1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
|
/*
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
* Copyright 2009-2013 Canonical Ltd.
*
* The libapparmor library is licensed under the terms of the GNU
* Lesser General Public License, version 2.1. Please see the file
* COPYING.LGPL.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Functions to create/manipulate an expression tree for regular expressions
* that have been parsed.
*
* The expression tree can be used directly after the parse creates it, or
* it can be factored so that the set of important nodes is smaller.
* Having a reduced set of important nodes generally results in a dfa that
* is closer to minimum (fewer redundant states are created). It also
* results in fewer important nodes in a the state set during subset
* construction resulting in less memory used to create a dfa.
*
* Generally it is worth doing expression tree simplification before dfa
* construction, if the regular expression tree contains any alternations.
* Even if the regular expression doesn't simplification should be fast
* enough that it can be used with minimal overhead.
*/
#ifndef __LIBAA_RE_EXPR_H
#define __LIBAA_RE_EXPR_H
#include <map>
#include <set>
#include <stack>
#include <ostream>
#include <stdint.h>
#include "../perms.h"
#include "apparmor_re.h"
using namespace std;
/*
* transchar - representative input character for state transitions
*
* the transchar is used as the leaf node in the expr tree created
* by parsing an input regex (parse.y), and is used to build both the
* states and the transitions for a state machine (hfa.{h,cc}) built
* from the expression tree.
*
* While the state machine is currently based on byte inputs the
* transchar abstraction allows for flexibility and the option of
* moving to a larger input in the future. It also allows the ability
* to specify out of band transitions.
*
* Out of band transitions allow for code to specify special transitions
* that can not be triggered by an input byte stream. As such out of
* band transitions can be used to separate logical units of a match.
*
* eg.
* you need to allow an arbitrary data match (.*) followed by an arbitrary
* string match ([^\x00]*), and make an acceptance dission based
* on both matches.
*
* One way to do this is to chain the two matches in a single state
* machine. However without an out of band transition, the matche pattern
* for the data match (.*) could also consume the input for the string match.
* To ensure the data pattern match cannot consume characters for the second
* match a special character is used. This prevents state machine
* generation from intermixing the two expressions. For string matches
* this can be achieved with the pattern.
* ([^\x00]*)\x00([\x00]*)
* since \x00 can not be matched by the first expression (and is not a
* valid character in a C string), the nul character can be used to
* separate the string match. This however is not possible when matching
* arbitrary data that can have any input character.
*
* Out of band transitions replace the \x00 transition in the string
* example with a new input transition that comes from the driver
* code. Once the first match is done, the driver supplies the non-input
* character, causing the state machine to transition to the second
* match pattern.
*
* Out of band transitions are specified using negative integers
* (-1..-32k). They llow for different transitions if needed (currently
* only -1 is used).
*
* Negative integers were chosen to represent out of band transitions
* because it makes the run time match simple, and also keeps the
* upper positive integer range open for future input character
* expansion.
*
* When a chfa is built, the out of band transition is encoded as
* a negative offset of the same value specified in the transchar from the
* state base base value. The check value at the negative offset will
* contain the owning state value. The chfa state machine is constructed
* in such a way that this value will always be in bounds, and only an
* unpack time verification is needed.
*/
class transchar {
public:
short c;
transchar(unsigned char a): c((unsigned short) a) {}
transchar(short a, bool oob __attribute__((unused))): c(a) {}
transchar(const transchar &a): c(a.c) {}
transchar(): c(0) {}
bool operator==(const transchar &rhs) const {
return this->c == rhs.c;
}
bool operator==(const int &rhs) const {
return this->c == rhs;
}
bool operator!=(const transchar &rhs) const {
return this->c != rhs.c;
}
bool operator>(const transchar &rhs) const {
return this->c > rhs.c;
}
bool operator<(const transchar &rhs) const {
return this->c < rhs.c;
}
bool operator<=(const transchar &rhs) const {
return this->c <= rhs.c;
}
transchar &operator++() { // prefix
(this->c)++;
return *this;
}
transchar operator++(int) { // postfix
transchar tmp(*this);
(this->c)++;
return tmp;
}
ostream &dump(ostream &os) const;
};
class Chars {
public:
set<transchar> chars;
typedef set<transchar>::iterator iterator;
iterator begin() { return chars.begin(); }
iterator end() { return chars.end(); }
Chars(): chars() {}
bool empty() const
{
return chars.empty();
}
std::size_t size() const
{
return chars.size();
}
iterator find(const transchar &key)
{
return chars.find(key);
}
pair<iterator,bool> insert(transchar c)
{
return chars.insert(c);
}
pair<iterator,bool> insert(char c)
{
transchar tmp(c);
return chars.insert(tmp);
}
};
ostream &operator<<(ostream &os, transchar c);
/* Compute the union of two sets. */
template<class T> set<T> operator+(const set<T> &a, const set<T> &b)
{
set<T> c(a);
c.insert(b.begin(), b.end());
return c;
}
/**
* When creating DFAs from regex trees, a DFA state is constructed from
* a set of important nodes in the syntax tree. This includes AcceptNodes,
* which indicate that when a match ends in a particular state, the
* regular expressions that the AcceptNode belongs to match.
*/
class Node;
class ImportantNode;
typedef set<ImportantNode *> NodeSet;
/**
* Text-dump a state (for debugging).
*/
ostream &operator<<(ostream &os, const NodeSet &state);
/**
* Out-edges from a state to another: we store the follow-set of Nodes
* for each input character that is not a default match in
* cases (i.e., following a CharNode or CharSetNode), and default
* matches in otherwise as well as in all matching explicit cases
* (i.e., following an AnyCharNode or NotCharSetNode). This avoids
* enumerating all the explicit tranitions for default matches.
*/
typedef struct Cases {
typedef map<transchar, NodeSet *>::iterator iterator;
iterator begin() { return cases.begin(); }
iterator end() { return cases.end(); }
Cases(): otherwise(0) { }
map<transchar, NodeSet *> cases;
NodeSet *otherwise;
} Cases;
ostream &operator<<(ostream &os, Node &node);
#define NODE_TYPE_NODE 0
#define NODE_TYPE_INNER (1 << 0)
#define NODE_TYPE_ONECHILD (1 << 1)
#define NODE_TYPE_TWOCHILD (1 << 2)
#define NODE_TYPE_LEAF (1 << 3)
#define NODE_TYPE_EPS (1 << 4)
#define NODE_TYPE_IMPORTANT (1 << 5)
#define NODE_TYPE_C (1 << 6)
#define NODE_TYPE_CHAR (1 << 7)
#define NODE_TYPE_CHARSET (1 << 8)
#define NODE_TYPE_NOTCHARSET (1 << 9)
#define NODE_TYPE_ANYCHAR (1 << 10)
#define NODE_TYPE_STAR (1 << 11)
#define NODE_TYPE_OPTIONAL (1 << 12)
#define NODE_TYPE_PLUS (1 << 13)
#define NODE_TYPE_CAT (1 << 14)
#define NODE_TYPE_ALT (1 << 15)
#define NODE_TYPE_SHARED (1 << 16)
#define NODE_TYPE_ACCEPT (1 << 17)
#define NODE_TYPE_MATCHFLAG (1 << 18)
#define NODE_TYPE_EXACTMATCHFLAG (1 << 19)
#define NODE_TYPE_DENYMATCHFLAG (1 << 20)
#define NODE_TYPE_PROMPTMATCHFLAG (1 << 21)
/* An abstract node in the syntax tree. */
class Node {
public:
Node(): nullable(false), type_flags(NODE_TYPE_NODE), label(0)
{
child[0] = child[1] = 0;
}
Node(Node *left): nullable(false), type_flags(NODE_TYPE_NODE), label(0)
{
child[0] = left;
child[1] = 0;
}
Node(Node *left, Node *right): nullable(false),
type_flags(NODE_TYPE_NODE), label(0)
{
child[0] = left;
child[1] = right;
}
virtual ~Node()
{
if (child[0])
child[0]->release();
if (child[1])
child[1]->release();
}
/**
* firstpos, lastpos, and followpos are used to convert the syntax tree
* to a DFA.
*
* firstpos holds nodes that can match the first character of a string
* that matches the syntax tree. For the regex 'a*bcd', firstpos holds
* the 'a' and 'b' nodes. firstpos is used to determine the start state
* of the DFA.
*
* lastpos is the same as firstpos for the last character. For the regex
* 'a*bcd', lastpos holds the 'd' node. lastpos is used to determine the
* accepting states of the DFA.
*
* followpos holds the set of nodes that can match a character directly
* after the current node. For the regexp 'a*bcd', the followpos of the
* 'a' node are the 'b' node and the 'a' node itself. followpos is used
* to determine the transitions of the DFA.
*
* nullable indicates that a node can match the empty string. It is used
* to compute firstpos and lastpos.
*
* See the "Dragon Book" 2nd Edition section 3.9.2 for an in-depth
* explanation.
*/
virtual void compute_nullable() { }
virtual void compute_firstpos() = 0;
virtual void compute_lastpos() = 0;
virtual void compute_followpos() { }
/*
* min_match_len determines the smallest string that can match the
* syntax tree. This is used to determine the priority of a regex.
*/
virtual int min_match_len() { return 0; }
/*
* contains_oob returns if the expression tree contains a oob character.
* oob characters indicate that the rest of the DFA matches has an
* out of band transition. This is used to compute min_match_len.
*/
virtual bool contains_oob() { return false; }
virtual int eq(Node *other) = 0;
virtual ostream &dump(ostream &os) = 0;
void dump_syntax_tree(ostream &os);
virtual void normalize(int dir)
{
if (child[dir])
child[dir]->normalize(dir);
if (child[!dir])
child[!dir]->normalize(dir);
}
/* return false if no work done */
virtual int normalize_eps(int dir __attribute__((unused))) { return 0; }
bool nullable;
NodeSet firstpos, lastpos, followpos;
/* child 0 is left, child 1 is right */
Node *child[2];
/*
* Bitmap that stores supported pointer casts for the Node, composed
* by the NODE_TYPE_* flags. This is used by is_type() as a substitute
* of costly dynamic_cast calls.
*/
unsigned type_flags;
bool is_type(unsigned type) { return type_flags & type; }
unsigned int label; /* unique number for debug etc */
/**
* We indirectly release Nodes through a virtual function because
* accept and Eps Nodes are shared, and must be treated specially.
* We could use full reference counting here but the indirect release
* is sufficient and has less overhead
*/
virtual void release(void) { delete this; }
};
class InnerNode: public Node {
public:
InnerNode(): Node() { type_flags |= NODE_TYPE_INNER; };
InnerNode(Node *left): Node(left) { type_flags |= NODE_TYPE_INNER; };
InnerNode(Node *left, Node *right): Node(left, right)
{
type_flags |= NODE_TYPE_INNER;
};
};
class OneChildNode: public InnerNode {
public:
OneChildNode(Node *left): InnerNode(left)
{
type_flags |= NODE_TYPE_ONECHILD;
};
};
class TwoChildNode: public InnerNode {
public:
TwoChildNode(Node *left, Node *right): InnerNode(left, right)
{
type_flags |= NODE_TYPE_TWOCHILD;
};
virtual int normalize_eps(int dir);
};
class LeafNode: public Node {
public:
LeafNode(): Node() { type_flags |= NODE_TYPE_LEAF; };
virtual void normalize(int dir __attribute__((unused))) { return; }
};
/* Match nothing (//). */
class EpsNode: public LeafNode {
public:
EpsNode(): LeafNode()
{
type_flags |= NODE_TYPE_EPS;
nullable = true;
label = 0;
}
void release(void)
{
/* don't delete Eps nodes because there is a single static
* instance shared by all trees. Look for epsnode in the code
*/
}
void compute_firstpos() { }
void compute_lastpos() { }
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_EPS))
return 1;
return 0;
}
ostream &dump(ostream &os)
{
return os << "[]";
}
};
/**
* Leaf nodes in the syntax tree are important to us: they describe the
* characters that the regular expression matches. We also consider
* AcceptNodes import: they indicate when a regular expression matches.
*/
class ImportantNode: public LeafNode {
public:
ImportantNode(): LeafNode() { type_flags |= NODE_TYPE_IMPORTANT; }
void compute_firstpos() { firstpos.insert(this); }
void compute_lastpos() { lastpos.insert(this); }
virtual void follow(Cases &cases) = 0;
virtual int is_accept(void) = 0;
virtual int is_postprocess(void) = 0;
};
/* common base class for all the different classes that contain
* character information.
*/
class CNode: public ImportantNode {
public:
CNode(): ImportantNode() { type_flags |= NODE_TYPE_C; }
int is_accept(void) { return false; }
int is_postprocess(void) { return false; }
};
/* Match one specific character (/c/). */
class CharNode: public CNode {
public:
CharNode(transchar c): c(c) { type_flags |= NODE_TYPE_CHAR; }
void follow(Cases &cases)
{
NodeSet **x = &cases.cases[c];
if (!*x) {
if (cases.otherwise && c.c >= 0)
*x = new NodeSet(*cases.otherwise);
else
*x = new NodeSet;
}
(*x)->insert(followpos.begin(), followpos.end());
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_CHAR)) {
CharNode *o = static_cast<CharNode *>(other);
return c == o->c;
}
return 0;
}
ostream &dump(ostream &os)
{
return os << c;
}
int min_match_len()
{
if (c < 0) {
// oob characters indicates end of string.
// note: does NOT currently calc match len
// base on NULL char separator transitions
// which some match rules use.
return 0;
}
return 1;
}
bool contains_oob() { return c < 0; }
transchar c;
};
/* Match a set of characters (/[abc]/). */
class CharSetNode: public CNode {
public:
CharSetNode(Chars &chars): chars(chars)
{
type_flags |= NODE_TYPE_CHARSET;
}
void follow(Cases &cases)
{
for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
NodeSet **x = &cases.cases[*i];
if (!*x) {
if (cases.otherwise && i->c >= 0)
*x = new NodeSet(*cases.otherwise);
else
*x = new NodeSet;
}
(*x)->insert(followpos.begin(), followpos.end());
}
}
int eq(Node *other)
{
if (!other->is_type(NODE_TYPE_CHARSET))
return 0;
CharSetNode *o = static_cast<CharSetNode *>(other);
if (chars.size() != o->chars.size())
return 0;
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
i != chars.end() && j != o->chars.end(); i++, j++) {
if (*i != *j)
return 0;
}
return 1;
}
ostream &dump(ostream &os)
{
os << '[';
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
os << *i;
return os << ']';
}
int min_match_len()
{
if (contains_oob()) {
return 0;
}
return 1;
}
bool contains_oob()
{
for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
if (*i < 0) {
return true;
}
}
return false;
}
Chars chars;
};
/* Match all except one character (/[^abc]/). */
class NotCharSetNode: public CNode {
public:
NotCharSetNode(Chars &chars): chars(chars)
{
type_flags |= NODE_TYPE_NOTCHARSET;
}
void follow(Cases &cases)
{
if (!cases.otherwise)
cases.otherwise = new NodeSet;
for (Chars::iterator j = chars.begin(); j != chars.end(); j++) {
NodeSet **x = &cases.cases[*j];
if (!*x)
*x = new NodeSet(*cases.otherwise);
}
/* Note: Add to the nonmatching characters after copying away
* the old otherwise state for the matching characters.
*/
cases.otherwise->insert(followpos.begin(), followpos.end());
for (Cases::iterator i = cases.begin(); i != cases.end();
i++) {
/* does not match oob transition chars */
if (i->first.c >=0 && chars.find(i->first) == chars.end())
i->second->insert(followpos.begin(),
followpos.end());
}
}
int eq(Node *other)
{
if (!other->is_type(NODE_TYPE_NOTCHARSET))
return 0;
NotCharSetNode *o = static_cast<NotCharSetNode *>(other);
if (chars.size() != o->chars.size())
return 0;
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
i != chars.end() && j != o->chars.end(); i++, j++) {
if (*i != *j)
return 0;
}
return 1;
}
ostream &dump(ostream &os)
{
os << "[^";
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
os << *i;
return os << ']';
}
int min_match_len()
{
/* Inverse match does not match any oob char at this time
* so only count characters
*/
return 1;
}
bool contains_oob()
{
for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
if (*i < 0) {
return false;
}
}
return true;
}
Chars chars;
};
/* Match any character (/./). */
class AnyCharNode: public CNode {
public:
AnyCharNode() { type_flags |= NODE_TYPE_ANYCHAR; }
void follow(Cases &cases)
{
if (!cases.otherwise)
cases.otherwise = new NodeSet;
cases.otherwise->insert(followpos.begin(), followpos.end());
for (Cases::iterator i = cases.begin(); i != cases.end();
i++)
/* does not match oob transition chars */
if (i->first.c >= 0)
i->second->insert(followpos.begin(), followpos.end());
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_ANYCHAR))
return 1;
return 0;
}
ostream &dump(ostream &os) { return os << "."; }
};
/* Match a node zero or more times. (This is a unary operator.) */
class StarNode: public OneChildNode {
public:
StarNode(Node *left): OneChildNode(left)
{
type_flags |= NODE_TYPE_STAR;
nullable = true;
}
void compute_firstpos() { firstpos = child[0]->firstpos; }
void compute_lastpos() { lastpos = child[0]->lastpos; }
void compute_followpos()
{
NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_STAR))
return child[0]->eq(other->child[0]);
return 0;
}
ostream &dump(ostream &os)
{
os << '(';
child[0]->dump(os);
return os << ")*";
}
bool contains_oob() { return child[0]->contains_oob(); }
};
/* Match a node zero or one times. */
class OptionalNode: public OneChildNode {
public:
OptionalNode(Node *left): OneChildNode(left)
{
type_flags |= NODE_TYPE_OPTIONAL;
nullable = true;
}
void compute_firstpos() { firstpos = child[0]->firstpos; }
void compute_lastpos() { lastpos = child[0]->lastpos; }
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_OPTIONAL))
return child[0]->eq(other->child[0]);
return 0;
}
ostream &dump(ostream &os)
{
os << '(';
child[0]->dump(os);
return os << ")?";
}
};
/* Match a node one or more times. (This is a unary operator.) */
class PlusNode: public OneChildNode {
public:
PlusNode(Node *left): OneChildNode(left)
{
type_flags |= NODE_TYPE_PLUS;
}
void compute_nullable() { nullable = child[0]->nullable; }
void compute_firstpos() { firstpos = child[0]->firstpos; }
void compute_lastpos() { lastpos = child[0]->lastpos; }
void compute_followpos()
{
NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other) {
if (other->is_type(NODE_TYPE_PLUS))
return child[0]->eq(other->child[0]);
return 0;
}
ostream &dump(ostream &os) {
os << '(';
child[0]->dump(os);
return os << ")+";
}
int min_match_len() { return child[0]->min_match_len(); }
bool contains_oob() { return child[0]->contains_oob(); }
};
/* Match a pair of consecutive nodes. */
class CatNode: public TwoChildNode {
public:
CatNode(Node *left, Node *right): TwoChildNode(left, right)
{
type_flags |= NODE_TYPE_CAT;
}
void compute_nullable()
{
nullable = child[0]->nullable && child[1]->nullable;
}
void compute_firstpos()
{
if (child[0]->nullable)
firstpos = child[0]->firstpos + child[1]->firstpos;
else
firstpos = child[0]->firstpos;
}
void compute_lastpos()
{
if (child[1]->nullable)
lastpos = child[0]->lastpos + child[1]->lastpos;
else
lastpos = child[1]->lastpos;
}
void compute_followpos()
{
NodeSet from = child[0]->lastpos, to = child[1]->firstpos;
for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_CAT)) {
if (!child[0]->eq(other->child[0]))
return 0;
return child[1]->eq(other->child[1]);
}
return 0;
}
ostream &dump(ostream &os)
{
child[0]->dump(os);
child[1]->dump(os);
return os;
}
void normalize(int dir);
int min_match_len()
{
int len = child[0]->min_match_len();
if (child[0]->contains_oob()) {
// oob characters are used to indicate when the DFA transitions
// from matching the path to matching the xattrs. If the left child
// contains an oob character, the right side doesn't contribute to
// the path match.
return len;
}
return len + child[1]->min_match_len();
}
bool contains_oob()
{
return child[0]->contains_oob() || child[1]->contains_oob();
}
};
/* Match one of two alternative nodes. */
class AltNode: public TwoChildNode {
public:
AltNode(Node *left, Node *right): TwoChildNode(left, right)
{
type_flags |= NODE_TYPE_ALT;
}
void compute_nullable()
{
nullable = child[0]->nullable || child[1]->nullable;
}
void compute_lastpos()
{
lastpos = child[0]->lastpos + child[1]->lastpos;
}
void compute_firstpos()
{
firstpos = child[0]->firstpos + child[1]->firstpos;
}
int eq(Node *other)
{
if (other->is_type(NODE_TYPE_ALT)) {
if (!child[0]->eq(other->child[0]))
return 0;
return child[1]->eq(other->child[1]);
}
return 0;
}
ostream &dump(ostream &os)
{
os << '(';
child[0]->dump(os);
os << '|';
child[1]->dump(os);
os << ')';
return os;
}
void normalize(int dir);
int min_match_len()
{
int m1, m2;
m1 = child[0]->min_match_len();
m2 = child[1]->min_match_len();
if (m1 < m2) {
return m1;
}
return m2;
}
bool contains_oob()
{
return child[0]->contains_oob() || child[1]->contains_oob();
}
};
class SharedNode: public ImportantNode {
public:
SharedNode()
{
type_flags |= NODE_TYPE_SHARED;
}
void release(void)
{
/* don't delete SharedNodes via release as they are shared, and
* will be deleted when the table they are stored in is deleted
*/
}
void follow(Cases &cases __attribute__ ((unused)))
{
/* Nothing to follow. */
}
/* requires shared nodes to be common by pointer */
int eq(Node *other) { return (this == other); }
};
/**
* Indicate that a regular expression matches. An AcceptNode itself
* doesn't match anything, so it will never generate any transitions.
*/
class AcceptNode: public SharedNode {
public:
AcceptNode() { type_flags |= NODE_TYPE_ACCEPT; }
int is_accept(void) { return true; }
int is_postprocess(void) { return false; }
};
class MatchFlag: public AcceptNode {
public:
MatchFlag(int priority, perm32_t perms, perm32_t audit): priority(priority), perms(perms), audit(audit)
{
type_flags |= NODE_TYPE_MATCHFLAG;
}
ostream &dump(ostream &os) { return os << "< 0x" << hex << perms << std::dec << '>'; }
int priority;
perm32_t perms;
perm32_t audit;
};
class ExactMatchFlag: public MatchFlag {
public:
ExactMatchFlag(int priority, perm32_t perms, perm32_t audit): MatchFlag(priority, perms, audit)
{
type_flags |= NODE_TYPE_EXACTMATCHFLAG;
}
};
class DenyMatchFlag: public MatchFlag {
public:
DenyMatchFlag(int priority, perm32_t perms, perm32_t quiet): MatchFlag(priority, perms, quiet)
{
type_flags |= NODE_TYPE_DENYMATCHFLAG;
}
};
class PromptMatchFlag: public MatchFlag {
public:
PromptMatchFlag(int priority, perm32_t prompt, perm32_t audit): MatchFlag(priority, prompt, audit)
{
type_flags |= NODE_TYPE_PROMPTMATCHFLAG;
}
};
/* Traverse the syntax tree depth-first in an iterator-like manner. */
class depth_first_traversal {
stack<Node *>pos;
void push_left(Node *node) {
pos.push(node);
while (node->is_type(NODE_TYPE_INNER)) {
pos.push(node->child[0]);
node = node->child[0];
}
}
public:
depth_first_traversal(Node *node) { push_left(node); }
Node *operator*() { return pos.top(); }
Node *operator->() { return pos.top(); }
operator bool() { return !pos.empty(); }
void operator++(int)
{
Node *last = pos.top();
pos.pop();
if (!pos.empty()) {
/* no need to dynamic cast, as we just popped a node so
* the top node must be an inner node */
InnerNode *node = (InnerNode *) (pos.top());
if (node->child[1] && node->child[1] != last) {
push_left(node->child[1]);
}
}
}
};
struct node_counts {
int charnode;
int charset;
int notcharset;
int alt;
int plus;
int star;
int optional;
int any;
int cat;
};
extern EpsNode epsnode;
int debug_tree(Node *t);
Node *simplify_tree(Node *t, optflags const &opts);
void label_nodes(Node *root);
unsigned long hash_NodeSet(NodeSet *ns);
void flip_tree(Node *node);
class NodeVec {
public:
typedef ImportantNode ** iterator;
iterator begin() { return nodes; }
iterator end() { iterator t = nodes ? &nodes[len] : NULL; return t; }
unsigned long hash;
unsigned long len;
ImportantNode **nodes;
NodeVec(NodeSet *n)
{
hash = hash_NodeSet(n);
len = n->size();
nodes = new ImportantNode *[n->size()];
unsigned int j = 0;
for (NodeSet::iterator i = n->begin(); i != n->end(); i++, j++) {
nodes[j] = *i;
}
}
NodeVec(NodeSet *n, unsigned long h): hash(h)
{
len = n->size();
nodes = new ImportantNode *[n->size()];
ImportantNode **j = nodes;
for (NodeSet::iterator i = n->begin(); i != n->end(); i++) {
*(j++) = *i;
}
}
~NodeVec()
{
delete [] nodes;
}
unsigned long size()const { return len; }
bool operator<(NodeVec const &rhs)const
{
if (hash == rhs.hash) {
if (len == rhs.size()) {
for (unsigned int i = 0; i < len; i++) {
if (nodes[i] != rhs.nodes[i])
return nodes[i] < rhs.nodes[i];
}
return false;
}
return len < rhs.size();
}
return hash < rhs.hash;
}
};
class CacheStats {
public:
unsigned long dup, sum, max;
CacheStats(void): dup(0), sum(0), max(0) { };
void clear(void) { dup = sum = max = 0; }
virtual unsigned long size(void) const = 0;
};
struct deref_less_than {
bool operator()(NodeVec * const &lhs, NodeVec * const &rhs)const
{
return *lhs < *rhs;
}
};
class NodeVecCache: public CacheStats {
public:
set<NodeVec *, deref_less_than> cache;
NodeVecCache(void): cache() { };
~NodeVecCache() { clear(); };
virtual unsigned long size(void) const { return cache.size(); }
void clear()
{
for (set<NodeVec *>::iterator i = cache.begin();
i != cache.end(); i++) {
delete *i;
}
cache.clear();
CacheStats::clear();
}
NodeVec *insert(NodeSet *nodes)
{
if (!nodes)
return NULL;
pair<set<NodeVec *>::iterator,bool> uniq;
NodeVec *nv = new NodeVec(nodes);
uniq = cache.insert(nv);
if (uniq.second == false) {
delete nv;
dup++;
} else {
sum += nodes->size();
if (nodes->size() > max)
max = nodes->size();
}
delete(nodes);
return (*uniq.first);
}
};
#endif /* __LIBAA_RE_EXPR */
|