File: expr-tree.h

package info (click to toggle)
apparmor 4.1.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 30,096 kB
  • sloc: ansic: 24,943; python: 24,914; cpp: 9,074; sh: 8,166; yacc: 2,061; makefile: 1,923; lex: 1,215; pascal: 1,147; perl: 1,033; ruby: 365; lisp: 282; exp: 250; java: 212; xml: 159
file content (1090 lines) | stat: -rw-r--r-- 27,845 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
/*
 * (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
 * Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
 * Copyright 2009-2013 Canonical Ltd.
 *
 * The libapparmor library is licensed under the terms of the GNU
 * Lesser General Public License, version 2.1. Please see the file
 * COPYING.LGPL.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *
 * Functions to create/manipulate an expression tree for regular expressions
 * that have been parsed.
 *
 * The expression tree can be used directly after the parse creates it, or
 * it can be factored so that the set of important nodes is smaller.
 * Having a reduced set of important nodes generally results in a dfa that
 * is closer to minimum (fewer redundant states are created).  It also
 * results in fewer important nodes in a the state set during subset
 * construction resulting in less memory used to create a dfa.
 *
 * Generally it is worth doing expression tree simplification before dfa
 * construction, if the regular expression tree contains any alternations.
 * Even if the regular expression doesn't simplification should be fast
 * enough that it can be used with minimal overhead.
 */
#ifndef __LIBAA_RE_EXPR_H
#define __LIBAA_RE_EXPR_H

#include <map>
#include <set>
#include <stack>
#include <ostream>

#include <stdint.h>

#include "../perms.h"
#include "apparmor_re.h"

using namespace std;

/*
 * transchar - representative input character for state transitions
 *
 * the transchar is used as the leaf node in the expr tree created
 * by parsing an input regex (parse.y), and is used to build both the
 * states and the transitions for a state machine (hfa.{h,cc}) built
 * from the expression tree.
 *
 * While the state machine is currently based on byte inputs the
 * transchar abstraction allows for flexibility and the option of
 * moving to a larger input in the future. It also allows the ability
 * to specify out of band transitions.
 *
 * Out of band transitions allow for code to specify special transitions
 * that can not be triggered by an input byte stream. As such out of
 * band transitions can be used to separate logical units of a match.
 *
 * eg.
 * you need to allow an arbitrary data match (.*) followed by an arbitrary
 * string match ([^\x00]*), and make an acceptance dission based
 * on both matches.
 *
 * One way to do this is to chain the two matches in a single state
 * machine. However without an out of band transition, the matche pattern
 * for the data match (.*) could also consume the input for the string match.
 * To ensure the data pattern match cannot consume characters for the second
 * match a special character is used. This prevents state machine
 * generation from intermixing the two expressions. For string matches
 * this can be achieved with the pattern.
 *    ([^\x00]*)\x00([\x00]*)
 * since \x00 can not be matched by the first expression (and is not a
 * valid character in a C string), the nul character can be used to
 * separate the string match. This however is not possible when matching
 * arbitrary data that can have any input character.
 *
 * Out of band transitions replace the \x00 transition in the string
 * example with a new input transition that comes from the driver
 * code. Once the first match is done, the driver supplies the non-input
 * character, causing the state machine to transition to the second
 * match pattern.
 *
 * Out of band transitions are specified using negative integers
 * (-1..-32k). They llow for different transitions if needed (currently
 * only -1 is used).
 *
 * Negative integers were chosen to represent out of band transitions
 * because it makes the run time match simple, and also keeps the
 * upper positive integer range open for future input character
 * expansion.
 *
 * When a chfa is built, the out of band transition is encoded as
 * a negative offset of the same value specified in the transchar from the
 * state base base value. The check value at the negative offset will
 * contain the owning state value. The chfa state machine is constructed
 * in such a way that this value will always be in bounds, and only an
 * unpack time verification is needed.
 */
class transchar {
public:
	short c;

	transchar(unsigned char a): c((unsigned short) a) {}
	transchar(short a, bool oob __attribute__((unused))): c(a) {}
	transchar(const transchar &a): c(a.c) {}
	transchar(): c(0) {}

	bool operator==(const transchar &rhs) const {
		return this->c == rhs.c;
	}
	bool operator==(const int &rhs) const {
		return this->c == rhs;
	}
	bool operator!=(const transchar &rhs) const {
		return this->c != rhs.c;
	}
	bool operator>(const transchar &rhs) const {
		return this->c > rhs.c;
	}
	bool operator<(const transchar &rhs) const {
		return this->c < rhs.c;
	}
	bool operator<=(const transchar &rhs) const {
		return this->c <= rhs.c;
	}
	transchar &operator++() {		// prefix
		(this->c)++;
		return *this;
	}
	transchar operator++(int) {		// postfix
		transchar tmp(*this);
		(this->c)++;
		return tmp;
	}

	ostream &dump(ostream &os) const;

};

class Chars {
public:
	set<transchar> chars;

	typedef set<transchar>::iterator iterator;
	iterator begin() { return chars.begin(); }
	iterator end() { return chars.end(); }

	Chars(): chars() {}

	bool empty() const
	{
		return chars.empty();
	}
	std::size_t size() const
	{
		return chars.size();
	}
	iterator find(const transchar &key)
	{
		return chars.find(key);
	}
	pair<iterator,bool> insert(transchar c)
	{
		return chars.insert(c);
	}
	pair<iterator,bool> insert(char c)
	{
		transchar tmp(c);
		return chars.insert(tmp);
	}
};


ostream &operator<<(ostream &os, transchar c);

/* Compute the union of two sets. */
template<class T> set<T> operator+(const set<T> &a, const set<T> &b)
{
	set<T> c(a);
	c.insert(b.begin(), b.end());
	return c;
}

/**
 * When creating DFAs from regex trees, a DFA state is constructed from
 * a set of important nodes in the syntax tree. This includes AcceptNodes,
 * which indicate that when a match ends in a particular state, the
 * regular expressions that the AcceptNode belongs to match.
 */
class Node;
class ImportantNode;
typedef set<ImportantNode *> NodeSet;

/**
 * Text-dump a state (for debugging).
 */
ostream &operator<<(ostream &os, const NodeSet &state);

/**
 * Out-edges from a state to another: we store the follow-set of Nodes
 * for each input character that is not a default match in
 * cases (i.e., following a CharNode or CharSetNode), and default
 * matches in otherwise as well as in all matching explicit cases
 * (i.e., following an AnyCharNode or NotCharSetNode). This avoids
 * enumerating all the explicit tranitions for default matches.
 */
typedef struct Cases {
	typedef map<transchar, NodeSet *>::iterator iterator;
	iterator begin() { return cases.begin(); }
	iterator end() { return cases.end(); }

	Cases(): otherwise(0) { }
	map<transchar, NodeSet *> cases;
	NodeSet *otherwise;
} Cases;

ostream &operator<<(ostream &os, Node &node);

#define NODE_TYPE_NODE			0
#define NODE_TYPE_INNER			(1 << 0)
#define NODE_TYPE_ONECHILD		(1 << 1)
#define NODE_TYPE_TWOCHILD		(1 << 2)
#define NODE_TYPE_LEAF			(1 << 3)
#define NODE_TYPE_EPS			(1 << 4)
#define NODE_TYPE_IMPORTANT		(1 << 5)
#define NODE_TYPE_C			(1 << 6)
#define NODE_TYPE_CHAR			(1 << 7)
#define NODE_TYPE_CHARSET		(1 << 8)
#define NODE_TYPE_NOTCHARSET		(1 << 9)
#define NODE_TYPE_ANYCHAR		(1 << 10)
#define NODE_TYPE_STAR			(1 << 11)
#define NODE_TYPE_OPTIONAL		(1 << 12)
#define NODE_TYPE_PLUS			(1 << 13)
#define NODE_TYPE_CAT			(1 << 14)
#define NODE_TYPE_ALT			(1 << 15)
#define NODE_TYPE_SHARED		(1 << 16)
#define NODE_TYPE_ACCEPT		(1 << 17)
#define NODE_TYPE_MATCHFLAG		(1 << 18)
#define NODE_TYPE_EXACTMATCHFLAG	(1 << 19)
#define NODE_TYPE_DENYMATCHFLAG		(1 << 20)
#define NODE_TYPE_PROMPTMATCHFLAG	(1 << 21)

/* An abstract node in the syntax tree. */
class Node {
public:
	Node(): nullable(false), type_flags(NODE_TYPE_NODE), label(0)
	{
		child[0] = child[1] = 0;
	}
	Node(Node *left): nullable(false), type_flags(NODE_TYPE_NODE), label(0)
	{
		child[0] = left;
		child[1] = 0;
	}
	Node(Node *left, Node *right): nullable(false),
		type_flags(NODE_TYPE_NODE), label(0)
	{
		child[0] = left;
		child[1] = right;
	}
	virtual ~Node()
	{
		if (child[0])
			child[0]->release();
		if (child[1])
			child[1]->release();
	}

	/**
	 * firstpos, lastpos, and followpos are used to convert the syntax tree
	 * to a DFA.
	 *
	 * firstpos holds nodes that can match the first character of a string
	 * that matches the syntax tree. For the regex 'a*bcd', firstpos holds
	 * the 'a' and 'b' nodes. firstpos is used to determine the start state
	 * of the DFA.
	 *
	 * lastpos is the same as firstpos for the last character. For the regex
	 * 'a*bcd', lastpos holds the 'd' node. lastpos is used to determine the
	 * accepting states of the DFA.
	 *
	 * followpos holds the set of nodes that can match a character directly
	 * after the current node. For the regexp 'a*bcd', the followpos of the
	 * 'a' node are the 'b' node and the 'a' node itself. followpos is used
	 * to determine the transitions of the DFA.
	 *
	 * nullable indicates that a node can match the empty string. It is used
	 * to compute firstpos and lastpos.
	 *
	 * See the "Dragon Book" 2nd Edition section 3.9.2 for an in-depth
	 * explanation.
	 */
	virtual void compute_nullable() { }
	virtual void compute_firstpos() = 0;
	virtual void compute_lastpos() = 0;
	virtual void compute_followpos() { }

	/*
	 * min_match_len determines the smallest string that can match the
	 * syntax tree. This is used to determine the priority of a regex.
	 */
	virtual int min_match_len() { return 0; }
	/*
	 * contains_oob returns if the expression tree contains a oob character.
	 * oob characters indicate that the rest of the DFA matches has an
	 * out of band transition. This is used to compute min_match_len.
	 */
	virtual bool contains_oob() { return false; }

	virtual int eq(Node *other) = 0;
	virtual ostream &dump(ostream &os) = 0;
	void dump_syntax_tree(ostream &os);
	virtual void normalize(int dir)
	{
		if (child[dir])
			child[dir]->normalize(dir);
		if (child[!dir])
			child[!dir]->normalize(dir);
	}
	/* return false if no work done */
	virtual int normalize_eps(int dir __attribute__((unused))) { return 0; }

	bool nullable;
	NodeSet firstpos, lastpos, followpos;
	/* child 0 is left, child 1 is right */
	Node *child[2];
	/*
	 * Bitmap that stores supported pointer casts for the Node, composed
	 * by the NODE_TYPE_* flags. This is used by is_type() as a substitute
	 * of costly dynamic_cast calls.
	 */
	unsigned type_flags;
	bool is_type(unsigned type) { return type_flags & type; }

	unsigned int label;	/* unique number for debug etc */
	/**
	 * We indirectly release Nodes through a virtual function because
	 * accept and Eps Nodes are shared, and must be treated specially.
	 * We could use full reference counting here but the indirect release
	 * is sufficient and has less overhead
	 */
	virtual void release(void) { delete this; }
};

class InnerNode: public Node {
public:
	InnerNode(): Node() { type_flags |= NODE_TYPE_INNER; };
	InnerNode(Node *left): Node(left) { type_flags |= NODE_TYPE_INNER; };
	InnerNode(Node *left, Node *right): Node(left, right)
	{
		type_flags |= NODE_TYPE_INNER;
	};
};

class OneChildNode: public InnerNode {
public:
	OneChildNode(Node *left): InnerNode(left)
	{
		type_flags |= NODE_TYPE_ONECHILD;
	};
};

class TwoChildNode: public InnerNode {
public:
	TwoChildNode(Node *left, Node *right): InnerNode(left, right)
	{
		type_flags |= NODE_TYPE_TWOCHILD;
	};
	virtual int normalize_eps(int dir);
};

class LeafNode: public Node {
public:
	LeafNode(): Node() { type_flags |= NODE_TYPE_LEAF; };
	virtual void normalize(int dir __attribute__((unused))) { return; }
};

/* Match nothing (//). */
class EpsNode: public LeafNode {
public:
	EpsNode(): LeafNode()
	{
		type_flags |= NODE_TYPE_EPS;
		nullable = true;
		label = 0;
	}
	void release(void)
	{
		/* don't delete Eps nodes because there is a single static
		 * instance shared by all trees.  Look for epsnode in the code
		 */
	}

	void compute_firstpos() { }
	void compute_lastpos() { }
	int eq(Node *other)
	{
		if (other->is_type(NODE_TYPE_EPS))
			return 1;
		return 0;
	}
	ostream &dump(ostream &os)
	{
		return os << "[]";
	}
};

/**
 * Leaf nodes in the syntax tree are important to us: they describe the
 * characters that the regular expression matches. We also consider
 * AcceptNodes import: they indicate when a regular expression matches.
 */
class ImportantNode: public LeafNode {
public:
	ImportantNode(): LeafNode() { type_flags |= NODE_TYPE_IMPORTANT; }
	void compute_firstpos() { firstpos.insert(this); }
	void compute_lastpos() { lastpos.insert(this); }
	virtual void follow(Cases &cases) = 0;
	virtual int is_accept(void) = 0;
	virtual int is_postprocess(void) = 0;
};

/* common base class for all the different classes that contain
 * character information.
 */
class CNode: public ImportantNode {
public:
	CNode(): ImportantNode() { type_flags |= NODE_TYPE_C; }
	int is_accept(void) { return false; }
	int is_postprocess(void) { return false; }
};

/* Match one specific character (/c/). */
class CharNode: public CNode {
public:
	CharNode(transchar c): c(c) { type_flags |= NODE_TYPE_CHAR; }
	void follow(Cases &cases)
	{
		NodeSet **x = &cases.cases[c];
		if (!*x) {
			if (cases.otherwise && c.c >= 0)
				*x = new NodeSet(*cases.otherwise);
			else
				*x = new NodeSet;
		}
		(*x)->insert(followpos.begin(), followpos.end());
	}
	int eq(Node *other)
	{
		if (other->is_type(NODE_TYPE_CHAR)) {
			CharNode *o = static_cast<CharNode *>(other);
			return c == o->c;
		}
		return 0;
	}
	ostream &dump(ostream &os)
	{
		return os << c;
	}

	int min_match_len()
	{
		if (c < 0) {
			// oob characters indicates end of string.
			// note: does NOT currently calc match len
			// base on NULL char separator transitions
			// which some match rules use.
			return 0;
		}
		return 1;
	}

	bool contains_oob() { return c < 0; }

	transchar c;
};

/* Match a set of characters (/[abc]/). */
class CharSetNode: public CNode {
public:
	CharSetNode(Chars &chars): chars(chars)
	{
		type_flags |= NODE_TYPE_CHARSET;
	}
	void follow(Cases &cases)
	{
		for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
			NodeSet **x = &cases.cases[*i];
			if (!*x) {
				if (cases.otherwise && i->c >= 0)
					*x = new NodeSet(*cases.otherwise);
				else
					*x = new NodeSet;
			}
			(*x)->insert(followpos.begin(), followpos.end());
		}
	}
	int eq(Node *other)
	{
		if (!other->is_type(NODE_TYPE_CHARSET))
			return 0;

		CharSetNode *o = static_cast<CharSetNode *>(other);
		if (chars.size() != o->chars.size())
			return 0;

		for (Chars::iterator i = chars.begin(), j = o->chars.begin();
		     i != chars.end() && j != o->chars.end(); i++, j++) {
			if (*i != *j)
				return 0;
		}
		return 1;
	}
	ostream &dump(ostream &os)
	{
		os << '[';
		for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
			os << *i;
		return os << ']';
	}

	int min_match_len()
	{
		if (contains_oob()) {
			return 0;
		}
		return 1;
	}

	bool contains_oob()
	{
		for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
			if (*i < 0) {
				return true;
			}
		}
		return false;
	}

	Chars chars;
};

/* Match all except one character (/[^abc]/). */
class NotCharSetNode: public CNode {
public:
	NotCharSetNode(Chars &chars): chars(chars)
	{
		type_flags |= NODE_TYPE_NOTCHARSET;
	}
	void follow(Cases &cases)
	{
		if (!cases.otherwise)
			cases.otherwise = new NodeSet;
		for (Chars::iterator j = chars.begin(); j != chars.end(); j++) {
			NodeSet **x = &cases.cases[*j];
			if (!*x)
				*x = new NodeSet(*cases.otherwise);
		}
		/* Note: Add to the nonmatching characters after copying away
		 * the old otherwise state for the matching characters.
		 */
		cases.otherwise->insert(followpos.begin(), followpos.end());
		for (Cases::iterator i = cases.begin(); i != cases.end();
		     i++) {
			/* does not match oob transition chars */
			if (i->first.c >=0 && chars.find(i->first) == chars.end())
				i->second->insert(followpos.begin(),
						  followpos.end());
		}
	}
	int eq(Node *other)
	{
		if (!other->is_type(NODE_TYPE_NOTCHARSET))
			return 0;

		NotCharSetNode *o = static_cast<NotCharSetNode *>(other);
		if (chars.size() != o->chars.size())
			return 0;

		for (Chars::iterator i = chars.begin(), j = o->chars.begin();
		     i != chars.end() && j != o->chars.end(); i++, j++) {
			if (*i != *j)
				return 0;
		}
		return 1;
	}
	ostream &dump(ostream &os)
	{
		os << "[^";
		for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
			os << *i;
		return os << ']';
	}

	int min_match_len()
	{
		/* Inverse match does not match any oob char at this time
		 * so only count characters
		 */
		return 1;
	}

	bool contains_oob()
	{
		for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
			if (*i < 0) {
				return false;
			}
		}
		return true;
	}

	Chars chars;
};

/* Match any character (/./). */
class AnyCharNode: public CNode {
public:
	AnyCharNode() { type_flags |= NODE_TYPE_ANYCHAR; }
	void follow(Cases &cases)
	{
		if (!cases.otherwise)
			cases.otherwise = new NodeSet;
		cases.otherwise->insert(followpos.begin(), followpos.end());
		for (Cases::iterator i = cases.begin(); i != cases.end();
		     i++)
			/* does not match oob transition chars */
			if (i->first.c >= 0)
				i->second->insert(followpos.begin(), followpos.end());
	}
	int eq(Node *other)
	{
		if (other->is_type(NODE_TYPE_ANYCHAR))
			return 1;
		return 0;
	}
	ostream &dump(ostream &os) { return os << "."; }
};

/* Match a node zero or more times. (This is a unary operator.) */
class StarNode: public OneChildNode {
public:
	StarNode(Node *left): OneChildNode(left)
	{
		type_flags |= NODE_TYPE_STAR;
		nullable = true;
	}
	void compute_firstpos() { firstpos = child[0]->firstpos; }
	void compute_lastpos() { lastpos = child[0]->lastpos; }
	void compute_followpos()
	{
		NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
		for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
			(*i)->followpos.insert(to.begin(), to.end());
		}
	}
	int eq(Node *other)
	{
		if (other->is_type(NODE_TYPE_STAR))
			return child[0]->eq(other->child[0]);
		return 0;
	}
	ostream &dump(ostream &os)
	{
		os << '(';
		child[0]->dump(os);
		return os << ")*";
	}

	bool contains_oob() { return child[0]->contains_oob(); }
};

/* Match a node zero or one times. */
class OptionalNode: public OneChildNode {
public:
	OptionalNode(Node *left): OneChildNode(left)
	{
		type_flags |= NODE_TYPE_OPTIONAL;
		nullable = true;
	}
	void compute_firstpos() { firstpos = child[0]->firstpos; }
	void compute_lastpos() { lastpos = child[0]->lastpos; }
	int eq(Node *other)
	{
		if (other->is_type(NODE_TYPE_OPTIONAL))
			return child[0]->eq(other->child[0]);
		return 0;
	}
	ostream &dump(ostream &os)
	{
		os << '(';
		child[0]->dump(os);
		return os << ")?";
	}
};

/* Match a node one or more times. (This is a unary operator.) */
class PlusNode: public OneChildNode {
public:
	PlusNode(Node *left): OneChildNode(left)
	{
		type_flags |= NODE_TYPE_PLUS;
	}
	void compute_nullable() { nullable = child[0]->nullable; }
	void compute_firstpos() { firstpos = child[0]->firstpos; }
	void compute_lastpos() { lastpos = child[0]->lastpos; }
	void compute_followpos()
	{
		NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
		for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
			(*i)->followpos.insert(to.begin(), to.end());
		}
	}
	int eq(Node *other) {
		if (other->is_type(NODE_TYPE_PLUS))
			return child[0]->eq(other->child[0]);
		return 0;
	}
	ostream &dump(ostream &os) {
		os << '(';
		child[0]->dump(os);
		return os << ")+";
	}
	int min_match_len() { return child[0]->min_match_len(); }
	bool contains_oob() { return child[0]->contains_oob(); }
};

/* Match a pair of consecutive nodes. */
class CatNode: public TwoChildNode {
public:
	CatNode(Node *left, Node *right): TwoChildNode(left, right)
	{
		type_flags |= NODE_TYPE_CAT;
	}
	void compute_nullable()
	{
		nullable = child[0]->nullable && child[1]->nullable;
	}
	void compute_firstpos()
	{
		if (child[0]->nullable)
			firstpos = child[0]->firstpos + child[1]->firstpos;
		else
			firstpos = child[0]->firstpos;
	}
	void compute_lastpos()
	{
		if (child[1]->nullable)
			lastpos = child[0]->lastpos + child[1]->lastpos;
		else
			lastpos = child[1]->lastpos;
	}
	void compute_followpos()
	{
		NodeSet from = child[0]->lastpos, to = child[1]->firstpos;
		for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
			(*i)->followpos.insert(to.begin(), to.end());
		}
	}
	int eq(Node *other)
	{
		if (other->is_type(NODE_TYPE_CAT)) {
			if (!child[0]->eq(other->child[0]))
				return 0;
			return child[1]->eq(other->child[1]);
		}
		return 0;
	}
	ostream &dump(ostream &os)
	{
		child[0]->dump(os);
		child[1]->dump(os);
		return os;
	}
	void normalize(int dir);
	int min_match_len()
	{
		int len = child[0]->min_match_len();
		if (child[0]->contains_oob()) {
			// oob characters are used to indicate when the DFA transitions
			// from matching the path to matching the xattrs. If the left child
			// contains an oob character, the right side doesn't contribute to
			// the path match.
			return len;
		}
		return len + child[1]->min_match_len();
	}
	bool contains_oob()
	{
		return child[0]->contains_oob() || child[1]->contains_oob();
	}
};

/* Match one of two alternative nodes. */
class AltNode: public TwoChildNode {
public:
	AltNode(Node *left, Node *right): TwoChildNode(left, right)
	{
		type_flags |= NODE_TYPE_ALT;
	}
	void compute_nullable()
	{
		nullable = child[0]->nullable || child[1]->nullable;
	}
	void compute_lastpos()
	{
		lastpos = child[0]->lastpos + child[1]->lastpos;
	}
	void compute_firstpos()
	{
		firstpos = child[0]->firstpos + child[1]->firstpos;
	}
	int eq(Node *other)
	{
		if (other->is_type(NODE_TYPE_ALT)) {
			if (!child[0]->eq(other->child[0]))
				return 0;
			return child[1]->eq(other->child[1]);
		}
		return 0;
	}
	ostream &dump(ostream &os)
	{
		os << '(';
		child[0]->dump(os);
		os << '|';
		child[1]->dump(os);
		os << ')';
		return os;
	}
	void normalize(int dir);
	int min_match_len()
	{
		int m1, m2;
		m1 = child[0]->min_match_len();
		m2 = child[1]->min_match_len();
		if (m1 < m2) {
			return m1;
		}
		return m2;
	}
	bool contains_oob()
	{
		return child[0]->contains_oob() || child[1]->contains_oob();
	}
};

class SharedNode: public ImportantNode {
public:
	SharedNode()
	{
		type_flags |= NODE_TYPE_SHARED;
	}
	void release(void)
	{
		/* don't delete SharedNodes via release as they are shared, and
		 * will be deleted when the table they are stored in is deleted
		 */
	}

	void follow(Cases &cases __attribute__ ((unused)))
	{
		/* Nothing to follow. */
	}

	/* requires shared nodes to be common by pointer */
	int eq(Node *other) { return (this == other); }
};

/**
 * Indicate that a regular expression matches. An AcceptNode itself
 * doesn't match anything, so it will never generate any transitions.
 */
class AcceptNode: public SharedNode {
public:
	AcceptNode() { type_flags |= NODE_TYPE_ACCEPT; }
	int is_accept(void) { return true; }
	int is_postprocess(void) { return false; }
};

class MatchFlag: public AcceptNode {
public:
	MatchFlag(int priority, perm32_t perms, perm32_t audit): priority(priority), perms(perms), audit(audit)
	{
		type_flags |= NODE_TYPE_MATCHFLAG;
	}
	ostream &dump(ostream &os) { return os << "< 0x" << hex << perms << std::dec << '>'; }

	int priority;
	perm32_t perms;
	perm32_t audit;
};

class ExactMatchFlag: public MatchFlag {
public:
	ExactMatchFlag(int priority, perm32_t perms, perm32_t audit): MatchFlag(priority, perms, audit)
	{
		type_flags |= NODE_TYPE_EXACTMATCHFLAG;
	}
};

class DenyMatchFlag: public MatchFlag {
public:
	DenyMatchFlag(int priority, perm32_t perms, perm32_t quiet): MatchFlag(priority, perms, quiet)
	{
		type_flags |= NODE_TYPE_DENYMATCHFLAG;
	}
};

class PromptMatchFlag: public MatchFlag {
public:
	PromptMatchFlag(int priority, perm32_t prompt, perm32_t audit): MatchFlag(priority, prompt, audit)
	{
		type_flags |= NODE_TYPE_PROMPTMATCHFLAG;
	}
};


/* Traverse the syntax tree depth-first in an iterator-like manner. */
class depth_first_traversal {
	stack<Node *>pos;
	void push_left(Node *node) {
		pos.push(node);

		while (node->is_type(NODE_TYPE_INNER)) {
			pos.push(node->child[0]);
			node = node->child[0];
		}
	}
public:
	depth_first_traversal(Node *node) { push_left(node); }
	Node *operator*() { return pos.top(); }
	Node *operator->() { return pos.top(); }
	operator  bool() { return !pos.empty(); }
	void operator++(int)
	{
		Node *last = pos.top();
		pos.pop();

		if (!pos.empty()) {
			/* no need to dynamic cast, as we just popped a node so
			 * the top node must be an inner node */
			InnerNode *node = (InnerNode *) (pos.top());
			if (node->child[1] && node->child[1] != last) {
				push_left(node->child[1]);
			}
		}
	}
};

struct node_counts {
	int charnode;
	int charset;
	int notcharset;
	int alt;
	int plus;
	int star;
	int optional;
	int any;
	int cat;
};

extern EpsNode epsnode;

int debug_tree(Node *t);
Node *simplify_tree(Node *t, optflags const &opts);
void label_nodes(Node *root);
unsigned long hash_NodeSet(NodeSet *ns);
void flip_tree(Node *node);


class NodeVec {
public:
	typedef ImportantNode ** iterator;
	iterator begin() { return nodes; }
	iterator end() { iterator t = nodes ? &nodes[len] : NULL; return t; }

	unsigned long hash;
	unsigned long len;
	ImportantNode **nodes;

	NodeVec(NodeSet *n)
	{
		hash = hash_NodeSet(n);
		len = n->size();
		nodes = new ImportantNode *[n->size()];

		unsigned int j = 0;
		for (NodeSet::iterator i = n->begin(); i != n->end(); i++, j++) {
			nodes[j] = *i;
		}
	}

	NodeVec(NodeSet *n, unsigned long h): hash(h)
	{
		len = n->size();
		nodes = new ImportantNode *[n->size()];
		ImportantNode **j = nodes;
		for (NodeSet::iterator i = n->begin(); i != n->end(); i++) {
			*(j++) = *i;
		}
	}

	~NodeVec()
	{
		delete [] nodes;
	}

	unsigned long size()const { return len; }

	bool operator<(NodeVec const &rhs)const
	{
		if (hash == rhs.hash) {
			if (len == rhs.size()) {
				for (unsigned int i = 0; i < len; i++) {
					if (nodes[i] != rhs.nodes[i])
						return nodes[i] < rhs.nodes[i];
				}
				return false;
			}
			return len < rhs.size();
		}
		return hash < rhs.hash;
	}
};

class CacheStats {
public:
	unsigned long dup, sum, max;

	CacheStats(void): dup(0), sum(0), max(0) { };

	void clear(void) { dup = sum = max = 0; }
	virtual unsigned long size(void) const = 0;
};

struct deref_less_than {
       bool operator()(NodeVec * const &lhs, NodeVec * const &rhs)const
		{
			return *lhs < *rhs;
		}
};

class NodeVecCache: public CacheStats {
public:
	set<NodeVec *, deref_less_than> cache;

	NodeVecCache(void): cache() { };
	~NodeVecCache() { clear(); };

	virtual unsigned long size(void) const { return cache.size(); }

	void clear()
	{
		for (set<NodeVec *>::iterator i = cache.begin();
		     i != cache.end(); i++) {
			delete *i;
		}
		cache.clear();
		CacheStats::clear();
	}

	NodeVec *insert(NodeSet *nodes)
	{
		if (!nodes)
			return NULL;
		pair<set<NodeVec *>::iterator,bool> uniq;
		NodeVec *nv = new NodeVec(nodes);
		uniq = cache.insert(nv);
		if (uniq.second == false) {
			delete nv;
			dup++;
		} else {
			sum += nodes->size();
			if (nodes->size() > max)
				max = nodes->size();
		}
		delete(nodes);
		return (*uniq.first);
	}
};

#endif /* __LIBAA_RE_EXPR */