1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
/** \file apop_linear_algebra.c Assorted things to do with matrices,
such as take determinants or do singular value decompositions. Includes
many convenience functions that don't actually do math but add/delete
columns, check bounds, et cetera.
*/
/* Copyright (c) 2006--2007, 2012 by Ben Klemens. Licensed under the GPLv2; see COPYING. */
#include "apop_internal.h"
void apop_gsl_error(const char *reason, const char *file, int line, int gsl_errno){
Apop_notify(1, "%s: %s", file, reason);
Apop_maybe_abort(1);
}
#define Checkgsl(...) if (__VA_ARGS__) {goto done;}
#define Check_gsl_with_out(...) if (__VA_ARGS__) {out->error='m'; goto done;}
#define Check_gsl_with_outmp(...) if (__VA_ARGS__) {gsl_matrix_free(*out); *out=NULL; goto done;}
#define Set_gsl_handler gsl_error_handler_t *prior_handler = gsl_set_error_handler(apop_gsl_error);
#define Unset_gsl_handler gsl_set_error_handler(prior_handler);
/**
Calculate the determinant of a matrix, its inverse, or both, via LU decomposition. The \c in matrix is not destroyed in the process.
\see apop_matrix_determinant, apop_matrix_inverse
\param in The matrix to be inverted/determined.
\param out If you want an inverse, this is where to place the matrix to be filled with the inverse. Will be allocated by the function.
\param calc_det
0: Do not calculate the determinant.<br>
1: Do.
\param calc_inv
0: Do not calculate the inverse.<br>
1: Do.
\return If <tt>calc_det == 1</tt>, then return the determinant. Otherwise, just returns zero. If <tt>calc_inv!=0</tt>,
then \c *out is pointed to the matrix inverse. In case of difficulty, I will set <tt>*out=NULL</tt> and return \c NaN.
*/
double apop_det_and_inv(const gsl_matrix *in, gsl_matrix **out, int calc_det, int calc_inv) {
Set_gsl_handler
Apop_stopif(in->size1 != in->size2, *out=NULL; return GSL_NAN, 0, "You asked me to invert a %zu X %zu matrix, "
"but inversion requires a square matrix.", in->size1, in->size2);
int sign;
double the_determinant = GSL_NAN;
gsl_matrix *invert_me = gsl_matrix_alloc(in->size1, in->size1);
gsl_permutation * perm = gsl_permutation_alloc(in->size1);
gsl_matrix_memcpy (invert_me, in);
Checkgsl(gsl_linalg_LU_decomp(invert_me, perm, &sign))
if (calc_inv){
*out = gsl_matrix_alloc(in->size1, in->size1); //square.
Check_gsl_with_outmp(gsl_linalg_LU_invert(invert_me, perm, *out))
}
if (calc_det)
the_determinant = gsl_linalg_LU_det(invert_me, sign);
done:
gsl_matrix_free(invert_me);
gsl_permutation_free(perm);
Unset_gsl_handler
return the_determinant;
}
/**
Inverts a matrix. The \c in matrix is not destroyed in the process.
You may want to call \ref apop_matrix_determinant first to check that your input is invertible, or use \ref apop_det_and_inv to do both at once.
\param in The matrix to be inverted.
\return Its inverse.
*/
gsl_matrix * apop_matrix_inverse(const gsl_matrix *in) {
gsl_matrix *out = NULL;
apop_det_and_inv(in, &out, 0, 1);
return out;
}
/**
Find the determinant of a matrix. The \c in matrix is not destroyed in the process.
See also \ref apop_matrix_inverse , or \ref apop_det_and_inv to do both at once.
\param in The matrix to be determined.
\return The determinant.
*/
double apop_matrix_determinant(const gsl_matrix *in) {
return apop_det_and_inv(in, NULL, 1, 0);
}
/** Principal component analysis: hand in a matrix and (optionally) a number of desired dimensions, and I'll return a data set where each column of the matrix is an eigenvector. The columns are sorted, so column zero has the greatest weight. The vector element of the data set gives the weights.
You may also specify the number of elements your principal component space should have. If
this is equal to the rank of the space in which the input data lives, then the sum of
weights will be one. If the dimensions desired is less than that (probably so you can
prepare a plot), then the weights will be accordingly smaller, giving you an indication
of how much variation these dimensions explain.
\param data The input matrix. I modify int in place so that each column has
mean zero. (No default. If \c NULL, return \c NULL and print a warning iff
<tt>apop_opts.verbose >= 1</tt>.)
\param dimensions_we_want The singular value decomposition will return this many of the eigenvectors with the largest eigenvalues. (default: the size of the covariance matrix, i.e. <tt>data->size2</tt>)
\return Returns an \ref apop_data set whose matrix is the principal component
space. Each column of the returned matrix will be another eigenvector; the columns
will be ordered by the eigenvalues.
The data set's vector will be the largest eigenvalues, scaled by the total of all eigenvalues (including those that were thrown out). The sum of these returned values will give you the percentage of variance explained by the factor analysis.
\exception out->error=='a' Allocation error.
*/
#ifdef APOP_NO_VARIADIC
apop_data * apop_matrix_pca(gsl_matrix *data, int const dimensions_we_want){
#else
apop_varad_head(apop_data *, apop_matrix_pca) {
gsl_matrix * apop_varad_var(data, NULL);
Apop_stopif(!data, return NULL, 1, "NULL data input");
int const apop_varad_var(dimensions_we_want, data->size2);
return apop_matrix_pca_base(data, dimensions_we_want);
}
apop_data * apop_matrix_pca_base(gsl_matrix *data, int const dimensions_we_want){
#endif
Set_gsl_handler
apop_data *pc_space = apop_data_alloc(0, data->size2, dimensions_we_want);
Apop_stopif(pc_space->error, return pc_space, 0, "Allocation error.");
pc_space->vector = gsl_vector_alloc(dimensions_we_want);
Apop_stopif(!pc_space->vector, pc_space->error='a'; return pc_space,
0, "Allocation error setting up a %i vector.", dimensions_we_want);
gsl_matrix *eigenvectors = gsl_matrix_alloc(data->size2, data->size2);
gsl_vector *dummy_v = gsl_vector_alloc(data->size2);
gsl_vector *all_evalues = gsl_vector_alloc(data->size2);
gsl_matrix *square = gsl_matrix_calloc(data->size2, data->size2);
Apop_stopif(!eigenvectors || !dummy_v || !all_evalues || !square, pc_space->error='a'; return pc_space,
0, "Allocation error setting up workspace for %zu dimensions.", data->size2);
double eigentotals = 0;
for (int i=0; i< data->size2; i++)
apop_vector_normalize(Apop_mcv(data, i), NULL, 'm');
Checkgsl(gsl_blas_dgemm(CblasTrans,CblasNoTrans, 1, data, data, 0, square))
Checkgsl(gsl_linalg_SV_decomp(square, eigenvectors, all_evalues, dummy_v))
for (int i=0; i< all_evalues->size; i++)
eigentotals += gsl_vector_get(all_evalues, i);
for (int i=0; i<dimensions_we_want; i++){
gsl_vector *v = Apop_cv(&(apop_data){.matrix=eigenvectors}, i);
gsl_matrix_set_col(pc_space->matrix, i, v);
gsl_vector_set(pc_space->vector, i, gsl_vector_get(all_evalues, i)/eigentotals);
}
done:
gsl_vector_free(dummy_v); gsl_vector_free(all_evalues);
gsl_matrix_free(square); gsl_matrix_free(eigenvectors);
Unset_gsl_handler
return pc_space;
}
static void l10(double *d){ *d = log10(*d); }
static void ln(double *d){ *d = log(*d); }
static void ex(double *d){ *d = exp(*d); }
/** Replace every vector element \f$v_i\f$ with log\f$_{10}(v_i)\f$.
\li If the input vector is \c NULL, do nothing.
*/
void apop_vector_log10(gsl_vector *v){
if (!v) return;
apop_vector_apply(v, l10);
}
/** Replace every vector element \f$v_i\f$ with ln\f$(v_i)\f$.
\li If the input vector is \c NULL, do nothing.
*/
void apop_vector_log(gsl_vector *v){
if (!v) return;
apop_vector_apply(v, ln);
}
/** Replace every vector element \f$v_i\f$ with exp\f$(v_i)\f$.
\li If the input vector is \c NULL, do nothing.
*/
void apop_vector_exp(gsl_vector *v){
if (!v) return;
apop_vector_apply(v, ex);
}
/** Put the first vector on top of the second vector.
\param v1 the upper vector (default=\c NULL, in which case this copies \c v2)
\param v2 the second vector (default=\c NULL, in which case nothing is added)
\param inplace If \c 'y', use \ref apop_vector_realloc to modify \c v1 in place;
see the caveats on that function. Otherwise, allocate a new vector, leaving \c v1
undisturbed. (default=\c 'n')
\return the stacked data, either in a new vector or a pointer to \c v1.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
gsl_vector * apop_vector_stack(gsl_vector *v1, gsl_vector const * v2, char inplace){
#else
apop_varad_head(gsl_vector *, apop_vector_stack){
gsl_vector * apop_varad_var(v1, NULL);
gsl_vector const * apop_varad_var(v2, NULL);
char apop_varad_var(inplace, 'n');
return apop_vector_stack_base(v1, v2, inplace);
}
gsl_vector * apop_vector_stack_base(gsl_vector *v1, gsl_vector const * v2, char inplace){
#endif
gsl_vector *out;
gsl_vector t;
if (!v1 && v2){
out = gsl_vector_alloc(v2->size);
gsl_vector_memcpy(out, v2);
return out;
} else if (!v2 && v1){
if (inplace == 'y')
return v1;
out = gsl_vector_alloc(v1->size);
gsl_vector_memcpy(out, v1);
return out;
} else if (!v1 && !v2)
return NULL;
//else:
size_t v1size = v1->size; //save in case of reallocing.
if (inplace == 'y' )
out = apop_vector_realloc(v1, v1->size+v2->size);
else {
out = gsl_vector_alloc(v1->size + v2->size);
t = gsl_vector_subvector(out, 0, v1size).vector;
gsl_vector_memcpy(&t, v1);
}
t = gsl_vector_subvector(out, v1size, v2->size).vector;
gsl_vector_memcpy(&t, v2);
return out;
}
/** Put the first matrix either on top of or to the right of the second matrix.
Returns a new matrix, meaning that at the end of this function, until you \c gsl_matrix_free() the original matrices, you will be taking up twice as much memory. Plan accordingly.
\param m1 the upper/rightmost matrix (default: \c NULL, in which case this copies \c m2)
\param m2 the second matrix (default: \c NULL, in which case \c m1 is returned)
\param posn If \c 'r', stack rows on top of other rows. If \c 'c' stack columns next to columns. (default: \c 'r')
\param inplace If \c 'y', use \ref apop_matrix_realloc to modify \c m1 in place; see the caveats on that function. Otherwise, allocate a new matrix, leaving \c m1 undisturbed. (default: \c 'n')
\return the stacked data, either in a new matrix or a pointer to \c m1.
For example, here is a function to merge four matrices into a single two-part-by-two-part matrix. The original matrices are unchanged.
\code
gsl_matrix *apop_stack_two_by_two(gsl_matrix *ul, gsl_matrix *ur, gsl_matrix *dl, gsl_matrix *dr){
gsl_matrix *output, *t;
output = apop_matrix_stack(ul, ur, 'c');
t = apop_matrix_stack(dl, dr, 'c');
apop_matrix_stack(output, t, 'r', .inplace='y');
gsl_matrix_free(t);
return output;
}
\endcode
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
gsl_matrix * apop_matrix_stack(gsl_matrix *m1, gsl_matrix const * m2, char posn, char inplace){
#else
apop_varad_head(gsl_matrix *, apop_matrix_stack){
gsl_matrix *apop_varad_var(m1, NULL);
gsl_matrix const *apop_varad_var(m2, NULL);
char apop_varad_var(posn, 'r');
char apop_varad_var(inplace, 'n');
return apop_matrix_stack_base(m1, m2, posn, inplace);
}
gsl_matrix * apop_matrix_stack_base(gsl_matrix *m1, gsl_matrix const * m2, char posn, char inplace){
#endif
gsl_matrix *out;
gsl_vector_view tmp_vector;
if (!m1 && m2){
out = gsl_matrix_alloc(m2->size1, m2->size2);
gsl_matrix_memcpy(out, m2);
return out;
} else if (!m2 && m1) {
if (inplace =='y')
return m1;
out = gsl_matrix_alloc(m1->size1, m1->size2);
gsl_matrix_memcpy(out, m1);
return out;
} else if (!m2 && !m1)
return NULL;
if (posn == 'r'){
Apop_stopif(m1->size2 != m2->size2, return NULL, 0, "When stacking matrices on top of each other, they have to have the same number of columns, but m1->size2==%zu and m2->size2==%zu. Returning NULL.", m1->size2, m2->size2);
int m1size = m1->size1;
if (inplace =='y')
out = apop_matrix_realloc(m1, m1->size1 + m2->size1, m1->size2);
else {
out = gsl_matrix_alloc(m1->size1 + m2->size1, m1->size2);
for (int i=0; i< m1size; i++){
tmp_vector = gsl_matrix_row(m1, i);
gsl_matrix_set_row(out, i, &(tmp_vector.vector));
}
}
for (int i=m1size; i< m1size + m2->size1; i++){
gsl_vector_const_view tmp_vector = gsl_matrix_const_row(m2, i- m1size);
gsl_matrix_set_row(out, i, &(tmp_vector.vector));
}
return out;
} else {
Apop_stopif(m1->size1 != m2->size1, return NULL, 0, "When stacking matrices side by side, "
"they have to have the same number of rows, but m1->size1==%zu and m2->size1==%zu. Returning NULL."
, m1->size1, m2->size1);
int m1size = m1->size2;
if (inplace =='y')
out = apop_matrix_realloc(m1, m1->size1, m1->size2 + m2->size2);
else {
out = gsl_matrix_alloc(m1->size1, m1->size2 + m2->size2);
for (int i=0; i< m1size; i++)
gsl_matrix_set_col(out, i, Apop_mcv(m1, i));
}
for (int i=0; i< m2->size2; i++)
gsl_matrix_set_col(out, i+ m1size, Apop_mcv((gsl_matrix*)m2, i));
return out;
}
}
/** Test that all elements of a vector are within bounds, so you can preempt a procedure
that is about to break on infinite or too-large values.
\param in A <tt>gsl_vector</tt>
\param max An upper and lower bound to the elements of the vector. (default: INFINITY)
\return 1 if everything is bounded: not Inf, -Inf, or NaN, and \f$-\max < x < \max\f$;<br> 0 otherwise.
\li A \c NULL vector has no unbounded elements, so \c NULL input returns 1. You get a warning if <tt>apop_opts.verbosity >=2</tt>.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
int apop_vector_bounded(const gsl_vector *in, long double max){
#else
apop_varad_head(int, apop_vector_bounded){
const gsl_vector * apop_varad_var(in, NULL)
Apop_stopif(!in, return 1, 2, "You sent in a NULL vector; returning 1.");
long double apop_varad_var(max, INFINITY)
return apop_vector_bounded_base(in, max);
}
int apop_vector_bounded_base(const gsl_vector *in, long double max){
#endif
for (size_t i=0; i< in->size; i++){
double x = gsl_vector_get(in, i);
if (!gsl_finite(x) || x> max || x< -max)
return 0;
}
return 1;
}
static gsl_vector* dot_for_apop_dot(const gsl_matrix *m, const gsl_vector *v,
const CBLAS_TRANSPOSE_t flip){
#define Check_gslv(...) if (__VA_ARGS__) {gsl_vector_free(out); out=NULL;}
gsl_vector *out = (flip ==CblasNoTrans)
? gsl_vector_calloc(m->size1)
: gsl_vector_calloc(m->size2);
Check_gslv(gsl_blas_dgemv (flip, 1.0, m, v, 0.0, out))
return out;
}
/** A convenience function for dot products, which requires less prep and typing than the <tt>gsl_cblas_dgexx</tt> functions.
It makes use of the semi-overloading of the \ref apop_data structure. \c d1 may be a vector or a matrix, and the same for \c d2, so this function can do vector dot matrix, matrix dot matrix, and so on. If \c d1 includes both a vector and a matrix, then later parameters will indicate which to use.
\param d1 the left part of \f$ d1 \cdot d2\f$
\param d2 the right part of \f$ d1 \cdot d2\f$
\param form1 't' or 'p': transpose or prime \c d1->matrix, or, if \c d1->matrix is \c NULL, read \c d1->vector as a row vector.<br>
'n' or 0: use matrix if present; no transpose. (the default)<br>
'v': ignore the matrix and use the vector.
\param form2 As above, with \c d2.
\return an \ref apop_data set. If two matrices come in, the vector element is \c NULL and the
matrix has the dot product; if either or both are vectors,
the vector has the output and the matrix is \c NULL.
\exception out->error='a' Allocation error.
\exception out->error='d' dimension-matching error.
\exception out->error='m' GSL math error.
\exception NULL If you ask me to take the dot product of NULL, I return NULL.
\li Some systems auto-transpose non-conforming matrices. You input a \f$3 \times 5\f$ and
a \f$3 \times 5\f$ matrix, and the system assumes that you meant to transpose the second,
producing a \f$(3 \times 5) \cdot (5 \times 3) \rightarrow (3 \times 3)\f$ output. Apophenia
does not do this. First, it's ambiguous whether the output should be \f$3 \times 3\f$
or \f$5 \times 5\f$. Second, your next run might have three observations, and two \f$3 \times 3\f$
matrices don't require transposition; auto-transposition thus creates situations where
bugs can pop up on only some iterations of a loop.
\li For a vector \f$\cdot\f$ a matrix, the vector is always treated as a row vector,
meaning that a \f$(3\times 1)\f$ dot a \f$(3\times 4)\f$ matrix is correct, and produces a
\f$(1 \times 4)\f$ vector. For a matrix \f$\cdot\f$ a vector, the vector is always treated
as a column vector. Requests for transposing the vector are ignored in both cases.
\li As a corrollary to the above rule, a vector dot a vector always produces a scalar,
which will be put in the zeroth element of the output vector;
see the example.
\li If you want to multiply an \f$N \times 1\f$ vector \f$\cdot\f$ a \f$1 \times N\f$
vector to produce an \f$N \times N\f$ matrix, then use \ref apop_vector_to_matrix to turn
your vectors into matrices; see the example.
\li A note for readers of <em>Modeling with Data</em>: the awkward instructions on using
this function on p 130 are now obsolete, thanks to the designated initializer syntax
for function calls. Notably, in the case where <tt>d1</tt> is a vector and <tt>d2</tt>
a matrix, then <tt>apop_dot(d1,d2,'t')</tt> won't work, because <tt>'t'</tt> now refers
to <tt>d1</tt>. Instead use <tt>apop_dot(d1,d2,.form2='t')</tt> or <tt>apop_dot(d1,d2,0,
't')</tt>
\li This function uses the \ref designated syntax for inputs.
Sample code:
\include dot_products.c
*/
#ifdef APOP_NO_VARIADIC
apop_data * apop_dot(const apop_data *d1, const apop_data *d2, char form1, char form2){
#else
apop_varad_head(apop_data *, apop_dot){
const apop_data * apop_varad_var(d1, NULL)
const apop_data * apop_varad_var(d2, NULL)
Apop_stopif(!d1, return NULL, 1, "d1 is NULL; returning NULL");
Apop_stopif(!d2, return NULL, 1, "d2 is NULL; returning NULL");
char apop_varad_var(form1, 0)
char apop_varad_var(form2, 0)
return apop_dot_base(d1, d2, form1, form2);
}
apop_data * apop_dot_base(const apop_data *d1, const apop_data *d2, char form1, char form2){
#endif
Set_gsl_handler
int uselm, userm;
gsl_matrix *lm = d1->matrix,
*rm = d2->matrix;
gsl_vector *lv = d1->vector,
*rv = d2->vector;
if (d1->matrix && form1 != 'v') uselm = 1;
else if (d1->vector) uselm = 0;
else {
Apop_stopif(form1 == 'v', return NULL, 0,
"You asked for a vector from the left data set, but "
"its vector==NULL. Returning NULL.");
Apop_stopif(1, return NULL, 0, "The left data set has neither non-NULL "
"matrix nor vector. Returning NULL.");
}
if (d2->matrix && form2 != 'v') userm = 1;
else if (d2->vector) userm = 0;
else {
Apop_stopif(form2 == 'v', return NULL, 0,
"You asked for a vector from the right data set, but "
"its vector==NULL. Returning NULL.");
Apop_stopif(1, return NULL, 0, "The right data set has neither non-NULL "
"matrix nor vector. Returning NULL.");
}
apop_data *out = apop_data_alloc();
#define Dimcheck(lr, lc, rr, rc) Apop_stopif((lc)!=(rr), out->error='d'; goto done,\
0, "mismatched dimensions: %zuX%zu dot %zuX%zu. %s", (lr), (lc), (rr), (rc),\
((lr)==(rr)) ? " Maybe transpose the first?" \
: ((rc)==(lc)) ? " Maybe transpose the second?" : "");
CBLAS_TRANSPOSE_t lt, rt;
lt = (form1 == 'p' || form1 == 't' || form1 == 1)
? CblasTrans: CblasNoTrans;
rt = (form2 == 'p' || form2 == 't' || form2 == 1)
? CblasTrans: CblasNoTrans;
if (uselm && userm){
Dimcheck((lt== CblasNoTrans) ? lm->size1:lm->size2,
(lt== CblasNoTrans) ? lm->size2:lm->size1,
(rt== CblasNoTrans) ? rm->size1:rm->size2,
(rt== CblasNoTrans) ? rm->size2:rm->size1)
gsl_matrix *outm = gsl_matrix_calloc((lt== CblasTrans)? lm->size2: lm->size1,
(rt== CblasTrans)? rm->size1: rm->size2);
Check_gsl_with_out(gsl_blas_dgemm (lt,rt, 1, lm, rm, 0, outm))
out->matrix = outm;
} else if (!uselm && userm){
Dimcheck((size_t)1, lv->size,
(rt== CblasNoTrans) ? rm->size1:rm->size2,
(rt== CblasNoTrans) ? rm->size2:rm->size1)
//dgemv is always matrix first, then vector, so reverse from vm to mv:
// if output vector has dimension matrix->size2, send CblasTrans
// if output vector has dimension matrix->size1, send CblasNoTrans
out->vector = dot_for_apop_dot(rm, lv
, (rt == CblasNoTrans) ? CblasTrans : CblasNoTrans);
Apop_stopif(!out->vector, out->error='m'; goto done, 0, "GSL-level math error");
} else if (uselm && !userm){
Dimcheck((lt== CblasNoTrans) ? lm->size1:lm->size2,
(lt== CblasNoTrans) ? lm->size2:lm->size1,
rv->size , (size_t)1)
out->vector = dot_for_apop_dot(lm, rv , lt);
Apop_stopif(!out->vector, out->error='m'; goto done, 0, "GSL-level math error");
} else if (!uselm && !userm){
double outd;
Check_gsl_with_out(gsl_blas_ddot(lv, rv, &outd))
out->vector = gsl_vector_alloc(1);
gsl_vector_set(out->vector, 0, outd);
}
//If using the vector, there's no meaningful name to assign.
if (d1->names && uselm){
if (lt == CblasTrans) apop_name_stack(out->names, d1->names, 'r', 'c');
else apop_name_stack(out->names, d1->names, 'r');
}
if (d2->names && userm){
if (rt == CblasTrans) apop_name_stack(out->names, d2->names, 'c', 'r');
else apop_name_stack(out->names, d2->names, 'c');
}
done:
Unset_gsl_handler
return out;
}
|