to work.
||(!strcmp(e->name, "Exponential distribution")) //imprecise
|| !strcmp(e->name, "Yule distribution")){
//cycle takes all day.
return 0;
}
apop_model *dc = apop_model_copy(dist);
Apop_settings_add(dc, apop_mle, tolerance, 1e-4);
Apop_settings_add(dc, apop_mle, dim_cycle_tolerance, fabs(apop_log_likelihood(data, e))/200.); //within .5%.
Print_dot
apop_model *dce = apop_estimate(data, dc);
Print_dot
Diff(0.0, apop_vector_distance(apop_data_pack(true_params),apop_data_pack(dce->parameters)), 1e-2);
return 0;
}
/*Produce random data, then try to recover the original params */
void test_one_distribution(gsl_rng *r, apop_model *model, apop_model *true_params){
long int runsize = 1e5;
//generate.
apop_data *data = apop_data_calloc(runsize, model->dsize);
if (!strcmp(model->name, "Wishart distribution")){
data = apop_data_calloc(runsize,4);
true_params->parameters->vector->data[0] = runsize-4;
//Use Apop_r to get one row's data and fill it with a draw
for (size_t i=0; i< runsize; i++){
gsl_vector *v = Apop_rv(data, i);
true_params->draw(v->data, r, true_params);
assert(!isnan(apop_sum(v)));
}
} else {
for (size_t i=0; i< runsize; i++){
gsl_vector *v = Apop_rv(data, i);
true_params->draw(v->data, r, true_params);
assert(!isnan(apop_sum(v)));
}
}
if (model->estimate) estimate_model(data, model, "", true_params->parameters);
else { //try all the MLEs.
estimate_model(data, model, "NM simplex", true_params->parameters);
if(is_t(model)) return; //t distribution still v. slow to converge.
estimate_model(data, model, "PR cg", true_params->parameters);
estimate_model(data, model, "Newton Hybrid", true_params->parameters);
}
apop_data_free(data);
}
void test_cdf(gsl_rng *r, apop_model *m){//m is parameterized
//Make random draws from the dist, then find the CDF at that draw
//That should generate a uniform distribution.
if (!m->cdf || is_bernie(m) || is_binom(m))
return;
int drawct = 1e4;
apop_data *draws = apop_data_alloc(drawct, m->dsize);
apop_data *cdfs = apop_data_alloc(drawct);
for (int i=0; i< drawct; i++){
Apop_stopif(apop_draw(Apop_r(draws, i)->matrix->data, r, m), abort(), 0, "bad draw.");
apop_data_set(cdfs, i, -1, apop_cdf(Apop_r(draws, i), m));
}
apop_model *cdf = apop_estimate(apop_data_sort(cdfs), apop_pmf);
apop_model *u01 = apop_model_set_parameters(apop_uniform, 0, 1);
apop_data *ktest = apop_test_kolmogorov(cdf, u01);
//apop_data_show(ktest);
double maxdist = apop_data_get(ktest, .rowname="max distance");
assert(maxdist < .03); //the K-S test has high confidence of rejection with large N
apop_data_free(ktest); apop_data_free(draws); apop_data_free(cdfs);
apop_model_free(u01); apop_model_free(cdf);
}
double true_parameter_v[] = {1.82,2.1};
void test_distributions(gsl_rng *r){
if (verbose) printf("\n");
apop_model* true_params;
apop_model *null_model = &(apop_model){"the null model"};
#define model_no_est(base) \
apop_model * base ## _no_est = apop_model_copy(apop_##base);\
base ## _no_est->estimate=NULL;
model_no_est(beta);
model_no_est(bernoulli);
model_no_est(gamma);
model_no_est(exponential);
model_no_est(poisson);
apop_t_distribution->estimate=NULL; //find df by MLE, not observation count.
apop_model *dist[] = {
apop_bernoulli, bernoulli_no_est,
apop_beta, beta_no_est,
apop_binomial, apop_dirichlet,
apop_exponential, exponential_no_est,
apop_gamma, gamma_no_est,
apop_lognormal, apop_multinomial,
apop_multivariate_normal,
apop_normal, apop_poisson, poisson_no_est,
apop_t_distribution, apop_uniform,
apop_yule, apop_zipf, /*apop_wishart,*/
null_model};
for (int i=0; strcmp(dist[i]->name, "the null model"); i++){
if (verbose) {printf("%s: ", dist[i]->name); fflush(NULL);}
true_params = apop_model_copy(dist[i]);
true_params->parameters = apop_data_fill_base(apop_data_alloc(dist[i]->vsize==1 ? 1 : 2), true_parameter_v);
if (is_beta(dist[i]))
true_params->parameters = apop_data_falloc((2), .5, .2);
if (is_bernie(dist[i]))
true_params->parameters = apop_data_falloc((1), .1);
if (is_binom(dist[i])){
true_params->parameters = apop_data_falloc((2), 15, .2);
dist[i]->dsize=2;
}
if (!strcmp(dist[i]->name, "Dirichlet distribution"))
dist[i]->dsize=2;
if (!strcmp(dist[i]->name, "Multivariate normal distribution")){
true_params->parameters = apop_data_falloc((2, 2, 2), 15, .5, .2,
3, .2, .5);
dist[i]->dsize=2;
}
if (!strcmp(dist[i]->name, "Multinomial distribution")){
true_params->parameters = apop_data_falloc((4), 15, .5, .2, .1);
dist[i]->dsize=4;
}
if (apop_regex(dist[i]->name, "gamma distribution"))
true_params->parameters = apop_data_falloc((2), 1.5, 2.5);
if (is_t(dist[i]))
true_params->parameters = apop_data_falloc((3), 1, 3, 16);
if (!strcmp(dist[i]->name, "Wishart distribution")){
true_params->parameters = apop_data_falloc((2, 2, 2), 996, .2, .1,
0, .1, .2);
apop_vector_realloc(true_params->parameters->vector, 1);
}
test_one_distribution(r, dist[i], true_params);
test_cdf(r, true_params);
if (verbose) {printf("\nPASS. "); fflush(NULL);}
}
}
static void got_bored(){ exit(0); }
int main(int argc, char **argv){
#ifdef _OPENMP
if (omp_get_num_procs()==1) omp_set_num_threads(2); //always at least 2 threads
#endif
int c;
char opts[] = "sqt:";
if (argc==1)
printf("\tDistribution tests. Each dot is an optimization run, including some methods known to be inefficient.\n\tFor quieter output, use -q. Default is two threads; change with -t1, -t3, ...\n");
while((c = getopt(argc, argv, opts))!=-1)
if (c == 'q') verbose --;
#ifdef _OPENMP
else if (c == 't') omp_set_num_threads(atoi(optarg));
#endif
gsl_rng *r = apop_rng_alloc(213452);
signal(SIGINT, got_bored);
test_distributions(r);
}
|