1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
|
/** \file apop_stats.c Basic moments and some distributions. */
/* Copyright (c) 2006--2007, 2013 by Ben Klemens. Licensed under the GPLv2; see COPYING. */
#include "apop_internal.h"
#include <gsl/gsl_rng.h>
#include <gsl/gsl_eigen.h>
#define Check_vw \
Apop_stopif(!v, return GSL_NAN, 0, "data vector is NULL. Returning NaN.\n"); \
Apop_stopif(!v->size, return GSL_NAN, 0, "data vector has size 0. Returning NaN.\n"); \
Apop_stopif(weights && weights->size != v->size, return GSL_NAN, 0, "data vector has size %zu; weighting vector has size %zu. Returning NaN.\n", v->size, weights->size);
/** Returns the sum of the data in the given vector.
*/
long double apop_vector_sum(const gsl_vector *in){
Apop_stopif(!in, return 0, 1, "You just asked me to sum a NULL. Returning zero.");
long double out = 0;
for (size_t i=0; i< in->size; i++)
out += gsl_vector_get(in, i);
return out;
}
/** \def apop_sum(in)
An alias for \ref apop_vector_sum. Returns the sum of the data in the given vector.
*/
/** \def apop_mean(v)
Returns the mean of the elements of the vector \c v.
\param v A \ref gsl_vector.
*/
/** \def apop_var(in)
An alias for \ref apop_vector_var.
Returns the variance of the data in the given vector.
*/
/** Returns an unbiased estimate of the sample skew of the data in the given vector.
*/
double apop_vector_skew(const gsl_vector *in){
return apop_vector_skew_pop(in) * gsl_pow_2(in->size)/((in->size -1.)*(in->size -2.)); }
/** Returns the sample fourth central moment of the data in the given
vector. Corrections are made to produce an unbiased result as per <a
href="http://modelingwithdata.org/pdfs/moments.pdf">Appendix M</a> (PDF) of <em>Modeling
with data</em>.
\li This is an estimate of the fourth central moment without normalization. The kurtosis
of a \f${\cal N}(0,1)\f$ is \f$3 \sigma^4\f$, not three, one, or zero.
\see \ref apop_vector_kurtosis_pop
*/
double apop_vector_kurtosis(const gsl_vector *in){
size_t n = in->size;
long double coeff0= n*n/(gsl_pow_3(n-1)*(gsl_pow_2(n)-3*n+3));
long double coeff1= n*gsl_pow_2(n-1)+ (6*n-9);
long double coeff2= n*(6*n-9);
return coeff0 *(coeff1 * apop_vector_kurtosis_pop(in) - coeff2 * gsl_pow_2(apop_vector_var(in)*(n-1.)/n));
}
static double wskewkurt(const gsl_vector *v, const gsl_vector *w, const int exponent, const char *fn_name){
long double wsum = 0, sumcu = 0, vv, ww, mu;
//Using the E(x - \bar x)^3 form, which is lazy.
mu = apop_vector_mean(v, w);
for (size_t i=0; i< w->size; i++){
vv = gsl_vector_get(v,i);
ww = gsl_vector_get(w,i);
sumcu+= ww * gsl_pow_int(vv - mu, exponent);
wsum += ww;
}
double len = wsum < 1.1 ? w->size : wsum;
return sumcu/len;
}
/** Returns the population skew \f$(\sum_i (x_i - \mu)^3/n))\f$ of the data in the given vector. Observations may be weighted.
\param v The data vector
\param weights The weight vector. Default: equal weights for all observations.
\return The weighted skew.
\li Some people like to normalize the skew by dividing by (variance)\f$^{3/2}\f$; that's not done here, so you'll have to do so separately if need be.
\li Apophenia tries to be smart about reading the weights. If weights
sum to one, then the system uses \c w->size as the number of elements,
and returns the usual sum over \f$n-1\f$. If weights > 1, then the
system uses the total weights as \f$n\f$. Thus, you can use the weights
as standard weightings or to represent elements that appear repeatedly.
*/
#ifdef APOP_NO_VARIADIC
double apop_vector_skew_pop(gsl_vector const *v, gsl_vector const *weights){
#else
apop_varad_head(double, apop_vector_skew_pop){
gsl_vector const * apop_varad_var(v, NULL);
gsl_vector const * apop_varad_var(weights, NULL);
Check_vw
return apop_vector_skew_pop_base(v, weights);
}
double apop_vector_skew_pop_base(gsl_vector const *v, gsl_vector const *weights){
#endif
if (weights) return wskewkurt(v, weights, 3, "apop_vector_weighted_skew");
//This code is cut/pasted/modified from the GSL.
//I reimplement the skew calculation here without the division by var^3/2 that the GSL does.
size_t n = v->size;
long double avg = 0;
long double mean = apop_vector_mean(v);
for (size_t i = 0; i < n; i++) {
const long double x = gsl_vector_get(v, i) - mean;
avg += (gsl_pow_3(x) - avg)/(i + 1);
}
return avg;
}
/** Returns the population fourth central moment [\f$\sum_i (x_i - \mu)^4/n)\f$] of the data in
the given vector, with an optional weighting.
\param v The data vector
\param weights The weight vector. If NULL, assume equal weights.
\return The weighted kurtosis.
\li Some people like to normalize the fourth central moment by dividing by variance
squared, or by subtracting three; those things are not done here, so you'll have to
do them separately if desired.
\li This function uses the \ref designated syntax for inputs.
\see \ref apop_vector_kurtosis for the unbiased sample version.
*/
#ifdef APOP_NO_VARIADIC
double apop_vector_kurtosis_pop(gsl_vector const *v, gsl_vector const *weights){
#else
apop_varad_head(double, apop_vector_kurtosis_pop){
gsl_vector const * apop_varad_var(v, NULL);
gsl_vector const * apop_varad_var(weights, NULL);
Check_vw
return apop_vector_kurtosis_pop_base(v, weights);
}
double apop_vector_kurtosis_pop_base(gsl_vector const *v, gsl_vector const *weights){
#endif
if (weights) return wskewkurt(v, weights, 4, "apop_vector_weighted_kurtosis");
//This code is cut/pasted/modified from the GSL.
//I reimplement the kurtosis calculation here without the division by var^2 that the GSL does.
size_t n = v->size;
long double avg = 0;
long double mean = apop_vector_mean(v);
for (size_t i = 0; i < n; i++) {
const long double x = gsl_vector_get(v, i) - mean;
avg += (gsl_pow_4(x) - avg)/(i + 1);
}
return avg;
}
/** Returns the variance of the data in the given vector, given that you've already calculated the mean.
\param in the vector in question
\param mean the mean, which you've already calculated using \ref apop_vector_mean.
\see apop_vector_var
*/
double apop_vector_var_m(const gsl_vector *in, const double mean){
return gsl_stats_variance_m(in->data,in->stride, in->size, mean); }
/** Returns the correlation coefficient of two vectors:
\f$ {\hbox{cov}(a,b)\over \sqrt{\hbox{var}(a)} \sqrt{\hbox{var}(b)}}.\f$
An example
\code
gsl_matrix *m = apop_text_to_data("indata")->matrix;
printf("The correlation coefficient between rows two "
"and three is %g.\n", apop_vector_correlation(Apop_mrv(m, 2), Apop_mrv(m, 3)));
\endcode
\param ina, inb Two vectors of equal length (no default, must not be NULL)
\param weights Replicate weights for the observations. (default: equal weights for all observations)
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
double apop_vector_correlation(const gsl_vector *ina, const gsl_vector *inb, const gsl_vector *weights){
#else
apop_varad_head(double, apop_vector_correlation){
gsl_vector const * apop_varad_var(ina, NULL);
gsl_vector const * apop_varad_var(inb, NULL);
gsl_vector const * apop_varad_var(weights, NULL);
return apop_vector_correlation_base(ina, inb, weights);
}
double apop_vector_correlation_base(const gsl_vector *ina, const gsl_vector *inb, const gsl_vector *weights){
#endif
return apop_vector_cov(ina, inb, weights)
/ sqrt(apop_vector_var(ina, weights) * apop_vector_var(inb, weights)); }
/** Returns the distance between two vectors, where distance is defined
based on the third (optional) parameter:
- 'e' (the default): scalar distance (standard Euclidean metric) between two vectors. \f$\sqrt{\sum_i{(a_i - b_i)^2}},\f$
where \f$i\f$ iterates over dimensions.
- 'm' Returns the Manhattan metric distance between two vectors: \f$\sum_i{|a_i - b_i|},\f$
where \f$i\f$ iterates over dimensions.
- 'd' The discrete norm: if \f$a = b\f$, return zero, else return one.
- 's' The sup norm: find the dimension where \f$|a_i - b_i|\f$ is largest, return the distance along that one dimension.
- 'l' or 'L' The \f$L_p\f$ norm, \f$\left(\sum_i{|a_i - b_i|^2}\right)^{1/p}\f$. The value of \f$p\f$ is set by the fourth (optional) argument.
\param ina First vector (No default, must not be \c NULL)
\param inb Second vector (Default = zero)
\param metric The type of metric, as above.
\param norm If you are using an \f$L_p\f$ norm, this is \f$p\f$. Must be strictly greater than zero. (default = 2)
\li The defaults are such that
\code
apop_vector_distance(v);
apop_vector_distance(v, .metric = 's');
apop_vector_distance(v, .metric = 'm');
\endcode
gives you the standard Euclidean length of \c v, its longest element, and its sum.
\li This function uses the \ref designated syntax for inputs.
\include test_distances.c
*/
#ifdef APOP_NO_VARIADIC
double apop_vector_distance(const gsl_vector *ina, const gsl_vector *inb, const char metric, const double norm){
#else
apop_varad_head(double, apop_vector_distance){
static threadlocal gsl_vector *zero = NULL;
const gsl_vector * apop_varad_var(ina, NULL);
Apop_stopif(!ina, return NAN, 1, "The first vector is NULL. Returning NAN");
const gsl_vector * apop_varad_var(inb, NULL);
if (!inb){
if (!zero || zero->size !=ina->size){
if (zero) gsl_vector_free(zero);
zero = gsl_vector_calloc(ina->size);
}
inb = zero;
}
const char apop_varad_var(metric, 'e');
const double apop_varad_var(norm, 2);
return apop_vector_distance_base(ina, inb, metric, norm);
}
double apop_vector_distance_base(const gsl_vector *ina, const gsl_vector *inb, const char metric, const double norm){
#endif
Apop_stopif(ina->size != inb->size, return GSL_NAN, 0, "I need equal-sized vectors, but "
"you sent a vector of size %zu and a vector of size %zu. Returning NaN.", ina->size, inb->size);
double dist = 0;
if (metric == 'e' || metric == 'E'){
for (size_t i=0; i< ina->size; i++)
dist += gsl_pow_2(gsl_vector_get(ina, i) - gsl_vector_get(inb, i));
return sqrt(dist);
}
if (metric == 'm' || metric == 'M'){ //redundant with vector_grid_distance, below.
for (size_t i=0; i< ina->size; i++)
dist += fabs(gsl_vector_get(ina, i) - gsl_vector_get(inb, i));
return dist;
}
if (metric == 'd' || metric == 'D'){
for (size_t i=0; i< ina->size; i++)
if (gsl_vector_get(ina, i) != gsl_vector_get(inb, i))
return 1;
return 0;
}
if (metric == 's' || metric == 'S'){
for (size_t i=0; i< ina->size; i++)
dist = GSL_MAX(dist, fabs(gsl_vector_get(ina, i) - gsl_vector_get(inb, i)));
return dist;
}
if (metric == 'l' || metric == 'L'){
for (size_t i=0; i< ina->size; i++)
dist += pow(fabs(gsl_vector_get(ina, i) - gsl_vector_get(inb, i)), norm);
return pow(dist, 1./norm);
}
Apop_stopif(1, return NAN, 1, "I couldn't find the metric type you gave, %c, in my list of supported types. Returning NaN", metric);
}
/** This function will normalize a vector, either such that it has mean
zero and variance one, or ranges between zero and one, or sums to one.
\param in A \c gsl_vector with the un-normalized data. \c NULL
input gives \c NULL output. (No default)
\param out If normalizing in place, \c NULL.
If not, the address of a <tt>gsl_vector*</tt>. Do not allocate. (default = \c NULL.)
\param normalization_type
\c 'p': normalized vector will sum to one. E.g., start with a set of observations in bins, end with the percentage of observations in each bin. (the default)<br>
\c 'r': normalized vector will range between zero and one. Replace each X with (X-min) / (max - min).<br>
\c 's': normalized vector will have mean zero and (sample) variance one. Replace
each X with \f$(X-\mu) / \sigma\f$, where \f$\sigma\f$ is the sample
standard deviation.<br>
\c 'm': normalize to mean zero: Replace each X with \f$(X-\mu)\f$<br>
\b Example
\code
\endcode
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
void apop_vector_normalize(gsl_vector *in, gsl_vector **out, const char normalization_type){
#else
apop_varad_head(void, apop_vector_normalize){
gsl_vector * apop_varad_var(in, NULL);
Apop_stopif(!in, return, 1, "Input vector is NULL. Doing nothing.");
gsl_vector ** apop_varad_var(out, NULL);
const char apop_varad_var(normalization_type, 'p');
apop_vector_normalize_base(in, out, normalization_type);
}
void apop_vector_normalize_base(gsl_vector *in, gsl_vector **out, const char normalization_type){
#endif
double mu, min, max;
if (!out) out = ∈
else {
*out = gsl_vector_alloc (in->size);
gsl_vector_memcpy(*out, in);
}
if (normalization_type == 's'){
mu = apop_vector_mean(in);
Apop_stopif(!isfinite(mu), return, 0, "normalization failed: the mean of the vector is not finite.");
gsl_vector_add_constant(*out, -mu);
double scaling = 1./(sqrt(apop_vector_var_m(*out, 0)));
Apop_stopif(!isfinite(scaling), return, 0, "normalization failed: 1/(std error) of the vector is not finite.");
gsl_vector_scale(*out, scaling);
}
else if (normalization_type == 'r'){
gsl_vector_minmax(in, &min, &max);
gsl_vector_add_constant(*out, -min);
gsl_vector_scale(*out, 1/(max-min));
}
else if (normalization_type == 'p'){
long double sum = apop_sum(in);
Apop_stopif(!sum, return, 0, "the vector sums to zero, so I can't normalize it to sum to one.");
gsl_vector_scale(*out, 1/sum);
}
else if (normalization_type == 'm'){
mu = apop_vector_mean(in);
Apop_stopif(!isfinite(mu), return, 0, "normalization failed: the mean of the vector is not finite.");
gsl_vector_add_constant(*out, -mu);
}
}
/** Returns the sum of the elements of a matrix. Occasionally convenient.
\param m the matrix to be summed.
*/
long double apop_matrix_sum(const gsl_matrix *m){
Apop_stopif(!m, return 0, 1, "You just asked me to sum a NULL. Returning zero.");
long double sum = 0;
for (size_t j=0; j< m->size1; j++)
for (size_t i=0; i< m->size2; i++)
sum += gsl_matrix_get(m, j, i);
return sum;
}
/** Returns the mean of all elements of a matrix.
\param data The matrix to be averaged. If \c NULL, return zero.
\return The mean of all cells of the matrix.
*/
double apop_matrix_mean(const gsl_matrix *data){
if (!data) return 0;
long double avg = 0;
int cnt = 0;
for(size_t i=0; i < data->size1; i++)
for(size_t j=0; j < data->size2; j++){
double x = gsl_matrix_get(data, i,j);
long double ratio = cnt/(cnt+1.0);
cnt++;
avg*= ratio;
avg+= x/cnt;
}
return avg;
}
/** Returns the mean and population variance of all elements of a matrix.
\li If \c NULL, return \f$\mu=0, \sigma^2=NaN\f$.
\li Gives the population variance (sum of squares divided by \f$N\f$).
If you want sample variance, multiply the result by \f$N/(N-1)\f$:
\code
double mu, var;
apop_data *data= apop_query_to_data("select * from indata");
apop_matrix_mean_and_var(data->matrix, &mu, &var);
var *= (data->size1*data->size2)/(data->size1*data->size2-1.0);
\endcode
\param data the matrix to be averaged.
\param mean where to put the mean to be calculated.
\param var where to put the variance to be calculated.
*/
void apop_matrix_mean_and_var(const gsl_matrix *data, double *mean, double *var){
if (!data) {*mean=0; *var=GSL_NAN; return;}
long double avg = 0,
avg2 = 0;
size_t cnt= 0;
long double x, ratio;
for(size_t i=0; i < data->size1; i++)
for(size_t j=0; j < data->size2; j++){
x = gsl_matrix_get(data, i,j);
ratio = cnt/(cnt+1.0);
cnt ++;
avg *= ratio;
avg2 *= ratio;
avg += x/(cnt +0.0);
avg2 += gsl_pow_2(x)/(cnt +0.0);
}
*mean = avg;
*var = avg2 - gsl_pow_2(avg); //E[x^2] - E^2[x]
}
/** Put summary information about the columns of a table (mean, std dev, variance, min, median, max) in a table.
\param indata The table to be summarized. An \ref apop_data structure. May have a <tt>weights</tt> element.
\return An \ref apop_data structure with one row for each column in the original
table, and a column for each summary statistic.
\exception out->error='a' Allocation error.
\li This function gives more columns than you probably want; use \ref apop_data_prune_columns to pick the ones you want to see.
\li See apop_data_prune_columns for an example.
*/
apop_data * apop_data_summarize(apop_data *indata){
Apop_stopif(!indata, return NULL, 0, "You sent me a NULL apop_data set. Returning NULL.");
Apop_stopif(!indata->matrix, return NULL, 0, "You sent me an apop_data set with a NULL matrix. Returning NULL.");
apop_data *out = apop_data_alloc(indata->matrix->size2, 6);
double mean, var;
char rowname[10000]; //crashes on more than 10^9995 columns.
apop_name_add(out->names, "mean", 'c');
apop_name_add(out->names, "std dev", 'c');
apop_name_add(out->names, "variance", 'c');
apop_name_add(out->names, "min", 'c');
apop_name_add(out->names, "median", 'c');
apop_name_add(out->names, "max", 'c');
if (indata->names !=NULL){
apop_name_stack(out->names,indata->names, 'r', 'c');
if (indata->names->title && strlen(indata->names->title)){
char *title;
Asprintf(&title, "summary for %s", indata->names->title);
apop_name_add(out->names, title, 'h');
free(title);
}
}
else
for (size_t i=0; i< indata->matrix->size2; i++){
sprintf(rowname, "col %zu", i);
apop_name_add(out->names, rowname, 'r');
}
for (size_t i=0; i< indata->matrix->size2; i++){
gsl_vector *v = Apop_cv(indata, i);
if (!indata->weights){
mean = apop_vector_mean(v);
var = apop_vector_var_m(v, mean);
} else {
mean = apop_vector_mean(v, indata->weights);
var = apop_vector_var(v, indata->weights);
}
double *pctiles = apop_vector_percentiles(v);
gsl_matrix_set(out->matrix, i, 0, mean);
gsl_matrix_set(out->matrix, i, 1, sqrt(var));
gsl_matrix_set(out->matrix, i, 2, var);
gsl_matrix_set(out->matrix, i, 3, pctiles[0]);
gsl_matrix_set(out->matrix, i, 4, pctiles[50]);
gsl_matrix_set(out->matrix, i, 5, pctiles[100]);
free(pctiles);
}
return out;
}
/** Returns an array of size 101, where \c returned_vector[95] gives the value of the
95th percentile, for example. \c Returned_vector[100] is always the maximum value,
and \c returned_vector[0] is always the min (regardless of rounding rule).
\param data A \c gsl_vector with the data. (No default, must not be \c NULL.)
\param rounding Either be \c 'u', \c 'd', or \c 'a'. Unless your data is
exactly a multiple of 101, some percentiles will be ambiguous. If \c 'u', then round
up (use the next highest value); if \c 'd', round down to the next lowest value; if \c
'a', take the mean of the two nearest points. (Default = \c 'd'.)
\li If the rounding method is \c 'u' or \c 'a', then you can say "5% or more of
the sample is below returned_vector[5]"; if \c 'd' or \c 'a', then you can say "5%
or more of the sample is above returned_vector[5]".
\li You may eventually want to \c free() the array returned by this function.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
double * apop_vector_percentiles(gsl_vector *data, char rounding){
#else
apop_varad_head(double *, apop_vector_percentiles){
gsl_vector *apop_varad_var(data, NULL);
Apop_stopif(!data, return NULL, 0, "You gave me NULL data.");
char apop_varad_var(rounding, 'd');
return apop_vector_percentiles_base(data, rounding);
}
double * apop_vector_percentiles_base(gsl_vector *data, char rounding){
#endif
gsl_vector *sorted = gsl_vector_alloc(data->size);
double *pctiles = malloc(sizeof(double) * 101);
gsl_vector_memcpy(sorted,data);
gsl_sort_vector(sorted);
for(int i=0; i<101; i++){
int index = i*(data->size-1)/100.0;
if (rounding == 'u' && index != i*(data->size-1)/100.0)
index ++; //index was rounded down, but should be rounded up.
if (rounding == 'a' && index != i*(data->size-1)/100.0)
pctiles[i] = (gsl_vector_get(sorted, index)+gsl_vector_get(sorted, index+1))/2.;
else pctiles[i] = gsl_vector_get(sorted, index);
}
gsl_vector_free(sorted);
return pctiles;
}
/** Find the mean, weighted or unweighted.
\param v The data vector
\param weights The weight vector. Default: assume equal weights.
\return The weighted mean
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
double apop_vector_mean(gsl_vector const *v, gsl_vector const *weights){
#else
apop_varad_head(double, apop_vector_mean){
gsl_vector const * apop_varad_var(v, NULL);
gsl_vector const * apop_varad_var(weights, NULL);
Check_vw
return apop_vector_mean_base(v, weights);
}
double apop_vector_mean_base(gsl_vector const *v, gsl_vector const *weights){
#endif
if (!weights) return gsl_stats_mean(v->data, v->stride, v->size);
long double sum = 0, wsum = 0;
for (size_t i=0; i< weights->size; i++){
sum += gsl_vector_get(weights, i) * gsl_vector_get(v,i);
wsum += gsl_vector_get(weights, i);
}
return sum/wsum;
}
/** Find the sample variance of a vector, weighted or unweighted.
\param v The data vector
\param weights The weight vector. If NULL (the default), assume equal weights.
\return The weighted sample variance.
\li This uses (n-1) in the denominator of the sum; i.e., it corrects for the bias
introduced by using \f$\bar x\f$ instead of \f$\mu\f$.
\li Multiply the output by (n-1)/n if you need population variance.
\li Apophenia tries to be smart about reading the weights. If weights
sum to one, then the system uses \c w->size as the number of elements,
and returns the usual sum over \f$n-1\f$. If weights > 1, then the
system uses the total weights as \f$n\f$. Thus, you can use the weights
as standard weightings or to represent elements that appear repeatedly.
\li This function uses the \ref designated syntax for inputs.
\see apop_vector_var_m for the case where you already have the vector's mean.
*/
#ifdef APOP_NO_VARIADIC
double apop_vector_var(gsl_vector const *v, gsl_vector const *weights){
#else
apop_varad_head(double, apop_vector_var){
gsl_vector const * apop_varad_var(v, NULL);
gsl_vector const * apop_varad_var(weights, NULL);
Check_vw
return apop_vector_var_base(v, weights);
}
double apop_vector_var_base(gsl_vector const *v, gsl_vector const *weights){
#endif
if (!weights) return gsl_stats_variance(v->data, v->stride, v->size);
//Using the E(x^2) - E^2(x) form.
long double sum = 0, wsum = 0, sumsq = 0, vv, ww;
for (size_t i=0; i< weights->size; i++){
vv = gsl_vector_get(v, i);
ww = gsl_vector_get(weights, i);
sum += ww * vv;
sumsq += ww * gsl_pow_2(vv);
wsum += ww;
}
double len = (wsum < 1.1 ? weights->size : wsum);
return (sumsq/len - gsl_pow_2(sum/len)) * len/(len -1.);
}
/** Find the sample covariance of a pair of vectors, with an optional weighting. This only
makes sense if the weightings are identical, so the function takes only one weighting vector for both.
\param v1, v2 The data vectors (no default; must not be \c NULL)
\param weights The weight vector. (default equal weights for all elements)
\return The sample covariance
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
double apop_vector_cov(const gsl_vector *v1, const gsl_vector *v2, const gsl_vector *weights){
#else
apop_varad_head(double, apop_vector_cov){
gsl_vector const * apop_varad_var(v1, NULL);
gsl_vector const * apop_varad_var(v2, NULL);
gsl_vector const * apop_varad_var(weights, NULL);
Apop_stopif(!v1, return GSL_NAN, 0, "first data vector is NULL. Returning NaN.");
Apop_stopif(!v2, return GSL_NAN, 0, "second data vector is NULL. Returning NaN.");
Apop_stopif(!v1->size, return GSL_NAN, 0, "first data vector has size 0. Returning NaN.");
Apop_stopif(!v2->size, return GSL_NAN, 0, "second data vector has size 0. Returning NaN.");
Apop_stopif(v1->size!= v2->size, return GSL_NAN, 0, "data vectors have sizes %zu and %zu. Returning NaN.", v1->size, v2->size);
Apop_stopif(weights && ((weights->size != v1->size) || (weights->size != v2->size)), return GSL_NAN, 0, "data vectors have sizes %zu and %zu; weighting vector has size %zu. Returning NaN.", v1->size, v2->size, weights->size);
return apop_vector_cov_base(v1, v2, weights);
}
double apop_vector_cov_base(const gsl_vector *v1, const gsl_vector *v2, const gsl_vector *weights){
#endif
if (!weights) return gsl_stats_covariance(v1->data, v1->stride, v2->data, v2->stride, v2->size);
long double sum1 = 0, sum2 = 0, wsum = 0, sumsq = 0, vv1, vv2, ww;
//Using the E(x^2) - E^2(x) form.
for (size_t i=0; i< weights->size; i++){
vv1 = gsl_vector_get(v1,i);
vv2 = gsl_vector_get(v2,i);
ww = gsl_vector_get(weights,i);
sum1 += ww * vv1;
sum2 += ww * vv2;
sumsq+= ww * vv1 * vv2;
wsum += ww;
}
double len = (wsum < 1.1 ? weights->size : wsum);
return (sumsq/len - sum1*sum2/gsl_pow_2(len)) *(len/(len-1));
}
/** Returns the sample variance/covariance matrix relating each column of the matrix to each other column.
\param in An \ref apop_data set. If the weights vector is set, I'll take it into account.
\li This is the sample covariance---dividing by \f$n-1\f$, not \f$n\f$. If you need the population variance, use
\code
apop_data *popcov = apop_data_covariance(indata);
int size=indata->matrix->size1;
gsl_matrix_scale(popcov->matrix, size/(size-1.));
\endcode
\return Returns an \ref apop_data set the variance/covariance matrix.
\exception out->error='a' Allocation error.
*/
apop_data *apop_data_covariance(const apop_data *in){
Apop_stopif(!in, return NULL, 1, "You sent me a NULL apop_data set. Returning NULL.");
Apop_stopif(!in->matrix, return NULL, 1, "You sent me an apop_data set with a NULL matrix. Returning NULL.");
apop_data *out = apop_data_alloc(in->matrix->size2, in->matrix->size2);
Apop_stopif(out->error, return out, 0, "allocation error.");
for (size_t i=0; i < in->matrix->size2; i++){
for (size_t j=i; j < in->matrix->size2; j++){
double var = apop_vector_cov(Apop_cv(in, i), Apop_cv(in, j), in->weights);
gsl_matrix_set(out->matrix, i,j, var);
if (i!=j) gsl_matrix_set(out->matrix, j,i, var);
}
}
apop_name_stack(out->names, in->names, 'c');
apop_name_stack(out->names, in->names, 'r', 'c');
return out;
}
/** Returns the matrix of correlation coefficients \f$(\sigma^2_{xy}/(\sigma_x\sigma_y))\f$ relating each column with each other.
\param in A data matrix: rows are observations, columns are variables. If you give me a weights vector, I'll use it.
\return Returns the square variance/covariance matrix with dimensions equal to the number of input columns.
\exception out->error='a' Allocation error.
*/
apop_data *apop_data_correlation(const apop_data *in){
apop_data *out = apop_data_covariance(in);
if (!out) return NULL;
for(size_t i=0; i< in->matrix->size2; i++){
double std_dev = sqrt(apop_vector_var(Apop_cv(in, i), in->weights));
gsl_vector_scale(Apop_cv(out, i), 1.0/std_dev);
gsl_vector_scale(Apop_rv(out, i), 1.0/std_dev);
}
return out;
}
/** Given a vector representing a probability distribution of observations, calculate the entropy, \f$\sum_i -\ln(v_i)v_i\f$.
\li You may input a vector giving frequencies (normalized to sum to one) or counts (arbitrary sum).
\li The entropy of a data set depends only on the frequency with which elements are
observed, not the value of the elements themselves. The \ref apop_data_pmf_compress
function will reduce an input \ref apop_data set to one weighted line per observation, and
the weights would determine the entropy:
\code
apop_data *data = apop_text_to_data("indata");
apop_data_pmf_compress(data);
data_entropy = apop_vector_entropy(d->weights);
\endcode
\li The entropy is calculated using natural logs. To convert to base 2, divide by \f$\ln(2)\f$; see the example.
\li The entropy of an empty data set (\c NULL or a total weight of zero) is zero. Print a warning when given \c NULL
input and <tt>apop_opts.verbose >=1</tt>.
\li If the input vector has negative elements, return \c NaN; print a warning when <tt>apop_opts.verbose >= 0</tt>.
Sample code:
\include entropy_vector.c
*/
long double apop_vector_entropy(gsl_vector *in){
Apop_stopif(!in, return 0, 1, "Entropy of a NULL vector ≡ 0");
Apop_stopif(!in->size, return 0, 1, "Entropy of a zero-length vector ≡ 0");//can't happen.
//User may or may not have normalized in, so scale everything by the sum.
long double sum = apop_vector_sum(in);
Apop_stopif(sum<0, return NAN, 0, "Vector sums to a negative value (%Lg). Returning NaN.\n", sum);
if (!sum) return 0;
long double out=0;
for (int i=0; i< in->size; i++){
double val = gsl_vector_get(in, i)/sum;
Apop_stopif(val<0, return NAN, 0, "negative value (%g) in vector position %i. Returning NaN.\n", val, i);
if (!val) continue;
out -= logl(val)*val;
}
return out;
}
static long double norment(apop_model *m){
double sigma_sq = gsl_pow_2(apop_data_get(m->parameters, 1));
return (log(2*M_PI*sigma_sq) +1)/2.;
}
double get_ll(apop_data *d, void *m){ return apop_log_likelihood(d, m); }
/** Calculate the entropy of a model: \f$\int -\ln(p(x))p(x)dx\f$, which is the expected
value of \f$-\ln(p(x))\f$.
The default method is to make draws using \ref apop_model_draws, then
evaluate the log likelihood at those points using the model's \c log_likelihood method.
There are a number of routines for specific models, inlcuding the \ref apop_normal and \ref apop_pmf models.
\li If you want the entropy of a data set, see \ref apop_vector_entropy.
\li The entropy is calculated using natural logs. If you prefer base-2 logs, just divide by \f$\ln(2)\f$: <tt>apop_model_entropy(my_model)/log(2)</tt>.
\param in A parameterized \ref apop_model. That is, you have already used \ref apop_estimate or \ref apop_model_set_parameters to estimate/set the model parameters.
\param draws If using the default method of making random draws, how many random draws to make (default=1,000)
Sample code:
\include entropy_model.c
*/
#ifdef APOP_NO_VARIADIC
long double apop_model_entropy(apop_model *in, int draws){
#else
apop_varad_head(long double, apop_model_entropy){
apop_model * apop_varad_var(in, NULL);
Apop_stopif(!in, return NAN, 0, "NULL input model. Returning NaN.");
int apop_varad_var(draws, 1000);
return apop_model_entropy_base(in, draws);
}
long double apop_model_entropy_base(apop_model *in, int draws){
#endif
static int setup=0; if (!(setup++)){
apop_entropy_vtable_add(norment, apop_normal);
}
apop_entropy_type e_fn = apop_entropy_vtable_get(in);
if (e_fn) return e_fn(in);
apop_data *d = apop_model_draws(in, draws);
apop_data *lls = apop_map(d, .fn_rp=get_ll, .param=in);
long double out = -apop_vector_mean(lls->vector);
apop_data_free(d);
apop_data_free(lls);
return out;
}
double a_div(gsl_vector *in){
double pi = gsl_vector_get(in, 0);
double qi = gsl_vector_get(in, 0);
return pi ? pi * log(pi/qi):0;
}
/** Kullback-Leibler divergence.
This measure of the divergence of one distribution from another has the form \f$ D(p,q)
= \sum_i \ln(p_i/q_i) p_i \f$. Notice that it is not a distance, because there is an
asymmetry between \f$p\f$ and \f$q\f$, so one can expect that \f$D(p, q) \neq D(q, p)\f$.
\param from the \f$p\f$ in the above formula. (No default; must not be \c NULL)
\param to the \f$q\f$ in the above formula. (No default; must not be \c NULL)
\param draw_ct If I do the calculation via random draws, how many? (Default = 1e5)
\param rng A \c gsl_rng. If \c NULL or number of threads is greater than 1, I'll take care of the RNG; see \ref apop_rng_get_thread. (Default = \c NULL)
This function can take empirical histogram-type models (\ref apop_pmf) or continuous
models like \ref apop_loess or \ref apop_normal.
If there is a PMF (I'll try \c from first, under the presumption that you are measuring
the divergence of a fitted model from an observed data distribution), then I'll step
through it for the points in the summation.
\li If you have two empirical distributions in the form of \ref apop_pmf, they must
be synced: if \f$p_i>0\f$ but \f$q_i=0\f$, then the function returns \c GSL_NEGINF. If
<tt>apop_opts.verbose >=1</tt> I print a message as well.
If neither distribution is a PMF, then I'll take \c draw_ct random draws from \c from
and evaluate at those points.
\li Set <tt>apop_opts.verbose = 3</tt> for observation-by-observation info.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
long double apop_kl_divergence(apop_model *from, apop_model *to, int draw_ct, gsl_rng *rng){
#else
apop_varad_head(long double, apop_kl_divergence){
apop_model * apop_varad_var(from, NULL);
apop_model * apop_varad_var(to, NULL);
Apop_stopif(!from, return NAN, 0, "The first model is NULL; returning NaN.");
Apop_stopif(!to, return NAN, 0, "The second model is NULL.");
double apop_varad_var(draw_ct, 1e5);
gsl_rng * apop_varad_var(rng, apop_rng_get_thread(-1));
return apop_kl_divergence_base(from, to, draw_ct, rng);
}
long double apop_kl_divergence_base(apop_model *from, apop_model *to, int draw_ct, gsl_rng *rng){
#endif
double div = 0;
Apop_notify(3, "p(from)\tp(to)\tfrom*log(from/to)\n");
if (*from->name && !strcmp(from->name, "PDF or sparse matrix")){
apop_data *p = from->data;
apop_pmf_settings *settings = Apop_settings_get_group(from, apop_pmf);
Get_vmsizes(p); //maxsize
OMP_for_reduce (+:div, int i=0; i < maxsize; i++){
double pi = p->weights ? gsl_vector_get(p->weights, i)/settings->total_weight : 1./maxsize;
if (!pi){
Apop_notify(3, "0\t--\t0");
continue;
} //else:
double qi = apop_p(Apop_r(p, i), to);
Apop_notify(3,"%g\t%g\t%g", pi, qi, pi ? pi * log(pi/qi):0);
Apop_stopif(!qi, div+=GSL_NEGINF; break, 1, "The PMFs aren't synced: from-distribution has a value where "
"to-distribution doesn't (which produces infinite divergence).");
div += pi * log(pi/qi);
}
} else { //the version with the RNG.
Apop_stopif(!from->dsize, return GSL_NAN, 0, "I need to make random draws from the 'from' model, "
"but its dsize (draw size)==0. Returning NaN.");
apop_data *draw_list = apop_data_alloc(draw_ct, 2);
OMP_for_reduce(+:div, int i=0; i < draw_ct; i++){
double draw[from->dsize];
apop_draw(draw, apop_rng_get_thread(-1), from);
gsl_matrix_view dm = gsl_matrix_view_array(draw, 1, from->dsize);
double pi = apop_p(&(apop_data){.matrix=&(dm.matrix)}, from);
double qi = apop_p(&(apop_data){.matrix=&(dm.matrix)}, to);
apop_data_set(draw_list, i, 0, pi);
apop_data_set(draw_list, i, 1, qi);
Apop_notify(3,"%g\t%g\t%g", pi, qi, pi ? pi * log(pi/qi):0);
Apop_stopif(!qi, div+=GSL_NEGINF; break, 1, "From-distribution has a value where "
"to-distribution doesn't (which produces infinite divergence).");
}
apop_vector_normalize(Apop_cv(draw_list, 0), NULL, 'p');
apop_vector_normalize(Apop_cv(draw_list, 1), NULL, 'p');
div = apop_map_sum(draw_list, .fn_v=a_div);
}
return div;
}
/** The multivariate generalization of the Gamma distribution.
\f[
\Gamma_p(a)=
\pi^{p(p-1)/4}\prod_{j=1}^p
\Gamma\left[ a+(1-j)/2\right]. \f]
Because \f$\Gamma(x)\f$ is undefined for \f$x\in\{0, -1, -2, ...\}\f$, this function returns \c NAN when \f$a+(1-j)/2\f$ takes on one of those values.
See also \ref apop_multivariate_lngamma, which is more numerically stable in most cases.
*/
long double apop_multivariate_gamma(double a, int p){
Apop_stopif(-(a+(1-p)/2) == (int)-(a+(1-p)/2) && a+(1-p)/2 <=0, return NAN, 1, "Undefined when a + (1-p)/2 = 0, -1, -2, ... [you sent a=%g, p=%i]", a, p);
long double out = pow(M_PI, p*(p-1.)/4.);
long double factor = 1;
for (int i=1; i<=p; i++)
factor *= gsl_sf_gamma(a+(1-i)/2.);
return out * factor;
}
/** The log of the multivariate generalization of the Gamma; see also
\ref apop_multivariate_gamma.
*/
long double apop_multivariate_lngamma(double a, int p){
Apop_stopif(-(a+(1-p)/2) == (int)-(a+(1-p)/2) && a+(1-p)/2 <=0, return NAN, 1, "Undefined when a + (1-p)/2 = 0, -1, -2, ... [you sent a=%g, p=%i]", a, p);
long double out = M_LNPI * p*(p-1.)/4.;
for (int i=1; i<=p; i++)
out += gsl_sf_lngamma(a+(1-i)/2.);
return out;
}
static void find_eigens(gsl_matrix **subject, gsl_vector *eigenvals, gsl_matrix *eigenvecs){
gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc((*subject)->size1);
gsl_eigen_symmv(*subject, eigenvals, eigenvecs, w);
gsl_eigen_symmv_free (w);
gsl_matrix_free(*subject); *subject = NULL;
}
static void diagonal_copy(gsl_vector *v, gsl_matrix *m, char in_or_out){
gsl_vector_view dv = gsl_matrix_diagonal(m);
if (in_or_out == 'i') gsl_vector_memcpy(&(dv.vector), v);
else gsl_vector_memcpy(v, &(dv.vector));
}
static double diagonal_size(gsl_matrix *m){
gsl_vector_view dv = gsl_matrix_diagonal(m);
return apop_sum(&dv.vector);
}
static double biggest_elmt(gsl_matrix *d){
return GSL_MAX(fabs(gsl_matrix_max(d)), fabs(gsl_matrix_min(d)));
}
/** Test whether the input matrix is positive semidefinite (PSD).
A covariance matrix will always be PSD, so this function can tell you whether your matrix is a valid covariance matrix.
Consider the 1x1 matrix in the upper left of the input, then the 2x2 matrix in the
upper left, on up to the full matrix. If the matrix is PSD, then each of these has
a positive determinant. This function thus calculates \f$N\f$ determinants for an
\f$N\f$x\f$N\f$ matrix.
\param m The matrix to test. If \c NULL, I will return zero---not PSD.
\param semi If anything but \c 's', check for positive definite, not semidefinite. (default 's')
See also \ref apop_matrix_to_positive_semidefinite, which will change the input to something PSD.
\li This function uses the \ref designated syntax for inputs.
*/
#ifdef APOP_NO_VARIADIC
int apop_matrix_is_positive_semidefinite(gsl_matrix *m, char semi){
#else
apop_varad_head(int, apop_matrix_is_positive_semidefinite){
gsl_matrix * apop_varad_var(m, NULL);
Apop_stopif(!m, return 0, 1, "You gave me a NULL matrix. I will take this as not positive semidefinite; returning zero.");
char apop_varad_var(semi, 's');
return apop_matrix_is_positive_semidefinite_base(m, semi);
}
int apop_matrix_is_positive_semidefinite_base(gsl_matrix *m, char semi){
#endif
for (int i=1; i<= m->size1; i++){
gsl_matrix mv =gsl_matrix_submatrix (m, 0, 0, i, i).matrix;
double det = apop_matrix_determinant(&mv);
if ((semi == 'd' && det <0) || det <=0)
return 0;
}
return 1;
}
void vfabs(double *x){*x = fabs(*x);}
/** This function takes in a matrix and converts it in place to the `closest' positive semidefinite matrix.
\param m On input, any matrix; on output, a positive semidefinite matrix. If \c NULL, return \c NaN and print an error.
\return the distance between the original and new matrices.
\li See also the test function \ref apop_matrix_is_positive_semidefinite.
\li This function can be used as the core of a model constraint.
\li Adapted from the R Matrix package's nearPD, which is
Copyright (2007) Jens Oehlschlägel [under the GPL].
*/
double apop_matrix_to_positive_semidefinite(gsl_matrix *m){
Apop_stopif(!m, return NAN, 0, "Got a NULL matrix. Returning NaN.");
if (apop_matrix_is_positive_semidefinite(m)) return 0;
double diffsize=0, dsize;
apop_data *qdq;
gsl_matrix *d = apop_matrix_copy(m);
gsl_matrix *original = apop_matrix_copy(m);
double orig_diag_size = fabs(diagonal_size(d));
int size = d->size1;
gsl_vector *diag = gsl_vector_alloc(size);
diagonal_copy(diag, d, 'o');
apop_vector_apply(diag, vfabs);
double origsize = biggest_elmt(d);
do {
//get eigenvals
apop_data *eigenvecs = apop_data_alloc(size, size);
gsl_vector *eigenvals = gsl_vector_calloc(size);
gsl_matrix *junk_copy = apop_matrix_copy(d);
find_eigens(&junk_copy, eigenvals, eigenvecs->matrix);//junk freed here.
//prune positive only
int j=0;
int plussize = eigenvecs->matrix->size1;
int *mask = calloc(eigenvals->size , sizeof(int));
for (int i=0; i< eigenvals->size; i++)
plussize -=
mask[i] = (gsl_vector_get(eigenvals, i) <= 0);
//construct Q = pruned eigenvals
apop_data_rm_columns(eigenvecs, mask);
if (!eigenvecs->matrix) break;
//construct D = positive eigen diagonal
apop_data *eigendiag = apop_data_calloc(0, plussize, plussize);
for (int i=0; i< eigenvals->size; i++)
if (!mask[i]) {
apop_data_set(eigendiag, j, j, eigenvals->data[i]);
j++;
}
// Our candidate is QDQ', symmetrized, with the old diagonal subbed in.
apop_data *qd = apop_dot(eigenvecs, eigendiag);
qdq = apop_dot(qd, eigenvecs, .form2='t');
for (int i=0; i< qdq->matrix->size1; i++)
for (int j=i+1; j< qdq->matrix->size1; j++){
double avg = (apop_data_get(qdq, i, j) +apop_data_get(qdq, j, i)) /2.;
apop_data_set(qdq, i, j, avg);
apop_data_set(qdq, j, i, avg);
}
diagonal_copy(diag, qdq->matrix, 'i');
// Evaluate progress, clean up.
dsize = biggest_elmt(d);
gsl_matrix_sub(d, qdq->matrix);
diffsize = biggest_elmt(d);
apop_data_free(qd); gsl_matrix_free(d);
apop_data_free(eigendiag); free(mask);
apop_data_free(eigenvecs); gsl_vector_free(eigenvals);
d = qdq->matrix;
qdq->matrix=NULL; apop_data_free(qdq); qdq = NULL;
} while (diffsize/dsize > 1e-3);
apop_data *eigenvecs = apop_data_alloc(size, size);
gsl_vector *eigenvals = gsl_vector_calloc(size);
find_eigens(&d, eigenvals, eigenvecs->matrix);//free d here.
//make eigenvalues more positive
double score =0;
for (int i=0; i< eigenvals->size; i++){
double v = gsl_vector_get(eigenvals, i);
if (v < 1e-1){
gsl_vector_set(eigenvals, i, 1e-1);
score += 1e-1 - v;
}
}
for (int i=0; i< size; i++)
assert(eigenvals->data[i] >=0);
//if (score){
apop_data *eigendiag = apop_data_calloc(0, size, size);
diagonal_copy(eigenvals, eigendiag->matrix, 'i');
double new_diag_size = diagonal_size(eigendiag->matrix);
gsl_matrix_scale(eigendiag->matrix, orig_diag_size/new_diag_size);
apop_data *qd = apop_dot(eigenvecs, eigendiag);
qdq = apop_dot(qd, eigenvecs, .form2='t');
gsl_matrix_memcpy(m, qdq->matrix);
apop_data_free(qd);
apop_data_free(eigendiag);
//}
assert(apop_matrix_is_positive_semidefinite(m));
apop_data_free(qdq); gsl_vector_free(diag);
apop_data_free(eigenvecs); gsl_vector_free(eigenvals);
gsl_matrix_sub(original, m);
return biggest_elmt(original)/origsize;
}
|