File: chfa.cc

package info (click to toggle)
apparmor 4.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 34,800 kB
  • sloc: ansic: 24,940; python: 24,595; sh: 12,524; cpp: 9,024; yacc: 2,061; makefile: 1,921; lex: 1,215; pascal: 1,145; perl: 1,033; ruby: 365; lisp: 282; exp: 250; java: 212; xml: 159
file content (629 lines) | stat: -rw-r--r-- 18,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
/*
 * (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
 * Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
 * Copyright 2009-2012 Canonical Ltd.
 *
 * The libapparmor library is licensed under the terms of the GNU
 * Lesser General Public License, version 2.1. Please see the file
 * COPYING.LGPL.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *
 * Create a compressed hfa from and hfa
 */

#include <map>
#include <vector>
#include <ostream>
#include <iostream>
#include <fstream>

#include <arpa/inet.h>
#include <stdio.h>
#include <string.h>

#include "hfa.h"
#include "chfa.h"
#include "../immunix.h"
#include "../policydb.h"
#include "flex-tables.h"

void CHFA::init_free_list(vector<pair<size_t, size_t> > &free_list,
				     size_t prev, size_t start)
{
	for (size_t i = start; i < free_list.size(); i++) {
		if (prev)
			free_list[prev].second = i;
		free_list[i].first = prev;
		prev = i;
	}
	free_list[free_list.size() - 1].second = 0;
}


/**
 * new Construct the transition table.
 *
 * TODO: split dfaflags into separate control and dump so we can fold in
 *       permtable index flag
 */
CHFA::CHFA(DFA &dfa, map<transchar, transchar> &eq, optflags const &opts,
	   bool permindex, bool prompt): eq(eq)
{
	if (opts.dump & DUMP_DFA_TRANS_PROGRESS)
		fprintf(stderr, "Compressing HFA:\r");

	chfaflags = 0;
	if (dfa.diffcount)
		chfaflags |= YYTH_FLAG_DIFF_ENCODE;
	if (dfa.oob_range)
		chfaflags |= YYTH_FLAG_OOB_TRANS;

	if (eq.empty())
		max_eq = 255;
	else {
		max_eq = 0;
		for (map<transchar, transchar>::iterator i = eq.begin();
		     i != eq.end(); i++) {
			if (i->second > max_eq)
				max_eq = i->second;
		}
	}

	/* Do initial setup adding up all the transitions and sorting by
	 * transition count.
	 */
	size_t optimal = 2;
	multimap<size_t, State *> order;
	vector<pair<size_t, size_t> > free_list;

	for (Partition::iterator i = dfa.states.begin(); i != dfa.states.end(); i++) {
		if (*i == dfa.start || *i == dfa.nonmatching)
			continue;
		optimal += (*i)->trans.size();
		if (opts.control & CONTROL_DFA_TRANS_HIGH) {
			size_t range = 0;
			if ((*i)->trans.size())
				range =
				    (*i)->trans.rbegin()->first.c -
				    (*i)->trans.begin()->first.c;
			size_t ord = ((dfa.max_range - (*i)->trans.size()) << dfa.ord_range) | (dfa.max_range - range);
			/* reverse sort by entry count, most entries first */
			order.insert(make_pair(ord, *i));
		}
	}

	/* Insert the dummy nonmatching transition by hand */
	next_check.push_back(make_pair(dfa.nonmatching, dfa.nonmatching));
	default_base.push_back(make_pair(dfa.nonmatching, 0));
	num.insert(make_pair(dfa.nonmatching, num.size()));

	accept.resize(max(dfa.states.size(), (size_t) 2));
	if (permindex) {
		accept[0] = dfa.nonmatching->idx;
		accept[1] = dfa.start->idx;
	} else {
		uint32_t accept3;
		accept2.resize(max(dfa.states.size(), (size_t) 2));
		dfa.nonmatching->map_perms_to_accept(accept[0],
						     accept2[0],
						     accept3,
						     prompt);
		dfa.start->map_perms_to_accept(accept[1],
					       accept2[1],
					       accept3,
					       prompt);
	}
	next_check.resize(max(optimal, (size_t) dfa.max_range));
	free_list.resize(next_check.size());

	first_free = 1;
	init_free_list(free_list, 0, 1);

	start = dfa.start;
	insert_state(free_list, dfa.start, dfa);
	num.insert(make_pair(dfa.start, num.size()));

	int count = 2;

	if (!(opts.control & CONTROL_DFA_TRANS_HIGH)) {
		for (Partition::iterator i = dfa.states.begin(); i != dfa.states.end(); i++) {
			if (*i != dfa.nonmatching && *i != dfa.start) {
				uint32_t accept3;
				insert_state(free_list, *i, dfa);
				if (permindex)
					accept[num.size()] = (*i)->idx;
				else
					(*i)->map_perms_to_accept(accept[num.size()],
								  accept2[num.size()],
								  accept3,
								  prompt);
				num.insert(make_pair(*i, num.size()));
			}
			if (opts.dump & (DUMP_DFA_TRANS_PROGRESS)) {
				count++;
				if (count % 100 == 0)
					fprintf(stderr, "\033[2KCompressing trans table: insert state: %d/%zd\r",
						count, dfa.states.size());
			}
		}
	} else {
		for (multimap<size_t, State *>::iterator i = order.begin();
		     i != order.end(); i++) {
			if (i->second != dfa.nonmatching &&
			    i->second != dfa.start) {
				uint32_t accept3;
				insert_state(free_list, i->second, dfa);
				if (permindex)
					accept[num.size()] = i->second->idx;
				else
					i->second->map_perms_to_accept(accept[num.size()],
								       accept2[num.size()],
								       accept3,
								       prompt);
				num.insert(make_pair(i->second, num.size()));
			}
			if (opts.dump & (DUMP_DFA_TRANS_PROGRESS)) {
				count++;
				if (count % 100 == 0)
					fprintf(stderr, "\033[2KCompressing trans table: insert state: %d/%zd\r",
						count, dfa.states.size());
			}
		}
	}

	if (opts.dump & (DUMP_DFA_TRANS_STATS | DUMP_DFA_TRANS_PROGRESS)) {
		ssize_t size = 4 * next_check.size() + 6 * dfa.states.size();
		fprintf(stderr, "\033[2KCompressed trans table: states %zd, next/check %zd, optimal next/check %zd avg/state %.2f, compression %zd/%zd = %.2f %%\n",
			dfa.states.size(), next_check.size(), optimal,
			(float)next_check.size() / (float)dfa.states.size(),
			size, 512 * dfa.states.size(),
			100.0 - ((float)size * 100.0 /(float)(512 * dfa.states.size())));
	}
}

/**
 * Does <trans> fit into position <base> of the transition table?
 */
bool CHFA::fits_in(vector<pair<size_t, size_t> > &free_list
			      __attribute__ ((unused)), size_t pos,
			      StateTrans &trans)
{
	ssize_t c, base = pos - trans.begin()->first.c;

	if (base < 0)
		return false;
	for (StateTrans::iterator i = trans.begin(); i != trans.end(); i++) {
		c = base + i->first.c;
		/* if it overflows the next_check array it fits in as we will
		 * resize */
		if (c >= (ssize_t) next_check.size())
			return true;
		if (next_check[c].second)
			return false;
	}

	return true;
}

/**
 * Insert <state> of <dfa> into the transition table.
 */
void CHFA::insert_state(vector<pair<size_t, size_t> > &free_list,
				   State *from, DFA &dfa)
{
	State *default_state = dfa.nonmatching;
	ssize_t base = 0;
	int resize;
	StateTrans &trans = from->trans;
	ssize_t c;
	ssize_t prev = 0;
	ssize_t x = first_free;

	if (from->otherwise)
		default_state = from->otherwise;
	if (trans.empty())
		goto do_insert;

	c = trans.begin()->first.c;
repeat:
	resize = 0;
	/* get the first free entry that won't underflow */
	while (x && ((x < c) || (x + c < 0))) {
		prev = x;
		x = free_list[x].second;
	}

	/* try inserting until we succeed. */
	while (x && !fits_in(free_list, x, trans)) {
		prev = x;
		x = free_list[x].second;
	}
	if (!x) {
		resize = dfa.upper_bound - c;
		x = free_list.size();
		/* set prev to last free */
	} else if (x + (dfa.upper_bound - 1) - c >= (ssize_t) next_check.size()) {
		resize = ((dfa.upper_bound -1) - c - (next_check.size() - 1 - x));
		for (size_t y = x; y; y = free_list[y].second)
			prev = y;
	}
	if (resize) {
		/* expand next_check and free_list */
		ssize_t old_size = free_list.size();
		next_check.resize(next_check.size() + resize);
		free_list.resize(free_list.size() + resize);
		init_free_list(free_list, prev, old_size);
		if (!first_free)
			first_free = old_size;;
		if (x == old_size)
			goto repeat;
	}

	base = x - c;
	for (StateTrans::iterator j = trans.begin(); j != trans.end(); j++) {
		next_check[base + j->first.c] = make_pair(j->second, from);
		size_t prev = free_list[base + j->first.c].first;
		size_t next = free_list[base + j->first.c].second;
		if (prev)
			free_list[prev].second = next;
		if (next)
			free_list[next].first = prev;
		if (base + j->first.c == first_free)
			first_free = next;
	}

	/* these flags will only be set on states that have transitions */
	if (c < 0) {
		base |= MATCH_FLAG_OOB_TRANSITION;
	}
do_insert:
	/* While a state without transitions could have the diff encode
	 * flag set, it would be pointless resulting in just an extra
	 * state transition in the encoding chain, and so it should be
	 * considered an error
	 * TODO: add check that state without transitions isn't being
	 * given a diffencode flag
	 */
	if (from->flags & DiffEncodeFlag)
		base |= DiffEncodeBit32;
	default_base.push_back(make_pair(default_state, base));
}

/**
 * Text-dump the transition table (for debugging).
 */
void CHFA::dump(ostream &os)
{
	map<size_t, const State *> st;
	for (map<const State *, size_t>::iterator i = num.begin(); i != num.end(); i++) {
		st.insert(make_pair(i->second, i->first));
	}

	os << "size=" << default_base.size() << " (accept, accept2, default, base):  {state} -> {default state}" << "\n";
	for (size_t i = 0; i < default_base.size(); i++) {
		os << i << ": ";
		os << "(" << accept[i] << ", ";
		if (accept2.size() > 0)
			os << accept2[i];
		else
			os << "---, ";
		os << num[default_base[i].first] << ", " <<
			default_base[i].second << ")";
		if (st[i])
			os << " " << *st[i];
		if (default_base[i].first)
			os << " -> " << *default_base[i].first;
		os << "\n";
	}

	os << "size=" << next_check.size() << " (next, check): {check state} -> {next state} : offset from base\n";
	for (size_t i = 0; i < next_check.size(); i++) {
		if (!next_check[i].second)
			continue;

		os << i << ": ";
		if (next_check[i].second) {
			os << "(" << num[next_check[i].first] << ", "
			   << num[next_check[i].second] << ")" << " "
			   << *next_check[i].second << " -> "
			   << *next_check[i].first << ": ";

			size_t offs = i - base_mask_size(default_base[num[next_check[i].second]].second);
			if (eq.size())
				os << offs;
			else
				os << (transchar) offs;
		}
		os << "\n";
	}
}

/**
 * Create a flex-style binary dump of the DFA tables. The table format
 * was partly reverse engineered from the flex sources and from
 * examining the tables that flex creates with its --tables-file option.
 * (Only the -Cf and -Ce formats are currently supported.)
 */

#define YYTH_REGEX_MAGIC 0x1B5E783D

static inline size_t pad64(size_t i)
{
	return (i + (size_t) 7) & ~(size_t) 7;
}

string fill64(size_t i)
{
	const char zeroes[8] = { };
	string fill(zeroes, (i & 7) ? 8 - (i & 7) : 0);
	return fill;
}

template<class Iter> size_t flex_table_size(Iter pos, Iter end)
{
	return pad64(sizeof(struct table_header) + sizeof(*pos) * (end - pos));
}

template<class Iter>
    void write_flex_table(ostream &os, int id, Iter pos, Iter end)
{
	struct table_header td = { 0, 0, 0, 0 };
	size_t size = end - pos;

	td.td_id = htons(id);
	td.td_flags = htons(sizeof(*pos));
	td.td_lolen = htonl(size);
	os.write((char *)&td, sizeof(td));

	for (; pos != end; ++pos) {
		switch (sizeof(*pos)) {
		case 4:
			os.put((char)(*pos >> 24));
			os.put((char)(*pos >> 16));
			/* Fall through */
		case 2:
			os.put((char)(*pos >> 8));
			/* Fall through */
		case 1:
			os.put((char)*pos);
			/* Fall through */
		}
	}

	os << fill64(sizeof(td) + sizeof(*pos) * size);
}

template<class STATE_TYPE>
void flex_table_serialize(CHFA &chfa, ostream &os,
			  uint32_t max_size)
{
	const char th_version[] = "notflex";
	struct table_set_header th = { 0, 0, 0, 0 };

	/**
	 * Change the following two data types to adjust the maximum flex
	 * table size.
	 */
	typedef uint32_t trans_t;

	if (chfa.default_base.size() >= (max_size)) {
		cerr << "Too many states (" << chfa.default_base.size() << ") for "
		    "type state_t\n";
		exit(1);
	}
	if (chfa.next_check.size() >= (trans_t) - 1) {
		cerr << "Too many transitions (" << chfa.next_check.size()
		     << ") for " "type trans_t\n";
		exit(1);
	}

	/**
	 * Create copies of the data structures so that we can dump the tables
	 * using the generic write_flex_table() routine.
	 */
	vector<uint8_t> equiv_vec;
	if (chfa.eq.size()) {
		equiv_vec.resize(256);
		for (map<transchar, transchar>::iterator i = chfa.eq.begin(); i != chfa.eq.end(); i++) {
			equiv_vec[i->first.c] = i->second.c;
		}
	}

	vector<STATE_TYPE> default_vec;
	vector<trans_t> base_vec;
	for (DefaultBase::iterator i = chfa.default_base.begin(); i != chfa.default_base.end(); i++) {
		default_vec.push_back(chfa.num[i->first]);
		base_vec.push_back(i->second);
	}

	vector<STATE_TYPE> next_vec;
	vector<STATE_TYPE> check_vec;
	for (NextCheck::iterator i = chfa.next_check.begin(); i != chfa.next_check.end(); i++) {
		next_vec.push_back(chfa.num[i->first]);
		check_vec.push_back(chfa.num[i->second]);
	}

	/* Write the actual flex parser table. */
	/* TODO: add max_oob */
	// sizeof(th_version) includes trailing \0
	size_t hsize = pad64(sizeof(th) + sizeof(th_version));
	th.th_magic = htonl(YYTH_REGEX_MAGIC);
	th.th_flags = htons(chfa.chfaflags);
	th.th_hsize = htonl(hsize);
	th.th_ssize = htonl(hsize +
			    flex_table_size(chfa.accept.begin(),
					    chfa.accept.end()) +
			    (chfa.accept2.size() ?
			     flex_table_size(chfa.accept2.begin(),
					     chfa.accept2.end()) : 0) +
			    (chfa.eq.size() ?
			     flex_table_size(equiv_vec.begin(),
					     equiv_vec.end()) : 0) +
			    flex_table_size(base_vec.begin(),
					    base_vec.end()) +
			    flex_table_size(default_vec.begin(),
					    default_vec.end()) +
			    flex_table_size(next_vec.begin(), next_vec.end()) +
			    flex_table_size(check_vec.begin(),
					    check_vec.end()));
	os.write((char *)&th, sizeof(th));
	os.write(th_version, sizeof(th_version));
	os << fill64(sizeof(th) + sizeof(th_version));

	write_flex_table(os, YYTD_ID_ACCEPT, chfa.accept.begin(),
			 chfa.accept.end());
	if (chfa.accept2.size())
		write_flex_table(os, YYTD_ID_ACCEPT2, chfa.accept2.begin(),
				 chfa.accept2.end());
	if (chfa.eq.size())
		write_flex_table(os, YYTD_ID_EC, equiv_vec.begin(),
				 equiv_vec.end());
	write_flex_table(os, YYTD_ID_BASE, base_vec.begin(), base_vec.end());
	write_flex_table(os, YYTD_ID_DEF, default_vec.begin(), default_vec.end());
	write_flex_table(os, YYTD_ID_NXT, next_vec.begin(), next_vec.end());
	write_flex_table(os, YYTD_ID_CHK, check_vec.begin(), check_vec.end());
}

void CHFA::flex_table(ostream &os, optflags const &opts) {

	if (opts.control & CONTROL_DFA_STATE32 &&
	    default_base.size() > (1 << 16) - 1) {
// TODO: implement support for flags in separate table
//		if (opts.control & CONTROL_DFA_FLAGS_TABLE) {
//			if (opts.dump & DUMP_FLAGS_TABLE)
//				cerr << "using flags table\n";
//			flex_table_serialize(os, uint32_t, (1 << 32) - 1);
//		} else { /* only 24 bits available */
		if (opts.dump & DUMP_DFA_STATE32)
			cerr << "using 32 bit state tables, embedded flags\n";
		flex_table_serialize<uint32_t>(*this, os, (1 << 24) - 1);
	} else {
		if (opts.control & CONTROL_DFA_FLAGS_TABLE) {
			cerr << "Flags table specified when using 16 bit state\n";
			exit(1);
		}
		if (opts.dump & DUMP_DFA_STATE32)
			cerr << "using 16 bit state tables, embedded flags\n";
		flex_table_serialize<uint16_t>(*this, os, (1 << 16) - 1);
	}
}

/*
 * @file_chfa: chfa to add on to the policy chfa
 * @new_start: new start state for where the @file_dfa is in the new chfa
 *
 * Make a new chfa that is a combination of policy and file chfas. It
 * assumes policy is built with AA_CLASS_FILE support transition. The
 * resultant chfa will have file states and indexes offset except for
 * start and null states.
 *
 * NOTE:
 * - modifies chfa
 * requires:
 * - no ec
 * - policy chfa has transitions state[start].next[AA_CLASS_FILE]
 * - policy perms table is build if using permstable

 */
void CHFA::weld_file_to_policy(CHFA &file_chfa, size_t &new_start,
			       bool accept_idx, bool prompt,
			       vector <aa_perms>  &policy_perms,
			       vector <aa_perms> &file_perms)
{
	// doesn't support remapping eq classes yet
	if (eq.size() > 0 || file_chfa.eq.size() > 0)
		throw 1;

	size_t old_base_size = default_base.size();
	size_t old_next_size = next_check.size();

	const State *nonmatching = default_base[0].first;
	//const State *start = default_base[1].first;
	const State *file_nonmatching = file_chfa.default_base[0].first;

	// renumber states from file_dfa by appending to policy dfa
	num.insert(make_pair(file_nonmatching, 0));	// remap to policy nonmatching
	for (map<const State *, size_t>::iterator i = file_chfa.num.begin(); i != file_chfa.num.end() ; i++) {
		if (i->first == file_nonmatching)
			continue;
		num.insert(make_pair(i->first, i->second + old_base_size));
	}

	// handle default and base table expansion, and setup renumbering
	// while we remap file_nonmatch within the table, we still keep its
	// slot.
	bool first = true;
	for (DefaultBase::iterator i = file_chfa.default_base.begin(); i != file_chfa.default_base.end(); i++) {
		const State *def;
		size_t base;
		if (first) {
			first = false;
			// remap file_nonmatch to nonmatch
			def = nonmatching;
			base = 0;
		} else {
			def = i->first;
			base = i->second + old_next_size;
		}
		default_base.push_back(make_pair(def, base));
	}

	// mapping for these are handled by num[]
	for (NextCheck::iterator i = file_chfa.next_check.begin(); i != file_chfa.next_check.end(); i++) {
		next_check.push_back(*i);
	}

	// append file perms to policy perms, and rework permsidx if needed
	if (accept_idx) {
		// policy idx double
		// file + doubled offset
		// Requires: policy perms table, so we can double and
		//           update indexes
		//         * file perm idx to start on even idx
		//         * policy perms table size to double and entries
		//           to repeat
		assert(accept.size() == old_base_size);
		accept.resize(accept.size() + file_chfa.accept.size());
		size_t size = policy_perms.size();
		policy_perms.resize(size*2 + file_perms.size());
		// shift and double the policy perms
		for (size_t i = size - 1; size >= 0; i--) {
			policy_perms[i*2] = policy_perms[i];
			policy_perms[i*2 + 1] = policy_perms[i];
		}
		// update policy accept idx for the new shifted perms table
		for (size_t i = 0; i < old_base_size; i++) {
			accept[i] = accept[i]*2;
		}
		// copy over file perms
		for (size_t i = 0; i < file_perms.size(); i++) {
			policy_perms[size*2 + i] = file_perms[i];
		}
		// shift file accept indexs
		for (size_t i = 0; i < file_chfa.accept.size(); i++) {
			accept[old_base_size + i] = file_chfa.accept[i] + size*2;
		}
	} else {
		// perms are stored in accept just append the perms
		size_t size = accept.size();
		accept.resize(size + file_chfa.accept.size());
		accept2.resize(size + file_chfa.accept.size());
		for (size_t i = 0; i < file_chfa.accept.size(); i++) {
			accept[size + i] = file_chfa.accept[i];
			accept2[size + i] = file_chfa.accept2[i];
		}
	}

	// Rework transition state[start].next[AA_CLASS_FILE]
	next_check[default_base[1].second + AA_CLASS_FILE].first = file_chfa.start;

	new_start = num[file_chfa.start];
}