1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
/* (C) Copyright 2004, 2005, 2006, 2007, 2008, 2009 Stijn van Dongen
*
* (C) Ziggurat method Copyright 2005 Jochen Voss.
*
* This file is part of tingea. You can redistribute and/or modify tingea
* under the terms of the GNU General Public License; either version 3 of the
* License or (at your option) any later version. You should have received a
* copy of the GPL along with tingea, in the file COPYING.
*/
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <time.h>
#include "rand.h"
#include "math.h"
#include "types.h"
unsigned long mcxSeed
( unsigned long i
)
{ pid_t p = getpid()
; pid_t pp = getppid()
; time_t t = time(NULL)
; unsigned long s = (p ^ p << 4 ^ p << 16 ^ p << 28)
^ (pp ^ pp << 8 ^ pp << 24)
^ (t ^ t << 12 ^ t << 20)
^ (i ^ i << 3 ^ i << 23 ^ i << 26)
/* I have no solid evidence backing up the usefulness of the xors.
* They won't increase entropy anyway of course.
* Anyway, the xors do seem useful in order to spread input
* bits out over the output space, as seen from some hashing
* experiments.
*/
; return s
; }
/* Box-Muller transform */
double mcxNormalBoxMuller
( void
)
{ double a = 1.0 - (random() * 1.0) / (RAND_MAX + 1.0)
; double b = 1.0 - (random() * 1.0) / (RAND_MAX + 1.0)
; return sqrt( -2.0 * log(a)) * cos(2*3.14159265358979323846*b)
; }
double mcxNormal
( void
)
{ return mcxNormalZiggurat()
; }
double mcxNormalCut
( double radius
, double stddev
)
{ dim d
; if (radius < 0)
radius = -radius
; for (d=0;d<256;d++)
{ double r = stddev * mcxNormal()
; if (r >= -radius && r <= radius)
return r
; }
return 0.0
; }
double mcxNormalSample
( double radius
, double stddev
)
{ int n_try = 0
; double r = 2 * radius * (((1.0 * random()) / RAND_MAX) - 0.5)
; while (n_try++ < 1000)
{ double n = exp( - (r * r) / (2 * stddev * stddev)) / (2.5066282746 * stddev)
; double p = (1.0 * random()) / RAND_MAX
; if (n >= p)
break
; r = 2 * radius * (((1.0 * random()) / RAND_MAX) - 0.5)
; }
return r
; }
/* Ziggurat method
*
* Copyright (C) 2005 Jochen Voss.
*
* For details see the following article.
*
* George Marsaglia, Wai Wan Tsang
* The Ziggurat Method for Generating Random Variables
* Journal of Statistical Software, vol. 5 (2000), no. 8
* http://www.jstatsoft.org/v05/i08/
*/
/* position of right-most step */
#define PARAM_R 3.44428647676
/* tabulated values for the heigt of the Ziggurat levels */
static const double ytab[128] =
{ 1.000000000000 , 0.963598623011 , 0.936280813353 , 0.913041104253
, 0.892278506696 , 0.873239356919 , 0.855496407634 , 0.838778928349
, 0.822902083699 , 0.807732738234 , 0.793171045519 , 0.779139726505
, 0.765577436082 , 0.752434456248 , 0.739669787677 , 0.727249120285
, 0.715143377413 , 0.703327646455 , 0.691780377035 , 0.680482768910
, 0.669418297233 , 0.658572339120 , 0.647931876189 , 0.637485254896
, 0.627221991450 , 0.617132611532 , 0.607208517467 , 0.597441877296
, 0.587825531465 , 0.578352913803 , 0.569017984198 , 0.559815170911
, 0.550739320877 , 0.541785656682 , 0.532949739145 , 0.524227434628
, 0.515614886373 , 0.507108489253 , 0.498704867478 , 0.490400854812
, 0.482193476986 , 0.474079936010 , 0.466057596125 , 0.458123971214
, 0.450276713467 , 0.442513603171 , 0.434832539473 , 0.427231532022
, 0.419708693379 , 0.412262232120 , 0.404890446548 , 0.397591718955
, 0.390364510382 , 0.383207355816 , 0.376118859788 , 0.369097692334
, 0.362142585282 , 0.355252328834 , 0.348425768415 , 0.341661801776
, 0.334959376311 , 0.328317486588 , 0.321735172063 , 0.315211514970
, 0.308745638367 , 0.302336704338 , 0.295983912320 , 0.289686497571
, 0.283443729739 , 0.277254911560 , 0.271119377649 , 0.265036493387
, 0.259005653912 , 0.253026283183 , 0.247097833139 , 0.241219782932
, 0.235391638239 , 0.229612930649 , 0.223883217122 , 0.218202079518
, 0.212569124201 , 0.206983981709 , 0.201446306496 , 0.195955776745
, 0.190512094256 , 0.185114984406 , 0.179764196185 , 0.174459502324
, 0.169200699492 , 0.163987608600 , 0.158820075195 , 0.153697969964
, 0.148621189348 , 0.143589656295 , 0.138603321143 , 0.133662162669
, 0.128766189309 , 0.123915440582 , 0.119109988745 , 0.114349940703
, 0.109635440230 , 0.104966670533 , 0.100343857232 , 0.0957672718266
, 0.0912372357329 , 0.0867541250127 , 0.082318375932 , 0.0779304915295
, 0.0735910494266 , 0.0693007111742 , 0.065060233529 , 0.0608704821745
, 0.0567324485840 , 0.0526472709800 , 0.0486162607163 , 0.0446409359769
, 0.0407230655415 , 0.0368647267386 , 0.0330683839378 , 0.0293369977411
, 0.0256741818288 , 0.0220844372634 , 0.0185735200577 , 0.0151490552854
, 0.0118216532614 , 0.00860719483079, 0.00553245272614, 0.00265435214565
} ;
/* tabulated values for 2^24 times x[i]/x[i+1],
* used to accept for U*x[i+1]<=x[i]
* without any floating point operations
*/
static const unsigned long ktab[128] =
{ 0 , 12590644 , 14272653 , 14988939
, 15384584 , 15635009 , 15807561 , 15933577
, 16029594 , 16105155 , 16166147 , 16216399
, 16258508 , 16294295 , 16325078 , 16351831
, 16375291 , 16396026 , 16414479 , 16431002
, 16445880 , 16459343 , 16471578 , 16482744
, 16492970 , 16502368 , 16511031 , 16519039
, 16526459 , 16533352 , 16539769 , 16545755
, 16551348 , 16556584 , 16561493 , 16566101
, 16570433 , 16574511 , 16578353 , 16581977
, 16585398 , 16588629 , 16591685 , 16594575
, 16597311 , 16599901 , 16602354 , 16604679
, 16606881 , 16608968 , 16610945 , 16612818
, 16614592 , 16616272 , 16617861 , 16619363
, 16620782 , 16622121 , 16623383 , 16624570
, 16625685 , 16626730 , 16627708 , 16628619
, 16629465 , 16630248 , 16630969 , 16631628
, 16632228 , 16632768 , 16633248 , 16633671
, 16634034 , 16634340 , 16634586 , 16634774
, 16634903 , 16634972 , 16634980 , 16634926
, 16634810 , 16634628 , 16634381 , 16634066
, 16633680 , 16633222 , 16632688 , 16632075
, 16631380 , 16630598 , 16629726 , 16628757
, 16627686 , 16626507 , 16625212 , 16623794
, 16622243 , 16620548 , 16618698 , 16616679
, 16614476 , 16612071 , 16609444 , 16606571
, 16603425 , 16599973 , 16596178 , 16591995
, 16587369 , 16582237 , 16576520 , 16570120
, 16562917 , 16554758 , 16545450 , 16534739
, 16522287 , 16507638 , 16490152 , 16468907
, 16442518 , 16408804 , 16364095 , 16301683
, 16207738 , 16047994 , 15704248 , 15472926
} ;
/* tabulated values of 2^{-24}*x[i] */
static const double wtab[128] =
{ 1.62318314817e-08 , 2.16291505214e-08 , 2.54246305087e-08, 2.84579525938e-08
, 3.10340022482e-08 , 3.33011726243e-08 , 3.53439060345e-08, 3.72152672658e-08
, 3.89509895720e-08 , 4.05763964764e-08 , 4.21101548915e-08, 4.35664624904e-08
, 4.49563968336e-08 , 4.62887864029e-08 , 4.75707945735e-08, 4.88083237257e-08
, 5.00063025384e-08 , 5.11688950428e-08 , 5.22996558616e-08, 5.34016475624e-08
, 5.44775307871e-08 , 5.55296344581e-08 , 5.65600111659e-08, 5.75704813695e-08
, 5.85626690412e-08 , 5.95380306862e-08 , 6.04978791776e-08, 6.14434034901e-08
, 6.23756851626e-08 , 6.32957121259e-08 , 6.42043903937e-08, 6.51025540077e-08
, 6.59909735447e-08 , 6.68703634341e-08 , 6.77413882848e-08, 6.86046683810e-08
, 6.94607844804e-08 , 7.03102820203e-08 , 7.11536748229e-08, 7.19914483720e-08
, 7.28240627230e-08 , 7.36519550992e-08 , 7.44755422158e-08, 7.52952223703e-08
, 7.61113773308e-08 , 7.69243740467e-08 , 7.77345662086e-08, 7.85422956743e-08
, 7.93478937793e-08 , 8.01516825471e-08 , 8.09539758128e-08, 8.17550802699e-08
, 8.25552964535e-08 , 8.33549196661e-08 , 8.41542408569e-08, 8.49535474601e-08
, 8.57531242006e-08 , 8.65532538723e-08 , 8.73542180955e-08, 8.81562980590e-08
, 8.89597752521e-08 , 8.97649321908e-08 , 9.05720531451e-08, 9.13814248700e-08
, 9.21933373471e-08 , 9.30080845407e-08 , 9.38259651738e-08, 9.46472835298e-08
, 9.54723502847e-08 , 9.63014833769e-08 , 9.71350089201e-08, 9.79732621669e-08
, 9.88165885297e-08 , 9.96653446693e-08 , 1.00519899658e-07, 1.01380636230e-07
, 1.02247952126e-07 , 1.03122261554e-07 , 1.04003996769e-07, 1.04893609795e-07
, 1.05791574313e-07 , 1.06698387725e-07 , 1.07614573423e-07, 1.08540683296e-07
, 1.09477300508e-07 , 1.10425042570e-07 , 1.11384564771e-07, 1.12356564007e-07
, 1.13341783071e-07 , 1.14341015475e-07 , 1.15355110887e-07, 1.16384981291e-07
, 1.17431607977e-07 , 1.18496049514e-07 , 1.19579450872e-07, 1.20683053909e-07
, 1.21808209468e-07 , 1.22956391410e-07 , 1.24129212952e-07, 1.25328445797e-07
, 1.26556042658e-07 , 1.27814163916e-07 , 1.29105209375e-07, 1.30431856341e-07
, 1.31797105598e-07 , 1.33204337360e-07 , 1.34657379914e-07, 1.36160594606e-07
, 1.37718982103e-07 , 1.39338316679e-07 , 1.41025317971e-07, 1.42787873535e-07
, 1.44635331499e-07 , 1.46578891730e-07 , 1.48632138436e-07, 1.50811780719e-07
, 1.53138707402e-07 , 1.55639532047e-07 , 1.58348931426e-07, 1.61313325908e-07
, 1.64596952856e-07 , 1.68292495203e-07 , 1.72541128694e-07, 1.77574279496e-07
, 1.83813550477e-07 , 1.92166040885e-07 , 2.05295471952e-07, 2.22600839893e-07
} ;
double mcxNormalZiggurat
( void
)
{ unsigned long U, sign, i, j
; double x = 0.0, y
; while (1)
{ U = random()
; i = U & 0x0000007F /* 7 bit to choose the step */
; sign = U & 0x00000080 /* 1 bit for the sign */
; j = random() & 0x00FFFFFF /* 24 bit for the x-value */
; x = j*wtab[i]
; if (j < ktab[i])
break
; if (i<127)
{ double y0, y1
; y0 = ytab[i]
; y1 = ytab[i+1]
; y = y1+(y0-y1) * mcxUniform0
; }
else
{ x = PARAM_R - log(mcxUniform1)/PARAM_R
; y = exp(-PARAM_R*(x-0.5*PARAM_R)) * mcxUniform0
; }
if (y < exp(-0.5*x*x))
break
; }
return sign ? x : -x
; }
|