1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061
|
% APQ-2.2 Manual
\documentclass[english,letterpaper]{book}
\usepackage{times}
\usepackage[T1]{fontenc}
\usepackage[latin1]{inputenc}
\usepackage{longtable}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{floatflt}
\usepackage{fancyhdr}
\pagestyle{fancy}
%\lhead{}
%\chead{}
\rhead{}
\lfoot{}
\cfoot{\thepage}
\rfoot{APQ 3.0}
\newcommand\Ref[1]{\textsection\ref{#1} (page~\pageref{#1})}
\usepackage{fancyvrb}
\usepackage{listings}
\usepackage{makeidx}
\makeindex
\IfFileExists{url.sty}{\usepackage{url}}
{\newcommand{\url}{\texttt}}
\makeatletter
\usepackage{babel}
\makeatother
%==========%
% HYPERREF %
%==========%
\usepackage[dvipdfm, bookmarks, colorlinks, breaklinks, pdftitle={APQ User Manual},
pdfauthor={KOW Framework Project}]{hyperref}
\hypersetup{
linkcolor=DarkSkyBlue,
citecolor= DarkSkyBlue,
filecolor= DarkSkyBlue,
urlcolor= DarkSkyBlue
}
%========================%
% Listings Package Setup %
%========================%
\usepackage{xcolor}
\usepackage{listings}
% COLORS (Tango)
\definecolor{LightButter}{rgb}{0.98,0.91,0.31}
\definecolor{LightOrange}{rgb}{0.98,0.68,0.24}
\definecolor{LightChocolate}{rgb}{0.91,0.72,0.43}
\definecolor{LightChameleon}{rgb}{0.54,0.88,0.20}
\definecolor{LightSkyBlue}{rgb}{0.45,0.62,0.81}
\definecolor{LightPlum}{rgb}{0.68,0.50,0.66}
\definecolor{LightScarletRed}{rgb}{0.93,0.16,0.16}
\definecolor{Butter}{rgb}{0.93,0.86,0.25}
\definecolor{Orange}{rgb}{0.96,0.47,0.00}
\definecolor{Chocolate}{rgb}{0.75,0.49,0.07}
\definecolor{Chameleon}{rgb}{0.45,0.82,0.09}
\definecolor{SkyBlue}{rgb}{0.20,0.39,0.64}
\definecolor{Plum}{rgb}{0.46,0.31,0.48}
\definecolor{ScarletRed}{rgb}{0.80,0.00,0.00}
\definecolor{DarkButter}{rgb}{0.77,0.62,0.00}
\definecolor{DarkOrange}{rgb}{0.80,0.36,0.00}
\definecolor{DarkChocolate}{rgb}{0.56,0.35,0.01}
\definecolor{DarkChameleon}{rgb}{0.30,0.60,0.02}
\definecolor{DarkSkyBlue}{rgb}{0.12,0.29,0.53}
\definecolor{DarkPlum}{rgb}{0.36,0.21,0.40}
\definecolor{DarkScarletRed}{rgb}{0.64,0.00,0.00}
\definecolor{Aluminium1}{rgb}{0.93,0.93,0.92}
\definecolor{Aluminium2}{rgb}{0.82,0.84,0.81}
\definecolor{Aluminium3}{rgb}{0.73,0.74,0.71}
\definecolor{Aluminium4}{rgb}{0.53,0.54,0.52}
\definecolor{Aluminium5}{rgb}{0.33,0.34,0.32}
\definecolor{Aluminium6}{rgb}{0.18,0.20,0.21}
\lstset{
keywordstyle=[1]{\color{DarkSkyBlue}},
keywordstyle=[2]{\color{DarkScarletRed}},
keywordstyle=[3]{\bfseries},
keywordstyle=[4]{\color{DarkPlum}},
keywordstyle=[5]{\color{SkyBlue}},
commentstyle={\color{Aluminium4}\small},
stringstyle={\color{Chocolate}},
tabsize=4,
breaklines=true,
basicstyle={\ttfamily\small},
xleftmargin=21pt,
xrightmargin=11pt,
frame=single,
rulecolor=\color{black!30},
captionpos=b,
framesep=10pt,
framexleftmargin=18pt,
numbers=none,
numberstyle={\tiny},
stepnumber=1,
numbersep=15pt
}
\lstdefinelanguage{Ada}{%
morekeywords={alfa,and,array,begin,boolean,byte,case,char,const,div,%
do,downto,else,end,false,file,for,function,get,goto,if,in,%
integer,label,maxint,mod,new,not,of,or,pack,packed,page,program,%
procedure,put,read,readln,real,record,repeat,reset,rewrite,set,%
text,then,to,true,type,unpack,until,var,while,with,write,writeln},%
sensitive=false,%
morecomment=[s]{(*}{*)},%
morecomment=[s]{\{}{\}},%
morestring=[d]{'}%
}
\lstdefinelanguage{SQL}{%
morekeywords={select,insert,table,from,into,create,delete,alfa,and,array,begin,boolean,byte,case,char,const,div,%
do,downto,else,end,false,file,for,function,get,goto,if,in,%
integer,label,maxint,mod,new,not,of,or,pack,packed,page,program,%
procedure,put,read,readln,real,record,repeat,reset,rewrite,set,%
text,then,to,true,type,unpack,until,var,while,with,write,writeln},%
sensitive=false,%
morecomment=[s]{(*}{*)},%
morecomment=[s]{\{}{\}},%
morestring=[d]{'},%
caption=SQL%
}
\lstnewenvironment{SQL}{\lstset{language=SQL}}{}
\lstnewenvironment{Code}{\lstset{language=Ada}}{}
\lstnewenvironment{Example}{\lstset{language=Ada,title=Example}}{}
\lstnewenvironment{NumberedExample}{\lstset{language=Ada,label=Example}}{}
%\DefineVerbatimEnvironment{SQL}{Verbatim}%
% {frame=single,fontsize=\small,label={SQL},labelposition=topline}
%\DefineVerbatimEnvironment{Code}{Verbatim}%
% {frame=single,fontsize=\small}
%\DefineVerbatimEnvironment{Example}{Verbatim}%
% {frame=single,fontsize=\small,label={Example},labelposition=topline}
%\DefineVerbatimEnvironment{NumberedExample}{Verbatim}%
% {frame=single,numbers=left,fontsize=\small,label={Example},labelposition=topline,commandchars=\\\{\}}
%==============%
% The document %
%==============%
\begin{document}
\title{APQ Ada95 Database Binding}
\author{%
Copyright (c) 2002-2004, Warren W. Gay VE3WWG\\%
Copyright (c) 2007-2009, KOW Framework Project
}
\date{\today}
\maketitle
\tableofcontents{}
\listoftables
%\listoffigures
\chapter{Introduction}
\section{APQ Version 2.2}
This manual documents APQ Version 2.2, which is released under a dual
ACL\index{ACL} and GPL\index{GPL} (GNU Public License)\index{GNU Public
License} arrangement. The dual license arrangement is designed to give
both the \index{distributor} and user the necessary freedoms to enjoy
the fair use and distribution of the sources \index{distribution of
sources} contained in this project. See file COPYING\index{copying} for
more details.
\section{Supported Databases}
The APQ binding\index{binding} was initially created to satisfy the simple need to
allow Ada\index{Ada} programs to use a PostgreSQL\index{PostgreSQL} database. However, as open
sourced database technologies continue to advance, the need to allow
other databases to be used, becomes greater. Rather than write a unique
Ada binding for each one, it was conceptualized that a common API\index{API}
could emerge from the APQ framework\index{framework}. To this end, the APQ binding
has been reworked rather extensively for version 2.1, to permit increasing
levels of general support of other database technologies, including
MySQL\index{MySQL}.
In the fall of 2003 the foundation was laid for Sybase\index{Sybase} support in
the unreleased APQ 2.2 software using Sybase on a trial download\index{download} basis.
Sybase highlighted some new APQ design \index{design, APQ} wrinkles, which required a
few new adjustments and API additions. However, this development ground
to a halt for a spell, until September 9, 2004 when it was announced
on www.slashdot.org\index{www.slashdot.org} that ``Sybase Releases Free Enterprise Database
on Linux''\index{Linux}.
\begin{quote}
``Sybase announced today that they are releasing a free (as in
beer) version of their flagship database for Linux. The free version
is limited to 1 CPU, 2 GB of RAM, and 5 GB of data, which is more
than adequate for all but the most demanding applications. This release
provides a very attractive alternative to Microsoft SQL Server\index{Microsoft SQL Server}, and
gives developers and DBAs an extremely powerful argument to use against
the adoption of Microsoft-based solutions.''%
\footnote{Posted by ``Tassach'' (tassach@rapiertech.com)}
\end{quote}
Now there was greater reason to put enterprise class database support
into an Ada thick binding\index{thick binding} for databases. Sybase support in APQ would
allow developers to develop real applications in using Ada, without
trial software expiring. Once developed, these same Ada applications
could be deployed within the enterprise and on a large scale.
\begin{floatingtable}{
\begin{tabular}{lccc}
Database & As of APQ Version & SQL & Blob \\
\hline
PostgreSQL & 1.x & Yes & Yes \\
MySQL & 2.x & Yes & No \\
Sybase 12.52 & 2.2 & Yes & No \\
SQL Server & 3.0 & Yes & No \\
\end{tabular}}
\caption{Database Product Support}\label{t:DBSupport}
\end{floatingtable}
Thanks in part to the generosity of Sybase to developers, APQ 3.0
now supports the following list of database\index{list of database technologies} technologies:
Table \ref{t:DBSupport} is further described as follows:
\begin{description}
\item [As of APQ Version]is the version where the database was first supported.
\item [SQL]indicates whether the common SQL functions are supported (sans blob).
\item [Blob]indicates whether blob support is present.
\end{description}
As the reader can observe in the table above, the support for MySQL
is incomplete in APQ 2.1. The blob support\index{blob support} is lacking in APQ for MySQL,
because MySQL's blob interface is not as complete as provided by PostgreSQL.
Where PostgreSQL provides the facility for virtually limitless sized
blobs, a MySQL blob must fit within a ``column'', very much like
a text field. For this reason, the facility to perform stream oriented\index{stream oriented}
I/O is lacking on a blob in APQ for MySQL.\\
Also, there han't been time or interest in developing Blob support in Sybase and SQL Server
so far. This implementation should take quite a while to be done and for now the focus of
the project is in providing a stable solution for database connectivity.
\subsection{The Future of Blob Support for MySQL}
Much investigation and research\index{research, APQ} is required to adequately resolve
the blob issue in APQ. Rather than hold back the binding from general
use, where blob functionality may have limited use anyway, it was
decided to release APQ 2.0 with the common API for the two databases,
and leaving the resolution of the blob API for a future release.
If you are a developer, who hopes to write portable database\index{portable database code} code,
then please be aware that the PostgreSQL\index{PostgreSQL} blob\index{blob} API is subject to future
revision. Potentially, this could be fairly extensively revised, but
every attempt will be made to leave a migration path open to the developer.
APQ 3.0 inhertis
\section{Generic Database Support}
One of the main goals of the APQ version 2.0 release, was to develop
a common API\index{API, common}, that does not discriminate based upon the database technology
being selected. The ideal was to allow a developer to write a procedure
that would accept a classwide\index{classwide} database objects, and perform database
operations without needing to be concerned whether the database being
used was PostgreSQL\index{PostgreSQL}, MySQL\index{MySQL} or Sybase\index{Sybase}.
To a large extent, the author believes that this goal has been achieved.
\subsection{Generic Limitations}
It must be admited however, there are some areas where the database
technologies were very different. Consequently, some exceptions and
work-arounds will be required by the programmer. An example of this
is that MySQL\index{MySQL} requires that all rows be fetched from a SELECT\index{SELECT} query.
A failure to do this, corrupts the communication between the server\index{communication, server}
and the client. Consequently, APQ works around this by defaulting
to use the C library call mysql\_store\_result()\index{mysql\_store\_result()} instead of the alternative,
which is mysql\_use\_result()\index{mysql\_use\_result()}. However, if the result set is large,\index{large result sets}
then receiving all of the rows into the clients memory\index{memory, client} is not a suitable
choice. Consequently, APQ does provide some MySQL specific ways to
manage this setting.
The MySQL database software also provides the special ``LIMIT n''\index{LIMIT n}
extension, if the client program is only interested in the first n
rows of the result. If for example, you have a price file containing
stock price history, you may want to query the most recent price for
it. The simplest way to do this would be to perform a SELECT\index{SELECT} on the
table with a descending price date sort sequence (or index). But if
you only want the first (most recent) row \index{most recent row} returned, you do not want
to retrieve the entire price history into the memory of your client!
This is what mysql\_store\_result()\index{mysql\_store\_result()} implies (APQ default). So the
application programmer will need to plan for this, when MySQL is used.
He will need to do one of the following:
\begin{itemize}
\item Cause mysql\_use\_result() to be used instead (change the APQ default),
and then fetch all of the rows, one by one.
\item Use the MySQL ``LIMIT 1''\index{LIMIT n} SQL extension to limit the results to
1 row.
\end{itemize}
The problem of course, is that this type of handling must only be
done for MySQL\index{MySQL} databases. Consequently, APQ also provides an API so
that the application may query which database is being used.
\section{The APQ Database Binding}
This software represents a binding\index{binding to objects} to objects and procedures that
enable the Ada95\index{Ada95}%
\footnote{Hereafter, we'll just refer to the language as Ada, even though the
version of the language implied is Ada95.%
} programmer to manipulate or query a relational database.\index{relational database} This document
describes the design principles and goals\index{goals of APQ} of this APQ binding. It
also supplies reference documentation\index{reference documentation} to the programmer, enabling
the reader to write applications using the PostgreSQL\index{PostgreSQL}, MySQL\index{MySQL}
or Sybase\index{Sybase} databases,
in the Ada programming language.
The APQ binding\index{binding} was initially developed using GNAT
3.13p\index{GNAT} under FreeBSD 4.4\index{FreeBSD} release.
APQ version 2.0 was developed using Debian\index{Debian Linux} Linux\index{Linux} and GNAT 3.14p. The
examples presented will be tested under the same development environments.
The source code avoids any use of GNAT\index{GNAT} specific language extensions\index{language extensions}.
The possible exception to this rule is that the gnatprep\index{gnatprep} tool may
be used to precompile\index{precompile} optional support of optional databases\index{optional databases}. There
is some C\index{C language} language source\index{source code} code used, to facilitate Ada\index{Ada} and database
C language library linkages.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Library & Database\\
\hline
libpq & PostgreSQL\\
libmysqlclient & MySQL\\
OCS-12\_5 & Sybase\\
\end{tabular}
\end{center}
\caption{Client Libraries}\label{t:ClientLib}
\end{table}
Table \ref{t:ClientLib}
lists the C language libraries\index{libraries, C} that are
used in addition to the APQ client\index{library, APQ client} library, while linking\index{linking} your
application:
GNAT specific features are avoided where possible. The exception
however, is the use of the GNAT\index{GNAT} specific pragma\index{pragma} statements of the form:
\index{Linker\_Options}
\begin{Code}
pragma Linker_Options("-lapq");
\end{Code}
is used for example, to save the programmer from having to specify
linking\index{linking} arguments. Therefore those using non-ACT\index{non-ACT} vendor
supplied Ada compilers\index{Ada compilers} might be able to compile and use this binding\index{binding}
without a huge investment.
A 32-bit\index{32-bit Windows} Windows library for APQ can be built for use with the PostgreSQL\index{PostgreSQL},
MySQL\index{MySQL} or Sybase\index{Sybase} DLL\index{DLL} client libraries. APQ release 2.1 included the
win32 build instructions necessary, but was omitted in the 2.0 release.
\subsection{General Features}
This binding\index{binding} supports all of the normal database functions that a
programmer would want to use. Additionally blob\index{blob} support
is included%
\footnote{For PostgreSQL only, at release 2.0.%
}, and implemented using the Ada streams\index{streams, Ada} interface\index{interface}.
This provides the programmer with the Ada convenience and safety of
the streams interface\index{streams interface} when working with blobs.
This binding includes the following general features:
\begin{enumerate}
\item Open and Close one or more concurrent database connections\index{connections}
\item Create and Execute one or more concurrent SQL queries\index{queries, concurrent} on a selected
database connection\index{connection, database}
\item Begin work\index{begin work}, Commit work\index{commit work} or Rollback work\index{rollback work}
\item Access error message\index{error messages} text
\item Generic functions and procedures to support specialized application
types
\item The NULL indicator\index{NULL indicator} is supported
\item Blob\index{blob} support using the Ada streams\index{streams, Ada} facility
\item A wide range of native\index{native types} and builtin\index{builtin data types} data types are supported
\item Database neutral API\index{neutral API, database} is now supported for most functions
\end{enumerate}
\subsection{Binding Type}
This library represents a thick Ada binding\index{thick binding} to the PostgreSQL C\index{C programmer} programmer's
libpq\index{libpq} library %
\footnote{C++ programs can also make use of this library but there exists the
library libpq++ for C++ native support.%
}, and with version 2.0, MySQL's\index{MySQL} C programming library. As a thick
binding, there are consequently Ada objects\index{objects, Ada} and data types that are
tailored specifically to the Ada programmer. Some data types and objects
exist to mirror those used in the C language, while others are provided
to make the binding easier or safer to apply.
A thin binding\index{thin binding} would have required the Ada programmer to be continually
dealing with C language\index{C language data types} data type issues. Conversions to and from
various types and pointers\index{pointers} would be necessary making the use of the
binding rather tedious. Furthermore, the resulting Ada\index{Ada} program would
be much harder to read and understand.
A thick binding\index{thick binding} introduces new objects and types in order to provide
an API to the programmer. This approach however, fully insulates the
Ada\index{Ada} programmer from interfacing with C programs\index{C programs}, pointers\index{pointers} and strings\index{strings}.
The design goal\index{design goal} has additionally been to keep the number of new objects
and types to a minimum. This has been done without sacrificing convenience
and safety\index{safety}. Readability\index{readability} of the resulting Ada\index{Ada} program was also considered
to be important.
The objects and data types involved in the use of this binding can
be classified into the following main groups:
\begin{enumerate}
\item Native\index{native data types} data types and objects
\item Database \index{database objects} manipulation objects
\item New database related objects and types for holding data
\end{enumerate}
Native data types need no explanation in this document. The database
manipulation objects will be described in
\Ref{Database_Objects:Section}.
The following section will introduce the Ada types\index{Ada types} that are used to
hold data.
\section{Binding Data Types}
The PostgreSQL\index{PostgreSQL} database supports many standard SQL\index{SQL data types} data types as well
as a few exotic ones. This section documents the database base types\index{data types, database}
that are supported by the Ada\index{Ada binding} binding to the database. This list is
expected to grow with time as the Ada binding continues to mature
in its own software development.
The ``Data Type Name'' column in the following table refers to
a binding type\index{binding type} if the type name is prefixed with ``APQ\_''%
\footnote{Formerly, the PostgreSQL specific types had used a PG\_ prefix.%
}. These data types were designed to mimic common database data types
in use. They can be used as they are provided, or you may subtype
from them or even derive new types from them in typical Ada\index{Ada} fashion.
All other data types are references to native Ada data types (for
some of these, the package where they are defined are shown in the
``Notes'' column).
The column labelled ``Root Type''\index{root types} documents the data type that
the APQ\_ data type was derived\index{derived} from. Where they represent an Ada\index{subtype, Ada}
subtype, the column ``Subtype'' indicates a ``Y''. For type
derivations a ``N'' is shown in this column, indicating that the
APQ\_ type \index{APQ\_ types} listed is made ``unique''.
\subsection{PostgreSQL Data Types\label{PostgreSQL SQL Data Types}}
The ``Notes'' column of Table \ref{t:pqtypes} provides PostgreSQL notes, package names\index{package names} and
PostgreSQL\index{data types, PostgreSQL} data type names where the name is given in all capitals.
\begin{longtable}{|l|c|c|l|}
\hline
Data Type Name & Root Type & Subtype & PostgreSQL Notes\\
\hline \hline
Row\_ID\_Type & - & N & Used for blobs and rows\\
\hline
String(<>) & - & - & Native Strings\\
\hline
String(a..b) & - & - & Fixed length strings\\
\hline
Unbounded\_String & - & - & Ada.Strings.Unbounded\\
\hline
Bounded\_String & - & - & Ada.Strings.Bounded\\
\hline
APQ\_Smallint & - & N & SMALLINT\\
\hline
APQ\_Integer & - & N & INTEGER\\
\hline
APQ\_Bigint & - & N & BIGINT\\
\hline
APQ\_Real & - & N & REAL\\
\hline
APQ\_Double & - & N & DOUBLE PRECISION\\
\hline
APQ\_Serial & - & N & SERIAL\\
\hline
APQ\_Bigserial & - & N & BIGSERIAL\\
\hline
APQ\_Boolean & Boolean & Y & BOOLEAN\\
\hline
APQ\_Date & Ada.Calendar.Time & Y & DATE\\
\hline
APQ\_Time & Ada.Calendar.Day\_Duration & Y & TIME\footnote{No timezone information}\\
\hline
APQ\_Timestamp & Ada.Calendar.Time & N & TIMESTAMP\footnote{No timezone information}\\
\hline
APQ\_Timezone & Integer & N & range -23..23\\
\hline
APQ\_Bitstring & - & N & BIT or BIT VARYING\\
\hline
Decimal\_Type & - & - & PostgreSQL.Decimal\\
\hline
range <> & - & - & Native Integers\\
\hline
delta <> & - & - & Native Fixed Point\\
\hline
digits <> & - & - & Native Floating Point\\
\hline
delta <> digits <> & - & - & Native Decimal\\
\hline
\caption{PostgreSQL Data Types}\label{t:pqtypes}
\end{longtable}
The data type shown as ``Decimal\_Type''\index{Decimal\_Type}
is special, in that it is supported from a child package APQ\-.PostgreSQL\-.Decimal\index{APQ.PostgreSQL.Decimal}.
It represents a tagged\index{tagged type} type that provides an interface to the C routines\index{C routines}
used by the PostgreSQL database server, for arbitrary precision decimal\index{precision, arbitrary}
values.
\subsection{MySQL Data Types\label{MySQL Data Types}}
Table \ref{t:mytypes} summarizes the MySQL\index{data types, MySQL} specific data types and the
corresponding APQ data types.
\begin{longtable}{|l|c|c|l|}
\hline
APQ Data Type & Ada Spec & Subtype & Comments\\
\hline
\hline
Row\_ID\_Type & unsigned 64 bits & N & For all databases\\
\hline
APQ\_Smallint & signed 16 bits & N & SMALLINT\\
\hline
APQ\_Integer & signed 32 bits & N & INTEGER\\
\hline
APQ\_Bigint & signed 64 bits & N & BIGINT\\
\hline
APQ\_Real & digits 6 & N & REAL\\
\hline
APQ\_Double & digits 15 & N & DOUBLE PRECISION\\
\hline
APQ\_Serial & range 1..2147483647 & N & \emph{INTEGER}\\
\hline
APQ\_Bigserial & range 1..2{*}{*}63 & N & \emph{BIGINT}\\
\hline
APQ\_Boolean & Boolean & Y & BOOLEAN\\
\hline
APQ\_Date & Ada.Calendar.Time & Y & DATE\\
\hline
APQ\_Time & Ada.Calendar.Day\_Duration & Y & TIME\\
\hline
APQ\_Timestamp & Ada.Calendar.Time & N & TIMESTAMP\\
\hline
APQ\_Timezone & range -23..23 & N & \emph{Not in MySQL}\\
\hline
APQ\_Bitstring & array(Positive) of APQ\_Boolean & N & \emph{Not in MySQL}\\
\hline
\caption{MySQL Data Types}\label{t:mytypes}
\end{longtable}
Notice the italicized SQL keywords\index{keywords, SQL} in the table. They identify the
SQL keywords that differ from PostgreSQL\index{PostgreSQL}. However, the programmer
only needs to be concerned with these SQL\index{keywords, SQL} keywords when creating new
tables or temporary tables. For example a column of type SERIAL\index{SERIAL} in
a PostgreSQL table, should be declared as a INTEGER\index{INTEGER} type in MySQL.
\section{Sybase Data Types}
The chart below outlines the mappings between APQ data types and Sybase
server data types\index{data types, Sybase}. The italicized SQL keywords
\index{keywords, SQL} in the table identify
the keywords that differ from PostgreSQL\index{PostgreSQL}. The following notes are
particular to Sybase\index{Sybase}:
\begin{itemize}
\item APQ\_Bigint is not completely range compatible with Sybase's \emph{NUMERIC}
\index{APQ\_Bigint}\index{NUMERIC}\index{DECIMAL}
(or \emph{DECIMAL}) server types. APQ\_Bigint will always accept Sybase server
values, but the server will not be able to accept the full APQ\_Bigint range of values.
To comply with the database server's range,
the application designer should use:
\end{itemize}
\index{Sybase\_Bigint}
\begin{Code}
subtype Sybase_Bigint is APQ_Bigint
range -10**38..10**38-1;
\end{Code}
\begin{itemize}
\item APQ\_Bigserial\index{APQ\_Bigserial} is not supported.
\item APQ\_Boolean\index{APQ\_Boolean} maps to Sybase's data type \emph{BIT.}
\item APQ\_Timezone\index{APQ\_Timezone} is not supported by any Sybase data type.
\item APQ\_Bitstring\index{APQ\_Bitstring} is not supported.
\end{itemize}
Table \ref{t:sytypes} lists the APQ types supported for Sybase.
\begin{longtable}{|l|c|c|l|}
\hline
APQ Data Type & Ada Spec & Subtype & Comments\\
\hline
\hline
Row\_ID\_Type & unsigned 64 bits & N & For all databases\\
\hline
APQ\_Smallint & signed 16 bits & N & SMALLINT\\
\hline
APQ\_Integer & signed 32 bits & N & INTEGER/INT\\
\hline
APQ\_Bigint & signed 64 bits ($-10^{38}..$$10^{38}\textrm{-1}$) & N & \emph{NUMERIC/DECIMAL}\\
\hline
APQ\_Real & digits 6 & N & REAL\\
\hline
APQ\_Double & digits 15 & N & DOUBLE PRECISION\\
\hline
APQ\_Serial & range 1..2147483647 & N & \emph{INTEGER}\\
\hline
APQ\_Bigserial & range 1..$2^{63}$ & N & ???\\
\hline
APQ\_Boolean & Boolean & Y & \emph{BIT}\\
\hline
APQ\_Date & Ada.Calendar.Time & Y & DATE\\
\hline
APQ\_Time & Ada.Calendar.Day\_Duration & Y & TIME\\
\hline
APQ\_Timestamp & Ada.Calendar.Time & N & \emph{DATETIME}\\
\hline
APQ\_Timezone & range -23..23 & N & \emph{Not in Sybase}\\
\hline
APQ\_Bitstring & array(Positive) of APQ\_Boolean & N & \emph{Not in Sybase}\\
\hline
\caption{Sybase Data Types}\label{t:sytypes}
\end{longtable}
\section{Database Objects\label{Database_Objects:Section}}
Much of the binding between Ada\index{Ada} and the database server is provided
through the use of tagged\index{tagged record} record types. Presently the APQ binding
operates through three object types\index{object types, APQ} listed in Table \ref{t:APQObj}.
\begin{table}
\begin{center}
\begin{tabular}{lll}
Derived From & Object Type & Purpose\\
\hline
Root\_Connection\_Type & Connection\_Type & Database connection\\
Root\_Query\_Type & Query\_Type & SQL interface\\
N/A & Blob\_Type & Blob operations\\
\end{tabular}
\end{center}
\caption{APQ Object Types}\label{t:APQObj}
\end{table}
The APQ objects from Table \ref{t:APQObj} are described more fully as follows:
\begin{description}
\item[Connection\_Type] object is used with Query\_Type and Blob\_Type objects
to perform SQL queries and blob operations respectively. This object
maintains the connection to the database server.
\item[Query\_Type] objects are used with one Connection\_Type object
to perform SQL query operations. This object holds the text of the
SQL query, some query state and result information. To execute a
query, it must be used in conjunction with a Connection\_Type object.
\item[Blob\_Type] objects are used with one Connection\_Type object to
perform blob operations. This is currently only supported for PostgreSQL
by APQ. All blob operations must occur within a transaction.
\end{description}
\begin{floatingtable}{
\begin{tabular}{lc}
Object & Finalized \\
\hline
Connection\_Type & Yes \\
Query\_Type & Yes \\
Blob\_Type & No \\
\end{tabular}}
\caption{Object Finalization Behavior}\label{t:Finalization}
\end{floatingtable}
Table \ref{t:Finalization} lists the three APQ objects and their finalization
behaviour.
While the Connection\_Type\index{Connection\_Type}
and Query\_Type\index{Query\_Type} objects are subject to
finalization, the Blob\_Type\index{Blob\_Type} is not.
This is because it represents an access type to
a Blob\_Object. This is similar in concept to an open a file, using
the File\_Type data type. This design approach was necessary
to support Ada\index{Ada} Streams\index{streams, Ada} oriented access for blobs.
\subsection{Object Hierarchy}
Before multiple database products were supported, the APQ object hierarchy\index{hierarchy}
was simple. To provide generic level support however, there are now
root\index{root objects} objects and derived objects\index{derived objects}. In most programming
contexts, the application writer does not need to be concerned with this fact.
However, if you frequently inspect the spec files\index{spec files} instead of the documentation\index{documentation},
you must be aware that primitives\index{primitives} for a given object may be declared
in multiple places. Examine Table \ref{t:pkghier} to review the APQ package hierarchy.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Package Name & Description \\
\hline
APQ & Root objects and primitives \\
APQ.PostgreSQL & Declarations and constants unique to PostgreSQL \\
APQ.PostgreSQL.Client & Derived objects and added primitives \\
APQ.MySQL & Declarations and constants unique to MySQL \\
APQ.MySQL.Client & Derived objects and added primitives \\
APQ.Sybase & Declarations and constants unique to Sybase \\
APQ.Sybase.Client & Derived objects and added primitves for Sybase \\
\end{tabular}
\end{center}
\caption{APQ Package Hierarchy}\label{t:pkghier}
\end{table}
Table \ref{t:pkghier} illustrates that support for a given database is derived\index{derived}
from the APQ top level\index{top level package} package. Root objects\index{root level} are declared in APQ,
with common functionality. Some primitives must be overridden\index{overridden} by the
derived object in database specific packages. For example, APQ.Root\_Query\_Type
declares a primitive named Value (\emph{APQ.Value)} to return a string
column result. If this particular method is called, the exception
\emph{Is\_Abstract}\index{Is\_Abstract} will be raised to indicate that it must be overriden
with code to handle the specific database being used. Normally the
user would invoke APQ\-.MySQL\-.Client\-.Value when using the MySQL\index{MySQL} database,
for example. The programmer normally need not be aware of these details,
since object dispatching\index{dispatching} takes care of these details.
For this reason, the APQ\-.MySQL\-.Query\_Type object for example, is
derived from the APQ\-.Root\_Query\_Type\index{Root\_Query\_Type} object. This Query\_Type\index{Query\_Type} object
will provide its own implementation of the Value\index{Value} function to return
a column result, and will work as required.
Consequently, when looking for primitives\index{primitives} available to the Query\_Type
object, don't forget that many common primitives\index{common primitives} will be inherited\index{inherited}
from the APQ\-.Root\-\_Query\-\_Type object. The same is true for Connection\-\_Type\index{Connection\_Type}
objects. A number of common primitives are inherited from the APQ\-.Root\_Connection\_Type
object.
\chapter{Connecting to the Database}
Before any useful work can be accomplished by a database client program,
a connection must be established between the Ada program and the database
server. This chapter will demonstrate how to use the APQ binding\index{binding} to
enable a program to connect\index{connect} and disconnect\index{disconnect}
from the database server.
\section{The Connection\_Type}
The Connection\_Type\index{Connection\_Type} object holds everything that is needed to maintain
a connection\index{connection} to the database server. There are seven groups of primitive\index{primitive}
operations for this object:
\begin{enumerate}
\item Context\index{Context} setting operations
\item Connection\index{Connection} operations
\item Connection Information functions\index{information functions}
\item General Information operations
\item Implicit operations (Finalization\index{Finalization})
\item Trace Facilities\index{trace facilities}
\item Generic Database Operations
\end{enumerate}
\section{Context Setting Operations}\label{Context_Setting_Operations}
These primitives ``configure''\index{configure} the connection\index{connection} that is
to be made later. When the object is initially created, it is in the
disconnected\index{disconnected state} state. While disconnected, configuration changes can be
made in to affect the next connection attempt. With the exception of the
database name\index{database name}, the application should not make configuration\index{configuration} changes
while the object is in the connected state\index{connected state}.
\footnote{This is not yet enforced by APQ.}
The configuration primitives\index{primitives} are listed in Table \ref{t:ctxops}.
\footnote{The items marked ``Root'' are primitives from APQ.Root\_Query\_Type.
The items marked {}``Derived'' are those overrides that are declared
on the APQ.{*}.Query\_Type object.}
\begin{table}
\begin{center}
\begin{tabular}{ccll}
Type & Derivation & Name & Purpose \\
\hline
proc & Root & Set\_Host\_Name & Set server host name \\
proc & Root & Set\_Host\_Address & Set server host IP address \\
proc & Root & Set\_Port & Set server port number \\
proc & Root & Set\_DB\_Name & Set database name \\
proc & Root & Set\_User\_Password & Set userid and password \\
proc & Root & Set\_Instance & Set instance name to use \\
proc & Root & Set\_Options & Set userid and password \\
\end{tabular}
\end{center}
\caption{Context Setting Primitives}\label{t:ctxops}
\end{table}
It would be nice if all database software products worked the same
way but the reality is very different. Table \ref{t:ctxdiffs} indicates how
the primitives apply by database product.\label{Set_Instance Support Chart}
In the table you can see that PostgreSQL\index{PostgreSQL} and MySQL\index{MySQL} establish their
connection by specifying the host, port and database name. Sybase
on the other hand, specifies this information in their \emph{interface}
file. To access the appropriate Sybase\index{Sybase interface entry} interface entry requires only
the \emph{instance}\index{instance} information supplied by the Set\_Instance\index{Set\_Instance} call.
\begin{table}
\begin{center}
\begin{tabular}{lccc}
Primitive & PostgreSQL & MySQL & Sybase \\
\hline
Set\_Host\_Name & Yes & Yes & Ignored \\
Set\_Host\_Address & Yes & Yes & Ignored \\
Set\_Port & Yes & Yes & Ignored \\
Set\_DB\_Name & Yes & Yes & See Note %
\footnote{Set\_DB\_Name is useful after the connection is made.}\\
Set\_User\_Password & Yes & Yes & Yes \\
Set\_Instance & No & No & Yes \\
Set\_Options & Yes & Yes & Yes \\
\end{tabular}
\end{center}
\caption{Context Setting Differences}\label{t:ctxdiffs}
\end{table}
\subsection{PostgreSQL Defaults}
The PostgreSQL database defines certain environment\index{environment, PostgreSQL} variables that
can specify defaults. These and the fallback\index{fallback values} values are documented
in Table \ref{t:pqdef}.
\begin{table}
\begin{center}
\begin{tabular}{cclll}
Type & Derivation & Name & Default & Fallback \\
\hline
proc & Root & Set\_Host\_Name & PGHOST & localhost\\
proc & Root & Set\_Host\_Address & PGHOST & localhost\\
proc & Root & Set\_Port & PGPORT & 5432\\
proc & Root & Set\_DB\_Name & PGDATABASE & LOGNAME\\
proc & Root & Set\_User\_Password &
\begin{tabular}{l}
PGUSER\\
PGPASSWORD\\
\end{tabular}
& LOGNAME\\
proc & Root & Set\_Options & PGOPTIONS & ""\\
\end{tabular}
\end{center}
\caption{PostgreSQL Context Defaults}\label{t:pqdef}
\end{table}
The capitalized names in the table for the ``Default'' and ``Fallback''
columns represent environment\index{environment} variable names.
When any of the environment\index{environment variables} variables are undefined in the ``Default''
column, the value used is determined by the ``Fallback'' value
listed. The fallback\index{fallback} variable name LOGNAME\index{LOGNAME}
is simply used to represent the current user's userid\index{userid}.%
\footnote{The PostgreSQL libpq library may in fact, completely ignore the LOGNAME
environment variable, and simply look up the userid in the /etc/password
file.%
} When no password\index{password} value is provided and no PGPASSWORD\index{PGPASSWORD}
environment variable exists, then no password is assumed.
\subsection{Procedure Set\_Host\_Name}
The Set\_Host\_Name\index{Set\_Host\_Name} procedure accepts the following arguments
\begin{Code}
procedure Set_Host_Name(
C : in out Connection_Type;
Host_Name : in String
);
\end{Code}
The following example configures the Connection\_Type object to connect
to host\index{host name} ``witherspoon'':
\begin{Example}
declare
C : Connection_Type;
begin
Set_Host_Name(C,"witherspoon");
\end{Example}
\begin{description}
\item [Note:]Sybase ignores this API call.
\end{description}
\subsection{Procedure Set\_Host\_Address}
The procedure takes two arguments, in the same fashion as Set\_Host\_Name\index{Set\_Host\_Address}:
\begin{Code}
procedure Set_Host_Address(
C : in out Connection_Type;
Host_Address : in String
);
\end{Code}
The following example configures the Connection\_Type object to connect
to IP address\index{IP address} 10.0.0.7:
\begin{Example}
declare
C : Connection_Type;
begin
Set_Host_Address(C,"10.0.0.7");
\end{Example}
\begin{description}
\item [Note:]Sybase ignores this API call.
\end{description}
\subsection{Procedure Set\_Port (IP)}
This procedure configures the port\index{port} where the database
server\index{server} is listening\index{listening} (when using TCP/IP\index{TCP/IP}
as the transport\index{transport}):
\begin{Code}
procedure Set_Port(
C : in out Connection_Type;
Port_Number : in Integer
);
\end{Code}
\begin{floatingtable}{
\begin{tabular}{ccc}
Database & Default & Port\\
\hline
PostgreSQL & IP & 5432\\
MySQL & UNIX & ?\\
Sybase & N/A & Ignored\\
\end{tabular}}
\caption{Default Database Connections}\label{t:defdb}
\end{floatingtable}
Table \ref{t:defdb} shows the connection defaults by database product. Some of these
are influenced by APQ. For example, APQ defaults to using a TCP/IP connection for the
PostgreSQL standard port of 5432.
The next example
shows how the port\index{port} number is configured.
The example configures APQ to use TCP/IP
port number 5432\index{port 5432} to connect to
a PostgreSQL database.
\begin{Example}
declare
C : Connection_Type;
begin
Set_Port(C,5432);
\end{Example}
\begin{description}
\item [Note:]Sybase ignores this API call.
\end{description}
\subsection{Procedure Set\_Port (UNIX)}
To create a local UNIX socket connection to the database, there is
an overloaded version of Set\_Port\index{Set\_Port} that accepts a string\index{string} parameter
instead of an integer\index{port, integer} port number.
\begin{Code}
procedure Set_Port(
C : in out Connection_Type;
Port_Number : in String
);
\end{Code}
Specify a null string\index{null string} for the connection\index{connection}
to use the local\index{local socket} UNIX\index{UNIX socket} socket default.
This parameter has changed somewhat as PostgreSQL\index{PostgreSQL} evolves. If you
are experiencing trouble getting a UNIX\index{UNIX socket} socket connection to work,
check the database documentation for PostgreSQL carefully. The following
example has been tested to work on PostgreSQL version 7.3.5.
\begin{Example}
declare
C : Connection_Type;
begin
Set_Port(C,"5432");
\end{Example}
See the troubleshooting chapter for tips.
\subsection{Procedure Set\_DB\_Name}
This procedure call configures the name of the database that the server
is to use \emph{prior} to the connection being established. Once
the connection has been established, calling Set\_DB\_Name\index{Set\_DB\_Name} switches the
connection\index{connection} to use the named database.
The calling signature for this primitive is as follows:
\begin{Code}
procedure Set_DB_Name(
C : in out Connection_Type;
DB_Name : in String
);
\end{Code}
The following code fragment shows how the database name\index{database name} is configured
to be ``production'':
\begin{Example}
declare
C : Connection_Type;
begin
Set_DB_Name(C,"production");
\end{Example}
The Set\_DB\_Name \emph{always} acts as a configuration setting \emph{prior}
to connecting to the database server. Calling Set\_DB\_Name on a Connection\_Type\index{Connection\_Type}
object that has an open server connection to the database, can result
in hidden SQL commands for some databases.%
\footnote{For PostgreSQL and Sybase, a USE <database> command must be executed.%
} Table \ref{t:setdb} summarizes the behaviour according to database product.
\begin{table}
\begin{center}
\begin{tabular}{llll}
Database Vendor & Before Connecting & While Connecting & After Connected\\
\hline
PostgreSQL & Configuration & uses config & ``USE'' Executed\\
MySQL & Configuration & uses config. & MySQL Client Call\\
Sybase & Pending SQL & ``USE'' executed & ``USE'' Executed\\
\end{tabular}
\end{center}
\caption{Set\_DB\_Name Behaviour}\label{t:setdb}
\end{table}
From the table you can see that PostgreSQL\index{PostgreSQL} and MySQL\index{MySQL} configure the
database prior to connecting\index{connecting} (connecting also establishes the database
to be used). When Set\_\-DB\_\-Name is called after a connection has been
established, the database server will switch\index{switch database} to the requested database.
For some databases, this happens through the native\index{native client API} client API library\index{library}
(MySQL), but for others, a ``USE~<database>''\index{USE database} SQL\index{SQL} command must
be executed (internally within APQ).
\begin{floatingtable}{
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Use\_Error & Unsuccessful doing a ``USE <database>''\\
\end{tabular}}
\caption{Set\_DB\_Name Exceptions}\label{t:sdbx}
\end{floatingtable}
Sybase\index{Sybase} is different again, because does not establish the database
at connect time\index{connect time} (Sybase will use the configured default database).
So a call to Set\_DB\_Name will queue a ``USE <database>''\index{USE database} SQL\index{SQL}
statement, to be executed by APQ, once the connection succeeds. If
another Set\_DB\_Name is performed while connected, new ``USE <database>''
SQL statements are executed on the Sybase server\index{Sybase server} connection provided.
The exceptions listed in Table \ref{t:sdbx}\index{exception} are possible when
using a new database name.
The case of the database name used is affected according to the case policy\index{case policy}
that is in effect for the connection\index{connection}. This is summarized in Table \ref{t:cpol}
for each database vendor product.
\begin{table}
\begin{center}
\begin{tabular}{llll}
Database Product & Case Policy & Effect on DB\_Name & DB Name Sensitive\\
\hline
PostgreSQL & Ignored & Case preserved & Yes\\
MySQL & Ignored & Case preserved & Yes\\
Sybase & Ignored & Case preserved & Yes\\
\end{tabular}
\end{center}
\caption{Case Policy by Product}\label{t:cpol}
\end{table}
\subsection{Procedure Set\_User\_Password}
This procedure call configures both the userid\index{userid} and the password\index{password} together.
If there is no password, then supply the null string\index{null string}:
\begin{Code}
procedure Set_User_Password(
C : in out Connection_Type;
User_Name : in String;
User_Password : in String
);
\end{Code}
The following code fragment illustrates how the userid and
password is configured:
\begin{Example}
declare
C : Connection_Type;
begin
Set_User_Password(C,"myuserid","xyzzy");
\end{Example}
\subsection{Procedure Set\_Case}
One of the goals of APQ was to make writing of portable database\index{portable database code} code
possible. While this isn't completely possible, the goal remains to
reduce database differences. Until the introduction of Sybase\index{Sybase} within
APQ, there was little concern for the case of SQL query\index{SQL query code} code used.
This APQ manual has always used examples where SQL code is uppercased\index{uppercased SQL code},
with Ada\index{Ada} code using normal Ada95\index{Ada95} conventions. This helps to make the
SQ\index{SQL}L code standout, and separate it from the other code. Sybase introduces
a problem however, since the Sybase server is case sensitive\index{case sensitive} when
referring to tables\index{tables} and column\index{column names} names. This feature cannot be disabled
for a Sybase server%
\footnote{MySQL databases can be configured to be caseless or case sensitive.%
}. Since users of Sybase\index{Sybase} tend to use lowercase\index{lowercase names} names, this creates
a bit of a problem for portable\index{portable SQL} SQL text within APQ.
The approach that APQ 2.2 uses for Sybase\index{Sybase} (and future databases where
this matters), all SQL\index{SQL} code is changed to lowercase\index{lowercase} before being
sent to the server. Before the reader panics thinking that this won't
work, it should be made clear that APQ does not change the case\index{case of SQL} of
any string\index{string} that is quoted\index{quoted} (using the Append\_Quoted\index{Append\_Quoted} functions for
example). A WHERE\index{WHERE clause} clause such as the following will preserve the text
within quotes\index{quotes}:
\begin{SQL}
where part_no = "XZ98-307"
\end{SQL}
APQ keeps track of what parts of the SQL\index{SQL query} query were quoted\index{quoted} and which
parts were not. This is \emph{not} done by parsing\index{parsing} the SQL text. That
would be prone to error and would require intimate knowledge of every
SQL dialect supported in APQ. Instead, the string\index{string} fragments are marked
for ``preserve''\index{preserve case} case or ``not preserve''\index{preserved, not} as the Query\_Type\index{Query\_Type}
object collects text. When the full SQL text\index{SQL text} is require by a routine
like To\_String\index{To\_String}, then the standing case policy\index{case policy} is applied to each
string\index{string fragment} fragment that has ``not preserve''\index{preserved, not}.
You can change this APQ case policy\index{case policy} for Sybase (or any other database).
The Set\_Case\index{Set\_Case} function gives you complete control over what the policy
to use for SQL case\index{SQL case}. You can choose one of the SQL\_Case\_Type\label{SQL_Case_Type Choices}
\index{SQL\_Case\_Type} options, which are listed in Table~\ref{t:cpolicies}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Case Policy & Description\\
\hline
Preserve\_Case & Do not make any case changes to the SQL text\\
Lower\_Case & Force unquoted SQL text to lowercase\\
Upper\_Case & Force unquoted SQL text to uppercase\\
\end{tabular}
\end{center}
\caption{Case Policies for SQL Text}\label{t:cpolicies}
\end{table}
\begin{floatingtable}{
\begin{tabular}{ll}
Database & Default SQL Case Policy\\
\hline
PostgreSQL & Upper\_Case\\
MySQL & Lower\_Case\\
Sybase & Lower\_Case\\
\end{tabular}}
\caption{Default Case Policies}\label{t:dfcpol}
\end{floatingtable}
Table~\ref{t:dfcpol} summarizes the default case policies\index{case policies} used in APQ 2.2
for the different database vendor products supported.
MySQL\index{MySQL} joins Sybase\index{Sybase} in this case policy because by default, MySQL is
case sensitive. If you have configured your MySQL server to be case
insenstive, then any setting will do (Upper\_Case\index{Upper\_Case} is suggested for
the benefit of the trace log displays). Most users of Sybase\index{Sybase} will
likely prefer either the Lower\_Case\index{Lower\_Case} or Preserve\_Case\index{Preserve\_Case}
policies instead.
The Set\_Case\index{Set\_Case} API procedure for the Connection\_Type object is defined
as follows:
\begin{Code}
procedure Set_Case(
C : in out Connection_Type;
SQL_Case : in SQL_Case_Type
);
\end{Code}
You may also use the Get\_Case\index{Get\_Case} function primitive to find out what
the current policy in effect is. Please note that a change in policy
only affects the outcome of the next call to the following
pimitives of the Query\_Type\index{Query\_Type} object:
\begin{itemize}
\item To\_String
\item Execute
\item Execute\_Checked
\end{itemize}
The Set\_Case\index{Set\_Case} call will not actually change the SQL text\index{SQL text} stored within
the Query\_Type object. It only sets the policy\index{case policy} mode.
The following example shows how to undo the Sybase default of lowercasing
the SQL text:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
...
Set_Case(C,Preserve_Case);
...
Append(Q,"from table Mixed_Case");
Execute(Q,C); -- SQL case is preserved here
\end{Example}
\subsubsection{The Viral Nature of Connection\_Type}
Note that APQ does permit altering the case policy\index{case policy} for Query\_Type\index{Query\_Type}
objects in addition to the Connection\_Type\index{Connection\_Type} object being described
here. It should be noted however, that the setting held by the Connection\_Type
is viral\index{viral nature} in nature. Whenever a Query\_Type object is used in conjunction
with a Connection\_Type object, in a \emph{Execute}\index{Execute}
or \emph{Execute\_Checked}\index{Execute\_Checked}
call for example, the Query\_Type object will inherit the setting
held by the corresponding Connection\_Type object. For this reason,
the best application practice is to establish your application case
policy\index{case policy} in all Connection\_Type objects used by your application. It
is also best practice to use one Connection\_Type object wherever
possible, since many queries can share one connection\index{shared connection}.
The only reason you should consider applying a case policy\index{case policy} directly
to a Query\_Object, is perhaps for application specific uses of the
SQL text\index{SQL text}. For example, you could build a query\index{query, build a} in a Query\_Type object,
set the case policy to Upper\_Case\index{Upper\_Case}, and then use the To\_String\index{To\_String} function
primitive to extract out the SQL text for logging\index{logging} or user display\index{display}
purposes. Once however the Query\_Type is used with a Connection\_Type
however, (in \emph{Execute}) the Connection\_Type's setting will not
only prevail for the primitive, but will also force the Query\_Type's
policy to agree upon return from the call.
\subsection{Procedure Set\_Options\label{Procedure Set_Options}}
This procedure call permits the caller to specify any specialized
database server options. The options are specified in string form
with this API call. The specific options, and the format\index{format} of those
options\index{options} will vary according to the database being used. See the following
subsections for additional information about the database engine\index{engine, database} specifics.
The procedure Set\_Options\index{Set\_Options} is documented as follows:
\begin{Code}
procedure Set_Options(
C : in out Connection_Type;
Options : in String
);
\end{Code}
Exceptions\index{exceptions} can be raised if the options are being set on a connection
that is already connected. Table \ref{t:soopts} lists the exceptions that may be
raised by Set\_Options.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Failed & The option is either unsupported or setting was rejected\\
\end{tabular}
\end{center}
\caption{Set\_Options Exceptions}\label{t:soopts}
\end{table}
If the options are configured for an unconnected\index{unconnected} Connection\_Type
object, the exceptions if any, will be raised at the time of connection
(See the Connect primitive).
The following PostgreSQL\index{PostgreSQL} code fragment illustrates how two options\index{options}
may be configured:
\begin{Example}
declare
C : Connection_Type;
begin
Set_Options(C,"requiressl=1 dbname=test");
\end{Example}
Note that in this example, the option string has been used to declare
the database name to be used. Standard values should be set through
the primitive functions provided (ie. use Set\_DB\_Name\index{Set\_DB\_Name} instead).
Otherwise, when information primitives are added, you may not get
correct results. Any non-standard options like the ``requiressl''\index{requiressl}
option, should be configured as shown in this procedure call.
MySQL\index{MySQL} and Sybase\index{Sybase}, use a comma delimited list\index{delimited list} of options\index{options}.
The following example shows how to get Sybase I/O\index{statistics, Sybase I/O}
and time statistics\index{statistics, time} recorded in your APQ trace\index{trace log} log:
\begin{Example}
declare
C : Connection_Type;
begin
Set_Options(C,"STATS_IO=TRUE,STATS_TIME=TRUE");
\end{Example}
Option parsing\index{parsing} is rather limited. Everything between the '=' sign
and the next comma is the value for the parameter. Different database
products will use different parameter types\index{paramater types}. For example, MySQL\index{MySQL} will
use 0 to represent False\index{false}, and 1 to represent True\index{true}. For Sybase\index{Sybase}, use
F or False, and T or True for Boolean\index{Boolean} values.
\subsubsection{PostgreSQL Options}
The documentation is not very clear about the format\index{format} of these options,
but it appears that keyword=value\index{keyword value pairs} pairs\index{keyword=value pairs}
separated by \emph{spaces} for multiple options\index{options} are
accepted. If you must include spaces or other special characters within
the value component, then you must follow PostgreSQL\index{PostgreSQL} escaping rules\index{escaping rules}.
Refer to the database server documentation for these details.
\subsubsection{MySQL Options}
MySQL's\index{MySQL} C interface\index{C interface} is much different than PostgreSQL's C interface
for options. MySQL uses an enumerated value\index{enumerated value} and argument pair\index{argument pair} when
setting an option\index{option}.%
\footnote{Although, some options do not use the argument.%
} To keep the APQ interface friendly and consistent, APQ will accept
all options and arguments in a string\index{string} form as documented in
\Ref{Procedure Set_Options}. However, these string options\index{string options} must be
processed by APQ and digested into arguments usable by the MySQL C
client interface. Consequently, APQ must anticipate these options
and the option format in advance. For these reasons, the MySQL options
and their arguments will be partially documented here.
The format\index{format of option string} of the option string should be one or more option names
and arguments, separated by commas. Option names\index{option names} are treated as caseless\index{caseless}
(internally upcased\index{upcased}).
\begin{Example}
Set\_Options(C,"CONNECT_TIMEOUT=3,COMPRESS,LOCAL_INFIL=1");
\end{Example}
Each option should be separated by a comma. APQ processes each option
in left to right fashion, making multiple MySQL C API calls for each
one. Table~\ref{t:myopts} lists the APQ supported options for MySQL.
\begin{table}
\begin{center}
\begin{tabular}{lll}
Option Name & Argument Type & Comments\\
\hline
CONNECT\_TIMEOUT & Unsigned & Seconds\\
COMPRESS & None & Compressed comm link\\
NAMED\_PIPE & None & Windows: use a named pipe\\
INIT\_COMMAND & String & Initialization command\\
READ\_DEFAULT\_FILE & String & See MySQL\\
READ\_DEFAULT\_GROUP & String & See MySQL\\
SET\_CHARSET\_DIR & String & See MySQL\\
SET\_CHARSET\_NAME & String & See MySQL\\
LOCAL\_INFIL & Boolean & See MySQL\\
\end{tabular}
\end{center}
\caption{MySQL Options}\label{t:myopts}
\end{table}
It is important to observe that any option that requires an argument\index{argument, option},
must have one. Any argument that requires an unsigned integer\index{unsigned}, must
have an unsigned integer (otherwise an exception\index{exception} is raised). A MySQL\index{MySQL}
Boolean\index{Boolean} argument should be the value 0 or 1. At the present time,
APQ gathers string\index{string} data up until the next comma or the end of the
string. Currently an option argument string cannot contain a comma
character.
\footnote{This needs to be corrected in a future release of APQ.}
\subsubsection{Sybase Options}
Sybase documents several options\index{options, Sybase} in their ``Open Client C Programmer's
Reference'' manual. All documented options are made available to
the APQ developer, although some options are not recommended.
\begin{floatingtable}{
\begin{tabular}{ll}
Option Value & Meaning\\
\hline
TRUE & True\\
T & True\\
FALSE & False\\
F & False\\
\end{tabular}}
\caption{Boolean Option Values}\label{t:boolarg}
\end{floatingtable}
Each Sybase option value must conform to certain data type format\index{format, option}
and/or restrictions. Table~\ref{t:boolarg} lists
acceptable argument values for Boolean\index{Boolean} options, within APQ. The
case is not significant, but uppercase is recommended to make it stand out from
the surrounding Ada code.
The following is an example of a Boolean option setting for the Sybase option STATS\_IO:
\begin{Example}
"STATS_IO=TRUE"
\end{Example}
Some Sybase options require an integer\index{unsigned integer} (actually unsigned). Those
options listed in the option table\index{option table} as requiring an Unsigned value,
should be simply an unsigned value. The following is an example:
\begin{Example}
"ROWCOUNT=1"
\end{Example}
String value arguments\index{string value arguments} are simply textual values that are placed between
the equal sign and the next comma (or end of string). The following
example illustrates:
\begin{Example}
"AUTHOFF=sa"
\end{Example}
Some options are identified as taking ``String/NULL''. These options
will take normal string values or simply the word NULL\index{NULL options}. The value
NULL allows the system default to be used. The following is an example:
\begin{Example}
"CHARSET=NULL"
\end{Example}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Value & Sybase Option\\
\hline
SUNDAY & CS\_OPT\_SUNDAY\\
MONDAY & CS\_OPT\_MONDAY\\
TUESDAY & CS\_OPT\_TUESDAY\\
WEDNESDAY & CS\_OPT\_WEDNESDAY\\
THURSDAY & CS\_OPT\_THURSDAY\\
FRIDAY & CS\_OPT\_FRIDAY\\
SATURDAY & CS\_OPT\_SATURDAY\\
\end{tabular}
\end{center}
\caption{Weekday Option Argument Values}\label{t:wkday}
\end{table}
The DATEFIRST option\index{DATEFIRST option} accepts an argument Weekday argument. The valid
range of values are listed in Table~\ref{t:wkday}.
The following example shows how the DATEFIRST option is used:
\begin{Example}
"DATEFIRST=SUNDAY"
\end{Example}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Value & Sybase Option\\
\hline
MDY & CS\_OPT\_FMTMDY\\
DMY & CS\_OPT\_FMTDMY\\
YMD & CS\_OPT\_FMTYMD\\
YDM & CS\_OPT\_FMTYDM\\
MYD & CS\_OPT\_FMTMYD\\
DYM & CS\_OPT\_FMTDYM\\
\end{tabular}
\end{center}
\caption{Date Format Argument Values}\label{t:dtfmt}
\end{table}
One last category of Sybase option arguments is the DATEFORMAT argument\index{DATEFORMAT option}
type. The valid list of values for this type of argument are given in Table~\ref{t:dtfmt}.
The following is an example of such an option:
\begin{Example}
"DATEFORMAT=YMD"
\end{Example}
Table~\ref{t:syonames} lists all of the options that APQ is able to recognize for Sybase.
Each of the option names\index{option names} listed is equivalent to the
Sybase C macro\index{C macro, Sybase}
constant if the prefix CS\_OPT\_\index{CS\_OPT\_{*}} is added to the option name. Consult
the Sybase documentation for descriptions of the purpose of these
options and when to apply them.
\begin{longtable}{lll}
Option Name & Data Type & Notes\\
\hline
ANSINULL & Boolean &\\
ANSIPERM & Boolean &\\
ARITHABORT & Boolean &\\
ARITHIGNORE & Boolean &\\
AUTHOFF & String &\\
AUTHON & String &\\
CHAINXACTS & Boolean &\\
CHARSET & String/NULL & Use NULL for default\\
CURCLOSEONXACT & Boolean &\\
DATEFIRST & Weekday &\\
DATEFORMAT & YMD/MDY/etc. & May interfere with APQ\\
FIPSFLAG & Boolean &\\
FORCEPLAN & Boolean &\\
FORMATONLY & Boolean &\\
GETDATA & Boolean &\\
IDENTITYOFF & String &\\
IDENTITYON & String &\\
IDENTITYUPD\_OFF & String &\\
IDENTITYUPD\_ON & String &\\
ISOLATION & Unsigned & 0, 1 or 3\\
NATLANG & String/NULL & Use NULL for default\\
NOCOUNT & Boolean &\\
NOEXEC & Boolean &\\
PARSEONLY & Boolean &\\
QUOTED\_IDENT & Boolean &\\
RESTREES & Boolean &\\
ROWCOUNT & Unsigned &\\
SHOWPLAN & Boolean & Use at your own risk\\
STATS\_IO & Boolean &\\
STATS\_TIME & Boolean &\\
STR\_RTRUNC & Boolean &\\
TEXTSIZE & Unsigned &\\
TRUNCIGNORE & Boolean &\\
\caption{Sybase Option Names}\label{t:syonames}
\end{longtable}
Keep in mind that not all option settings will be compatible for use
with APQ. Changing server date formats\index{date formats} to anything other than year-month-day
format, is likely to cause problems within APQ, for example.
\subsection{Procedure Set\_Notice\_Proc}
The PostgreSQL\index{PostgreSQL} database
\footnote{The Set\_Notice\_Proc procedure is not available with MySQL.}
server sends notice\index{notice messages} messages back to the libpq\index{libpq} C library\index{library}, that the
APQ binding uses. These are received by a callback\index{callback}, after certain
database operations have been completed. While the messages are saved
in the Connection\_Type object (see also \Ref{Function Notice_Message}),
they overwrite each other as each new message comes in. For this reason,
it may be desireable for some applications to also receive a callback,
so that they can process the messages without losing them. The most
common reason to do this is to simply display them on standard error\index{standard error}.
The callback\index{callback}\index{Set\_Notice\_Proc} procedure must be defined as follows:
\marginpar{The default setting for any new Connection\_Type object is No\_Notify.}
\begin{Code}
procedure Notice_Callback(
C : in out Connection_Type;
Message : in String
);
\end{Code}
The Set\_Notice\_Proc takes an argument named Notify\_Proc\index{Notify\_Proc} that is
of the following type:
\begin{Code}
type Notify_Proc_Type is access
procedure(
C : in out Connection_Type;
Message : in String
);
\end{Code}
Finally, the Set\_Notice\_Proc procedure has the following calling signature:
\marginpar{Note that the Reset or Disconnect call will clear any
registered Notify procedure.}
\begin{Code}
procedure Set_Notice_Proc(
C : in out Connection_Type;
Notify_Proc : in Notify_Proc_Type
);
\end{Code}
This call can be made at any time to change the Notify\index{notify procedure} procedure.
The object may or may not be connected\index{connected}. The new procedure takes effect
immediately upon return, and will be used when the object is connected.
The present implementation only maintains one such procedure.%
\footnote{Note that the replaced procedure is not returned. A future implementation
of APQ may address this.%
}
\subsubsection{Disabling Notify}
The APQ\-.PostgreSQL\-.Client\index{APQ\-.PostgreSQL\-.Client} package
provides the special constant No\_Notify\index{No\_Notify}
for the application programmer to use. An example of disabling notification\index{disabling notification}
follows:
\begin{Example}
declare
C : Connection_Type;
begin
...
-- Enable notify processing
Set_Notify_Proc(C,My_Notify'Access);
...
-- Disable notification
Set_Notify_Proc(C,No_Notify);
\end{Example}
\subsubsection{Using Standard\_Error\_Notify}
During the debugging\index{debugging} phase of a database application, it may be useful
to simply have the notice messages\index{notice messages} printed on Standard\_Error\index{Standard\_Error}. To
do this, simply provide the access constant Standard\_Error\_Notify\index{Standard\_Error\_Notify}
as the second argument:
\begin{Example}
declare
C : Connection_Type;
begin
...
-- Send notices to stderr
Set_Notify_Proc(C,Standard_Error_Notify);
...
\end{Example}
\section{Connection Operations}
The APQ binding provides three primitives for connecting\index{connecting} and disconnecting\index{disconnecting}
from the database server. They are summarized in Table~\ref{t:conprims}.
\begin{table}
\begin{center}
\begin{tabular}{lll}
Type & Name & Purpose\\
\hline
proc & Connect & Connect to the database server\\
proc & Disconnect & Disconnect from the database server\\
proc & Reset & Disconnect if connected\\
\end{tabular}
\end{center}
\caption{APQ Connection Primitives}\label{t:conprims}
\end{table}
\subsection{Procedure Connect}
This primitive initiates a connection attempt with the database server
as configured by the \Ref{Context_Setting_Operations} primitives.
If the connection succeeds, the procedure call returns\index{Connect}
successfully, leaving the Connection\_Type object in a connected state.
\begin{Code}
procedure Connect(
C : in out Connection_Type
);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Not\_Connected & The connection attempt failed\\
Already\_Connected & There is already a connection\\
Failed & One or more configured options failed\\
Use\_Error & Connection OK, but USE database failed\\
\end{tabular}
\end{center}
\caption{Connect Exceptions}\label{t:conx}
\end{table}
Table~\ref{t:conx} summarizes the exceptions that Connect may raise.
The Already\_Connected\index{Already\_Connected} exception indicates that you need to disconnect
first, or use another Connection\_Type object if you are maintaining
multiple connections\index{connections, multiple}. Failed will be raised if a pending option setting
is unsupported or its setting has been rejected. The exception Use\_Error\index{Use\_Error}
indicates that the connection itself succeeded, but the selection
of the database failed. The connection will be returned in an unconnected\index{unconnected}
state when Use\_Error is raised.
\begin{description}
\item[PostgreSQL Note:] \index{PostgreSQL}The Connect primitive as of APQ 1.91 automatically executes a 'SET
DATESTYLE TO ISO' \index{ISO}\index{DATESTYLE} command to guarantee that the APQ date routines
will function correctly, even when the PGDATESTYLE\index{PGDATESTYLE} environment variable
may choose something other than ISO. This implies however, that APQ
applications should always format date information in the ISO format.
\item[MySQL Note:]When MySQL\index{MySQL} returns dates in YYYYMMDD\index{YYYYMMDD} format, APQ
will automatically make the necessary adjustment, based upon the length
of the result.
\end{description}
The following is an example call:
\begin{Example}
declare
C : Connection_Type;
begin
...
begin
Connect(C);
exception
when No_Connection =>
-- Handle connection failure
when Already_Connected =>
...; -- Indicates program logic problem
when others =>
raise;
end;
\end{Example}
\subsection{Connection Cloning\label{Connection Cloning}}
Application writers may want additional connections cloned\index{cloning connections} from a
given connection. A web server may want to do this for example. This
could be performed by obtaining all of the connection information
from the given connection and then proceed to configure a new connection,
but this is tedious and error prone. To clone a new connection from
an existing connection, simply use the Connect\index{Connect} primitive with the
following calling signature (argument Same\_As is added):
\begin{Code}
procedure Connect(
C : in out Connection_Type;
Same_As : in Connection_Type
);
\end{Code}
This primitive configures object C to use the same parameters as object
Same\_As\index{Same\_As}. It then creates a connection to the database using these cloned\index{cloned}
parameters. The exceptions that may be raised are listed in Table~\ref{t:cclonx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Not\_Connected & The connection attempt failed\\
Already\_Connected & There is already a connection\\
\end{tabular}
\end{center}
\caption{Connection Cloning Exceptions}\label{t:cclonx}
\end{table}
The Not\_Connected\index{Not\_Connected} exception can be raised if the Same\_As connection
is not connected (it must be connected). This same exception can be
raised if the new connection fails (this should rarely happen unless
your database is suddenly taken down or a network failure occurs).
The Already\_Connected\index{Already\_Connected} exception is raised if \emph{C} is already
connected.
\begin{description}
\item[Note:] Note that the trace settings of the Same\_As object are not
carried to the new object C. You must manually configure any trace
settings you require in the newly connected object C.
\end{description}
The following example shows how a procedure My\_Subr can clone
a new connection:
\begin{Example}
procedure My_Subr(C : Connection_Type) is
C2 : Connection_Type;
begin
Connect(C2,C); -- Clone a connection
\end{Example}
\subsection{Procedure Disconnect}
The Disconnect\index{Disconnect} primitive closes the connection that was previously
established in the Connection\_Type\index{Connection\_Type} object. The Disconnect primitive
uses the following arguments:
\begin{Code}
procedure Disconnect(
C : in out Connection_Type
);
\end{Code}
The list of possible exceptions for Disconnect are illustrated in Table~\ref{t:dconx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Connection & There is no connection to disconnect\index{No\_Connection}\\
\end{tabular}
\end{center}
\caption{Disconnect Exceptions}\label{t:dconx}
\end{table}
The following code fragment shows the procedure call in action:
\begin{Example}
declare
C : Connection_Type;
begin
...
begin
Disconnect(C);
exception
when No_Connection =>
...; -- Indicates program logic problem
when others =>
raise;
end;
\end{Example}
\subsection{Procedure Reset}
The Reset\index{Reset} primitive is provided so that the programmer can recycle
the Connection\_Type object for use in a subsequent connection. Without
this primitive, the user would need to destroy the original and create
a new Connection\_Type. The Reset primitive accepts the following
arguments:
\begin{Code}
procedure Reset(
C : in out Connection_Type
);
\end{Code}
In addition to closing the current connection, if it is open, the
notification procedure is also deregistered (if there was a Set\_Notify\_Proc\index{Set\_Notify\_Proc}
performed).
No exceptions should occur. If there is a connection pending\index{pending connection}, it is
disconnected\index{disconnected}. If there is no connection pending, the call is ignored.
The following shows an example of its use:
\begin{Example}
declare
C : Connection_Type;
begin
...
Reset(C); -- C is now ready for re-use
\end{Example}
\section{Connection Information Operations}
A modular\index{modular software} piece of software may get handed a Connection\_Type object
as a parameter, and have a need to inquire about the details of the
provided connection. The function primitives that return information
about the connection are listed in Table~\ref{t:cinfp}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Function Name & Information Returned\\
\hline
Host\_Name & Host name of the connection\\
Port & Port Number or Port Pathname\\
DB\_Name & Database name\\
User & User name for the database\\
Password & Password for the database\\
Instance & Instance name for the database\\
Options & Database option parameters\\
\end{tabular}
\end{center}
\caption{Connection Information Primitives}\label{t:cinfp}
\end{table}
These function primitive specifications are listed below:
\begin{Code}
function Host_Name(
C : Connection_Type;
) return String;
\end{Code}
\begin{Code}
function Port(
C : Connection_Type;
) return String; -- UNIX path
\end{Code}
\begin{Code}
function Port(
C : Connection_Type;
) return Integer; -- TCP/IP port
\end{Code}
\begin{Code}
function DB_Name(
C : Connection_Type;
) return String;
\end{Code}
\begin{Code}
function User(
C : Connection_Type;
) return String;
\end{Code}
\begin{Code}
function Password(
C : Connection_Type;
) return String;
\end{Code}
\begin{Code}
function Instance(
C : Connection_Type;
) return String;
\end{Code}
\begin{Code}
function Options(
C : Connection_Type;
) return String;
\end{Code}
The Port\index{Port} primitive that returns a String is for use with database
connections using a UNIX socket\index{UNIX socket}\index{local socket}. The socket
pathname\index{pathname} is returned in this case.
\footnote{or at least a fragment of the pathname.}
When called on Connection\_Type objects without a current connection,
an empty string\index{string, empty} is returned for any value that has not been configured
(for example if Set\-\_Host\-\_Name\index{Set\_Host\_Name} has not been called, Host\-\_Name\index{Host\_Name} will
return ""). If the value has been set, then that value is returned
as expected. Once the Connection\-\_Type object is connected to the
database however, the values will be values fetched from the library\index{library}
libpq\index{libpq} instead.
\footnote{Normally, these values should agree with what was configured.}
The following code sample shows how to extract the host name\index{host name} and database
name for the current connection.
\begin{Example}
procedure My_Code(C : in out Connection_Type) is
Host_Name : String := Host_Name(C);
Database_Name : String := DB_Name(C);
begin
...
\end{Example}
\begin{description}
\item [Sybase Note:]The Instance function primitive was added to APQ support Sybase.
See the support level chart for Set\_Instance\index{Set\_Instance} on page \pageref{Set_Instance Support Chart}
and other information primitives. Note also that setting and retrieving
other parameters is possible in some cases, even though the information
is ignored by Sybase.
\end{description}
\section{General Information Operations}
Due to the modular construction of software, it is sometimes necessary
to query an object for its present state. The primitives listed in Table~\ref{t:gifc}
for the Connection\_Type object are available for querying the state\index{query the state}
of the object. These are discussed in the next subsections.
\begin{table}
\begin{center}
\begin{tabular}{lll}
Type & Name & Purpose\\
\hline
func & Is\_Connected & Indicates connected state\\
func & Error\_Message & Returns a error message text\\
\end{tabular}
\end{center}
\caption{General Information for Connections}\label{t:gifc}
\end{table}
\subsection{Function Is\_Connected}
The Is\_Connected\index{Is\_Connected} function returns a Boolean result that indicates
the present state of the Connection\_Type object. The arguments are
as follows:
\begin{Code}
function Is_Connected(
C : Connection_Type
) return Boolean;
\end{Code}
There are no exceptions raised by this primitive.
The following example shows how to test if the object C is currently
supporting a connection. The example disconnects from the server,
if it determines that C is connected.
\begin{Example}
declare
C : Connection_Type;
begin
...
if Is_Connected(C) then
Disconnect(C);
...
\end{Example}
\subsection{Function Error\_Message}
The Error\_Message\index{Error\_Message} function makes it possible for the application
to report why the connection failed. This information is often crucial
to the user of a failed application. The arguments accepted are as
follows:
\begin{Code}
function Error_Message(
C : Connection_Type
) return String;
\end{Code}
There are no exceptions raised by this function. If there is no present
connection or no present error to report, the null string is returned.
The following example shows how the connection failure is reported:
\begin{Example}
with Ada.Text_IO;
...
declare
use Ada.Text_IO;
C : Connection_Type;
begin
...
begin
Connect(C);
exception
when No_Connection =>
Put_Line(Standard_Error,"Connection Failed!");
Put_Line(Standard_Error,Error_Message(C));
...
when Already_Connected =>
...; -- Program logic error here
when others =>
raise;
end;
\end{Example}
\subsection{Function Notice\_Message\label{Function Notice_Message}}
The C libpq\index{libpq} interface library\index{library}\footnote{The Notice\_Message function is
not available for MySQL.} provides the APQ binding with certain
notification messages\index{notification messages} during some calls, by means of a callback\index{callback}. Each
time one of these notifications is received from the database server,
the notification message is saved in the Connection\_Type object
(replacing any former notice message). The last notification message
received can be retreived using the Notice\_Message\index{Notice\_Message} function:
\begin{Code}
function Notice_Message(
C : Connection_Type
) return String;
\end{Code}
No exception is raised, and the null string\index{null string} is returned if no notice
message has been registered.
The following example illustrates one example of the Notice\_Message
function:
\begin{Example}
with Ada.Text_IO;
...
declare
use Ada.Text_IO;
C : Connection_Type;
begin
...
declare
Msg : String := Notice_Message(C);
begin
if Msg'Length > 0 then
Put_Line(Standard_Error,Msg);
...
\end{Example}
\subsection{In\_Abort\_State Function\label{In_Abort_State Function}}
\Ref{Abort_State exception} documents the Abort\_State\index{Abort\_State}
exception, which is unique to PostgreSQL\index{PostgreSQL}. This exception is raised in
response to a status flag stored in the
APQ\-.PostgreSQL\-.Client\-.Connection\_Type object. When a transaction is
started, any SQL error\index{SQL error} will put the PostgreSQL database server into an
``\emph{abort state}'', where all current and future commands will be
ignored, for the connection \footnote{MySQL does not support this
concept, and so it does not go into an abort state.}. To permit the
application programmer to query this status, the In\_Abort\_State\index{In\_Abort\_State}
function can be used. It returns True, if an error has occurred within a
transaction, which requires a Rollback\_Work (\Ref{Begin, Commit and Rollback Work functions})
call to clear this state. The calling
requirements are summarized in the following table:
\begin{Code}
function In_Abort_State(
C : Connection_Type
) return Boolean;
\end{Code}
Exceptions for In\_Abort\_State are summarized in Table~\ref{t:iasx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Not\_Connected & There is no connection to query\\
\end{tabular}
\end{center}
\caption{In\_Abort\_State Exceptions}\label{t:iasx}
\end{table}
The following example shows how this function might be used:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
...
Begin_Work(Q,C);
...
Execute(Q,C);
...
if In_Abort_State(C) then
Rollback(Q,C);
...
end if;
\end{Example}
\section{Implicit Operations}
There are a few implicit operations\index{implicit operations} that are performed that the programmer
should be aware of. They are:
\begin{itemize}
\item The Connection\_Type is subject to Finalization
\item A default Commit/Rollback operation can occur at Finalization
\end{itemize}
The programmer is encouraged to call Commit\_Work\index{Commit\_Work} or Rollback\_Work\index{Rollback\_Work}
explicitly, whenever possible. This way, the programmer is in complete
control of the transaction outcome.
If a transaction has not been committed or rolled back, and the connected
Connection\_Type object is finalized\index{finalization}%
\footnote{Usually because the Connection\_Type object has fallen out of scope.%
}, then the default action for commit or rollback occurs. The default
for the APQ binding is to rollback the transaction, when the connection
is still active. If the programmer has disconnected\index{disconnected} from the database
prior to finalization, then no further action occurs. To change or
control the default action, use the Set\_Rollback\_On\_Finalize\index{Set\_Rollback\_On\_Finalize} procedure
described in the next section.
\subsection{Set\_Rollback\_On\_Finalize Procedure\label{Set_Rollback_On_Finalize Procedure}}
The Set\_Rollback\_On\_Finalize primitive allows the programmer to
change the default action for the Connection\_Type object. The calling
requirements are summarized in the following table:%
\begin{Code}
procedure Set_Rollback_On_Finalize(
C : in out Connection_Type;
Rollback : in Boolean
);
\end{Code}
To change the default to COMMIT WORK\index{COMMIT WORK} when the Connection\_Type object
finalizes, peform the following call:
\begin{Example}
declare
C : Connection_Type;
begin
Set_Rollback_On_Finalize(C,False); -- Commit on Finalize
\end{Example}
\subsection{Will\_Rollback\_On\_Finalize Function\label{Will_Rollback_On_Finalize Function}}
Programs sometimes need to inquire about the state of the Connection\_Type
object that they may have been passed. To inquire about the commit
or rollback default, the Will\_Rollback\_On\_Finalize\index{Will\_Rollback\_On\_Finalize} function can
be called. The following table summarizes the calling requirements:
\begin{Code}
function Will_Rollback_On_Finalize(
C : Connection_Type
) return Boolean;
\end{Code}
\section{Trace Facilities\label{Trace Facilities}}
No matter how carefully a programmer writes a new program, problems
develop that are often difficult to understand. Good tracing facilities\index{trace facilities}
allow the problem to be quickly understood and corrected.
To gain trace support using APQ, it is only necessary to perform the
following steps:
\begin{enumerate}
\item Open a trace capture file with Open\_DB\_Trace
\item Optionally enable/disable tracing at various points in the program
with Set\_Trace%
\footnote{Tracing is enabled by default after a Open\_DB\_Trace call.}
\item Perform your SQL operations
\item Close the trace capture file with Close\_DB\_Trace%
\footnote{Or allow it to be closed when the Connection\_Type object is finalized.}
\end{enumerate}
The Open\_DB\_Trace\index{Open\_DB\_Trace} procedure takes a Trace\_Mode\_Type\index{Trace\_Mode\_Type} parameter
that decides what trace content is being collected. The valid enumerated
choices are listed in Table~\ref{t:tmchoic}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Value & Description\\
\hline
APQ.Trace\_None & Collect no trace information (no file is written/created)\\
APQ.Trace\_DB & Collect only C library trace information%
\footnote{Prior to APQ 2.0, this was Trace\_libpq.}\\
APQ.Trace\_APQ & Collect only APQ SQL trace information\\
APQ.Trace\_Full & Collect both database library and Trace\_APQ information\\
\end{tabular}
\end{center}
\caption{Trace\_Mode\_Type Choices}\label{t:tmchoic}
\end{table}
The Trace\_None\index{Trace\_None} value is provided so that the Open\_DB\_Trace procedure
does not need to be coded around if a trace variable is supplied,
which may or may not request tracing. Close\_DB\_Trace\index{Close\_DB\_Trace} can be called
on a Connection\_Type\index{Connection\_Type} for which Trace\_None is in effect, without
any exception being thrown (the call is ignored).
Trace\_DB\index{Trace\_DB} provides only what the C library (libpq\index{libpq} for PostgreSQL\index{PostgreSQL})
provides. This may be useful to the database software maintainers,
if they want a trace of the activity that you are reporting problems
with.
Trace\_APQ\index{Trace\_APQ} is what the author considers to be the most useful output
format to an APQ developer. The trace output in this mode is such
that the extra trace information is provided in SQL comment\index{SQL comment} form.
The actual queries that are executed are in their natural SQL form.
The captured Trace\_APQ trace then, is in a format that can be played
back, reproducing exactly what the application performed.%
\footnote{There are limitations however, since the blob functions are not traced
at the present release.%
} The full trace or portions of it then can be used to help debug SQL
related problems.
The following shows a sample of what the Trace\_APQ output looks like:
\begin{SQL}
-- Start of Trace, Mode=TRACE_APQ
-- SQL QUERY:
BEGIN~WORK}
;
-- Result: 'BEGIN'
-- SQL QUERY:
INSERT INTO DOCUMENT
(NAME,DOCDATE,BLOBID,CREATED,MODIFIED,ACCESSED)
VALUES ('compile.adb','2002-08-12~21:09:25',3339004,
'2002-08-12~21:59:48','2002-08-12~21:09:25',
'2002-08-19~22:11:36')
;
-- Result: 'INSERT 3339005 1'
-- SQL QUERY:
SELECT DOCID
FROM DOCUMENT
WHERE OID = 3339005
;
-- Result: 'SELECT'
...
-- SQL QUERY:
COMMIT WORK
;
-- Result: 'COMMIT'
-- End of Trace.
\end{SQL}
The following subsections describe the primitives that provide support
for trace facilities.
\subsection{Procedure Open\_DB\_Trace}
To start any capture of trace\index{trace capture} information, you must specify the name
of the text file to be written to. The file must be writable to the
current process. The Connection\_Type object must be connected prior
to calling Open\_DB\_Trace\index{Open\_DB\_Trace}:
\begin{Code}
procedure Open_DB_Trace(
C : in out Connection_Type;
Filename : in String;
Mode : in Trace_Mode_Type := Trace_APQ
);
\end{Code}
Table \ref{t:odbtx} lists the possible exceptions for Open\_DB\_Trace.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Not\_Connected & There is no connection\\
Tracing\_State & Trace is already enabled\\
\end{tabular}
\end{center}
\caption{Open\_DB\_Trace Exceptions}\label{t:odbtx}
\end{table}
Upon return from the Open\_DB\_Trace procedure, a text file will be
created and ready to have trace entries written to it.%
\footnote{Note that trace entries are buffered by C standard I/O routines, so
trace information may be held in memory buffers before it is flushed
out or closed.%
}
The following example shows how a call might be coded:
\begin{Example}
declare
C : Connection_Type;
begin
...
Open_DB_Trace(C,"./bugs.sql",Trace_APQ);
\end{Example}
\subsection{Procedure Close\_DB\_Trace}
Closing the tracing facility for a connection, suspends all further
trace writes. Once this has been done, the effect of Set\_Trace\index{Set\_Trace} is
superceeded, preventing any further trace information being written.
The calling requirements are outlined in the following table:
\begin{Code}
procedure Close_DB_Trace(
C : in out Connection_Type
);
\end{Code}
If the Open\_DB\_Trace call was made with the Mode parameter set to
Trace\_None, then the call to Close\_DB\_Trace\index{Close\_DB\_Trace} has no effect and is
ignored for programmer convenience.
No exceptions are raised.
An example call is shown below:
\begin{Example}
declare
C : Connection_Type;
begin
...
Open_DB_Trace(C,"./bugs.sql",Trace_APQ);
...
Close_DB_Trace(C);
\end{Example}
\subsection{Procedure Set\_Trace}
In large applications where large numbers of SQL statements are executed,
it may be desirable to trace only certain parts of its execution in
a dynamic fashion. The Set\_Trace\index{Set\_Trace} primitive gives the programmer a
way to disable and re-enable tracing at strategic\index{strategic tracing} points within the
application. The calling requirements are summarized as follows:
\begin{Code}
procedure Set_Trace(
C : in out Connection_Type;
Trace_On : in Boolean := True
);
\end{Code}
Tracing is enabled by default, after a successful call to Open\_DB\_Trace
is made (unless Mode was Trace\_None\index{Trace\_None}).
There are no exceptions raised.
Note that it is considered safe to invoke Set\_Trace, even if a former
Open\_DB\_Trace call was not successfully performed, or the trace
mode was Trace\_None. This allows the application to retain strategic
Set\_Trace calls without having to remove them, when the Open\_DB\_Trace
call is disabled%
\footnote{Setting Mode to Trace\_None effectively disables the trace facility
without requiring any code changes.%
} or commented out.
\subsection{Function Is\_Trace}
It may be helpful to the developer that is tracking down a problem
to know when tracing is enabled or not. The Is\_Trace\index{Is\_Trace} function returns
true when the trace collection file is receiving trace information.
The calling arguments are listed below:%
Note that the returned value tracks the last value provided by
Set\_Trace, whether or not an open trace file has been created/opened.
\begin{Code}
function Is_Trace(
C : Connection_Type;
) return Boolean;
\end{Code}
Note that the initial state of the Connection\_Type object is to have
Is\_Trace to return True. Also after a successful Open\_DB\_Trace,
Is\_Trace will return True.
An example showing its use is given below:
\begin{Example}
declare
C : Connection_Type;
begin
...
Open_DB_Trace(C,"./bugs.sql",Trace_APQ);
...
if Is_Trace(C) then
-- We are collecting trace info..
\end{Example}
\section{Generic Database Operations}
APQ 2.0 and later is designed so that all but the most specialized
database operations, can be performed, given only a Root\_Connection\_Type'Class\index{Root\_Connection\_Type'Class}
object (declared in top level package APQ). The following sections
describe some generic database related primitives that are necessary
for successful generic database support.
\subsection{Package APQ}
Root object support\index{root object support} is provided in the package APQ\index{APQ, package}. Generic database
code will normally only use this package:
\begin{Code}
with APQ;
use APQ; -- Optional use clause
\end{Code}
The data types that will be used will be:
\begin{itemize}
\item APQ.Root\_Connection\_Type'Class
\item APQ.Root\_Query\_Type'Class\index{Root\_Query\_Type'Class}
\end{itemize}
The generic primitives that will be covered in the next section are:
\begin{itemize}
\item APQ.Engine\_Of
\item APQ.New\_Query
\end{itemize}
\subsection{Predicate Engine\_Of\label{Generic Database Engine_Of}}
Given a Root\_Connection\_Type'Class object, generic database code
sometimes needs to determine which specific database is being used.
This allows the code to make special SQL syntax changes, depending
upon the technology being used (for example, MySQL\index{MySQL} permits the use
of a \emph{LIMIT}\index{LIMIT} keyword in queries).
The Engine\_Of\index{Engine\_Of} primitive (dispatching) will identify the
database technology that is being used:
\begin{Code}
type Database_Type is (
Engine_PostgreSQL,
Engine_MySQL,
Engine_Sybase
);
function Engine_Of(
C : Connection_Type
) return Database_Type;
\end{Code}
The following example code shows how to test if a PostgreSQL\index{PostgreSQL} database
is being used:
\begin{Example}
with APQ; use APQ;
...
procedure App(C : Root_Connection_Type'Class) is
begin
...
if Engine_Of(C) = Engine_PostgreSQL then
...
\end{Example}
\subsection{Primitive New\_Query\label{Query_Type Factories}}
Normally, an application database procedure will receive a connection
object as one of its input parameters. Generally, this connection
is established in the main program and then used by the program components
as required. However, to pass the parameter in a generic way (allowing
for polymorphism), you would declare the procedure's argument as receiving
data type Root\_Connection\_Type'Class.
Within the called procedure however, you will need a Query\_Type object.
This too could be passed in as an argument, but this is unnecessary.
At other times, you may need additional Query\_Type objects for temporary
use. What you need is a convenient way to create a Query\_Type object
that matches the connection that you have received as a parameter. This
is done by the New\_Query function\index{New\_Query}.
If your connection object is a:
\begin{Code}
APQ.PostgreSQL.Client.Connection_Type
\end{Code}
object, then your application will want to create a:
\begin{Code}
APQ.PostgreSQL.Client.Query_Type
\end{Code}
object. You want to avoid tests like:
\begin{Example}
if Connection is in APQ.PostgreSQL.Client.Connection_Type then
...
elsif Connection is in APQ.MySQL.Client.Connection_Type then
...
elsif Connection is in APQ.Sybase.Client.Connection_Type then
...
\end{Example}
The above example code would force your portable code to also ``with''\index{with}
the following packages:
\begin{Example}
with APQ.PostgreSQL.Client;
with APQ.MySQL.Client;
...
\end{Example}
which would be very inconvenient and unnecessary.
To make portable\index{portable} database programming easier, APQ provides a dispatching\index{dispatching}
Query\_Type object factory primitive that can be used for this purpose.
For example:
\begin{NumberedExample}
with APQ;
use APQ;
procedure My_Generic_App(C : Root_Connection_Type'Class) is
Q : Root_Query_Type'Class := New_Query(C);\label{Ex:New_Query_Assgn}
begin
Prepare(Q,"SELECT NAME,INCOME");
Append_Line(Q,"FROM~SALARIES");
\end{NumberedExample}
The assignment to Q in line~\ref{Ex:New_Query_Assgn}, shows the
application of the primitive New\_Query. This dispatching
primitive returns the correct Query\_Type object that matches the
connection that was given. The primitive New\_Query is more formally
presented as follows:
\begin{Code}
function New_Query(
C : Root_Connection_Type
) return Root_Query_Type'Class;
\end{Code}
\subsection{Query\_Type Assignment\label{Query_Type Cloning}}
Prior to APQ version 2.0, the Query\_Type object was a \emph{limited}\index{limited tagged type}
tagged type. This meant that the Query\_Type object was never able
to be assigned to another Query\_Type object. With the need for a
factory\index{factory} primitive like \textbf{New\_Query} it was necessary to lift
that restriction (otherwise the factory was unable to return the created
object). So the Root\_Query\_Type and derived forms, permit assignment
as of APQ version 2.0 and later.
When a Query\_Type is assigned in APQ, nothing spectacular happens.
In fact, the contents of the object on the right hand side are effectively
ignored, leaving a new object on the left side. The following example
shows how Q1 and Q2 are essentially the same:
\begin{NumberedExample}
declare
Q0 : Query_Type;
Q1 : Query_Type;
Q2 : Query_Type;
begin
...
Q1 := Q0; -- Q1 becomes initialized (Q0 ignored)\label{Ex:Q1}
Clear(Q2); -- Initialize Q2\label{Ex:Q2}
\end{NumberedExample}
In this example, both Q1~(line~\ref{Ex:Q1}) and Q2~(line~\ref{Ex:Q2})
end up in the same state, and no state information is taken from Q0. You
might wonder why this would be implemented. The following example code
fragment illustrates why this is convenient and useful:
\begin{NumberedExample}
with APQ;
usse APQ;
procedure My_Generic_App(C : Root_Connection_Type'Class) is
Q : Root_Query_Type'Class := New_Query(C);
begin
Prepare(Q,"SELECT NAME, INCOME");
Append(Q, "FROM~SALARIES");
Execute(Q,C);
...
declare
Q2 : Root_Query_Type'Class := Q;\label{Ex:Q_Clone}
begin
...
end;
\end{NumberedExample}
The example illustrates that the assignment (line~\ref{Ex:Q_Clone}) is
simply a convenient factory of its own kind. It is also likely to be
slightly more efficient than the New\_Query primitive on the
connection. Think of assignment of Query\_Type objects as cloning\index{cloning}
operations. The assigned object becomes a fresh initialized clone of the
Query\_Type object on the right hand side of the assignment.
\chapter{SQL Query Support}
Once a database connection has been established, the application is
ready to invoke operations on the database server. To ease the programmer's
burden in keeping track of the various components involved in these
transactions, the Query\_Type object is provided. The Query\_Type\index{Query\_Type}
object and the Connection\_Type object are used together when it comes
time to execute the query. Some operations require the connection
object, while others do not.
There are a large number of primitives associated with the Query\_Type
object. Most of them are related to the large number of data types
that are supported. These Query\_Type primitives fall into the following
basic categories:
\begin{enumerate}
\item Object initialization
\item SQL Query building
\item SQL Execution on the Database server
\item Transaction operations
\item Fetch operations
\item Column information functions
\item Value fetching functions
\item Value and Indicator fetching procedures
\item Information operations
\end{enumerate}
In addition to these, are a number of generic functions and procedures
that permit the APQ user to custom tailor the API to his own specialized
Ada data types. This allows applications to continue the follow the
healthy tradition of using strong data types. There is no need for
a database application to take a back seat to safety\index{safety}.
\section{Initialization \label{SQL Initialization}}
The Query\_Type object is initialized when the object is created.
However, the Query\-\_Type object can be re-used as various SQL\index{SQL}
operations are performed by the program. To re-use the Query\_Type
object, one of the primitives in Table~\ref{t:qinit} may be used to recycle it for
re-use.
\begin{table}
\begin{center}
\begin{tabular}{lll}
Type & Name & Purpose\\
\hline
proc & Clear & Clear object and re-initialize\\
proc & Prepare & Reinitialize with start of new SQL query\\
\end{tabular}
\end{center}
\caption{Query Initialization}\label{t:qinit}
\end{table}
The Clear\index{Clear} procedure does the initialization of the Query\_Type object.
The Prepare primitive implicitly invokes Clear
\footnote{Consequently, your application need not invoke Clear() prior to calling
Prepare().} and additionally starts the building of an SQL query. Very short
SQL statements may comletely specified by the Prepare API call. Longer
queries can be completed with some of the other primitives to be discussed
in this section.
\subsection{Procedure Clear}
With one exception, the Clear\index{Clear} primitive completely resets the state
of the Query\_Type object. This function primitive serves to basic
purposes:
\begin{enumerate}
\item Resets the object to its initial state so that it can be reused for a new query.
\item Releases any results of the current query (close cursors etc.)
\end{enumerate}
When performed after a query has been executed, this primitive releases
all results from the query. For Sybase, this can include issuing a
cancel back to the server and flushing all pending row results that
have not been retrieved by the APQ client program.
Clear accepts the Query\_Type object as its only argument:
\begin{Code}
procedure Clear(
Q : in out Query_Type
);
\end{Code}
The one exception to clearing state however, is that the SQL case\index{case policy}
policy remains unchanged. If prior to the clear, the SQL case policy
is set to Preserve\_Case\index{Preserve\_Case}, it will remain so after the Clear call.
There are no exceptions raised by this call.
The use of the Clear primitive is recommended after all SQL processing
related to the query has been completed. This permits any database
server results to be released. Think of it as ``closing''\index{closing a query} the
query. Note however, that object finalization\index{finalization} will take care of this,
if the job is left unfinished by the programmer.
The following example illustrates it's use:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
...
Clear(Q);
\end{Example}
\subsubsection{Performance Issue}
There is one particular case where calling Clear is vitally important
for some database products. Let's use an example where you are fetching
the most recent stock price from a price history file. Here is the
table declaration:
\begin{SQL}
CREATE TABLE PRICE_HIST (
SECURITY CHAR(10) NOT NULL,
PRICE_DATE DATE NOT NULL,
PRICE REAL,
PRIMARY KEY (SECURITY,PRICE_DATE)
);
\end{SQL}
With this table holding price history, keyed by the security name
and date, we can lookup the most recent price with a subroutine something
like the following:
\begin{NumberedExample}
procedure Last_Price(
C : in out Root_Connection_Type'Class;
Security : in String;
Price : out APQ_Double
) is
function Value is new Float_Value(APQ_Double);
Q : Root_Query_Type'Class := New_Query(C);\label{Ex:TheQ}
begin
Begin_Work(Q,C);
Prepare(Q, "SELECT SECURITY,PRICE_DATE,PRICE");
Append_Line(Q,"FROM PRICE_HIST");
Append(Q, "WHERE SECURITY = ");
Append_Quoted(Q,C,Security,Line_Feed);
Append_Line(Q,"ORDER BY SECURITY,PRICE_DATE DESC");\label{Ex:OrderBy}
if Engine_Of(C) = Engine_MySQL then
Append_Line(Q,"LIMIT 1");\label{Ex:Limit1}
end if;
Execute(Q,C);
begin
Fetch(Q);
exception
when No_Tuple =>
raise; -- No price found!
end;
Price := Value(Q,3);
Clear(Q);\label{Ex:Clear}
end Last_Price;
\end{NumberedExample}
In this example, you can see that MySQL\index{MySQL} is covered by adding the "LIMIT 1"\index{LIMIT}
clause in line~\ref{Ex:Limit1}.\footnote{MySQL will limit the results to 1 row, if any.}
PostgreSQL\index{PostgreSQL} does not have a problem with this type of query because each row is
fetched on demand. Sybase\index{Sybase} however, will start returning all the rows
that it has available, in the order specified by the "ORDER BY"\index{ORDER BY} clause
(line~\ref{Ex:OrderBy}).
Given that the routine Last\_Price only calls Fetch\index{Fetch}
once, there is no point in the Sybase server producing and sending
more row data down the connection to the APQ client program. For this
reason, a call to Clear\index{Clear} (line~\ref{Ex:Clear}) will send a cancel notice to the Sybase server
to stop producing additional rows. It will also clear out any row data on
the connection that has not been fetched by the client program.
In this particular example, the Query\_Type object Q (line~\ref{Ex:TheQ}) would have been
finalized\index{finalized} anyway upon return from Last\_Price. Finalized Query\_Type
objects always perform the equivalent of a call to Clear prior to
releasing the object storage. However, it is important to explicitly
call Clear\index{Clear} if you have many other operations that follow the query
performed in order to allow a timely cancel if necessary and to release
any pending query results.
\subsection{Procedure Prepare\label{Procedure Prepare}}
The Prepare\index{Prepare} primitive goes one step further than Clear
in that it readies the object for the start of an SQL\index{SQL} statement build.
If the query is short, this will be the only building step required.
As in the case of Clear, the SQL case policy\index{case policy} is unchanged however.
The Prepare procedure takes the following arguments:
\begin{Code}
procedure Prepare(
Q : in out Query_Type;
SQL : in String;
After : in String := Line_Feed
);
\end{Code}
The SQL argument defines the start of your SQL\index{SQL} statement. The
After argument may supply either the default (line feed)\index{line feed} or
some other text to append to the SQL text\index{SQL text}.
It is provided as a programmer convenience, since many times the
programmer will need to append a comma for example.
There are no exceptions raised by this call.
The following code shows an example of building a query to drop a
table:
\begin{Example}
declare
Q : Query_Type;
begin
...
Prepare(Q,"DROP TABLE DEAD_WEIGHT");
\end{Example}
\section{SQL Query Building \label{SQL Query Building}}
The previous section primitives ``cleared'' the Query\_Type for
a new query. The primitives provided in this section help to build
a new SQL query or to continue (append to)\index{append} the one started by the
Prepare call in \Ref{Procedure Prepare}. The programmer may
start\index{start} with a Prepare call and follow it by a number of ``append''
calls, or call Clear and build upon an empty query\index{empty query} and skip the
Prepare. ``PREPARE''\index{PREPARE} however, is a traditional first step
in embedded SQL\index{embedded SQL} software, so this tradition comes recommended
by the author.
There are two broad categories of support for creating SQL queries\index{SQL queries}.
They are:
\begin{enumerate}
\item Append\index{Append} a value to the SQL query
\item Encode\index{Encode} a value or NULL\index{NULL}, to the SQL query.
\end{enumerate}
Both of these categories append to the current query. Primitives in
category 2 , are prefixed with Encode and will be described
later in the present chapter.
The Append category of support is useful for values that are never
\emph{NULL} (in SQL terms these columns that are declared as ``NOT
NULL''\index{NOT NULL}). The Encode category of support is provided for values in
your application that may be in the NULL\index{NULL} state. It is not absolutely
required that the Encode support be used, since it is possible for
the application to test for a NULL value. However, the programmer
will find that the Encode support provides application coding convenience
and economy of expression. With compact code, better readability\index{readability} and
safety\index{safety} is normally obtained.
Within category 1, there are five groups of primitives%
\footnote{The generic procedures have been lumped in with the primitives.%
} that build on the present query. They are:
\begin{enumerate}
\item Append a string
\item Append a string and a \emph{{}``newline''}
\item Append a quoted string%
\footnote{Quoted values are always spared from any automatic case conversions,
if any are applied.}
\item Append non string types
\item Append using generic procedures for custom types
\end{enumerate}
Encode\index{Encode} support on the other hand, only provides for the needs of variables
that must be communicated to the database server. As a result, the
encode procedures consist only of the following two groups:
\begin{enumerate}
\item Encode non-string\index{non-string types} types
\item Encode using generic procedures for custom types\index{custom types}
\end{enumerate}
Presently only the second group is provided for by the APQ binding.%
\footnote{The reasoning is that most of the time, the user will want to instantiate
the generic procedures anyway. This permits both the data type and
the null indicator\index{null indicator} type to be a custom application type.%
} A future release may expand on category 1 support.
The append procedures (category 1) will be described first and then
followed by the encode procedures (category 2).
\subsection{Append SQL String}
The Append\index{Append} procedure permits the programmer to append text to the
SQL query being saved in the Query\_Type object. Unlike Prepare\index{Prepare},
Append does not clear the object. Append continues to add
SQL text\index{SQL text} to the query already gathered by the object Q (below):
\begin{Code}
procedure Append(
Q : in out Query_Type;
SQL : in String;
After : in String := ""
);
\end{Code}
\begin{Code}
procedure Append(
Q : in out Query_Type;
SQL : in Ada.Strings.Unbounded.Unbounded_String;
After : in String := ""
);
\end{Code}
There are no exceptions raised by this call.
The following example shows how Append is used:
\begin{Example}
declare
Q : Query_Type;
begin
...
Prepare(Q,"SELECT CUSTNO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
\end{Example}
Note that the Prepare\index{Prepare} call uses a default argument After=New\_Line\index{After}\index{New\_Line},
while Append uses a null string\index{null string} default.
You can put a line break in the SQL query by supplying the
value New\_Line in the argument "After" if you like.
The following example illustrates the use of Prepare and Append:
\begin{Example}
declare
Q : Query_Type;
Col_Name_1 : constant String := "CUSTNO";
Col_Name_2 : constant String := "CUST_NAME";
begin
...
Prepare(Q,"SELECT ");
Append(Q,Col_Name_1,",");
Append(Q,Col_Name_2,Line_Feed);
Append(Q,"FROM CUSTOMER");
\end{Example}
This example builds up the same query that the previous example did,
except that the column names were provided by string variables\index{string variables}.
\subsection{Append SQL Line\label{Append SQL Line}}
The Append\_Line\index{Append\_Line} procedure is provided for added convenience and program
readability\index{readability}. The same effect can be had with a string Append call,
using string APQ.Line\_Feed supplied as the After\index{After} argument.
The Append\_Line procedure has the following specification:
\begin{Code}
procedure Append_Line(
Q : in out Query_Type;
SQL : in String;
);
\end{Code}
The Append\_Line procedure is one of the few that does not sport an
\emph{After} argument.
\subsection{Append Quoted SQL String}
Don't quote\index{quoted strings} your own strings at home. There are several reasons why
supplying your own quotes to a call to the normal Append call is a
bad idea:
\begin{enumerate}
\item Some characters must be encoded\index{encoded} or escaped\index{escaped}, if they occur in the string.
\item SQL portability\index{portability} is enhanced, since encoding and escaping\index{escaping} varies from
database vendor to vendor.
\item Internationalization\index{Internationalization} chosen by the user may require different processing.
\item Quoted\index{quoted strings} strings should not be changed to upper or lowercase\index{lowercase} (by APQ).
\end{enumerate}
The Append\_Quoted\index{Append\_Quoted} procedure call is designed to make it easier for
the programmer to supply a string value that may contain special characters
within it. Since a string value is already supplied by APQ with outer\index{outer quotes}
quotes, any quote\index{quote} appearing within the string must be quoted. The
Append\_Quoted procedure provides the necessary outer quotes\index{quotes}
for the sring value and escapes\index{escapes} any special characters\index{special characters}
occuring within it as well.
Another very important reason for using this API call for quoted strings
is that this will prevent the APQ library from changing the case of\index{case of SQL}
any SQL text that is created. This is true no matter what the current
SQL case policy\index{case policy} is (see type APQ\-.SQL\-\_Case\-\_Type on page \pageref{SQL_Case_Type Choices}).
Any string segment\index{string segment} that was added to the query with this API call
will not have its case changed when the query is executed or the text
of the SQL is returned in a call to the To\_String\index{To\_String} function.
There are two Append\_Quoted procedures, which differ only in the data
type of the \emph{SQL} argument:
\begin{Code}
procedure Append_Quoted(
Q : in out Query_Type;
Connection : in out Root_Connection_Type'Class;
SQL : in String;
After : in String := ""
);
\end{Code}
\begin{Code}
procedure Append_Quoted(
Q : in out Query_Type;
Connection : in out Root_Connection_Type'Class;
SQL : in Ada.Strings.Unbounded.Unbounded_String;
After : in String := ""
);
\end{Code}
Notice that this particular API call requires a connection\index{connection}. The reason
for this is that some databases require the server to make the appropriate
choices dealing with internationalized\index{internationalized} character sets\index{character sets}. The quoting\index{quoting}
conventions also vary from database to database, so APQ relies upon
the database vendor software to perform the quoting for you.
The following example illustrates the use of this call (using the
String type):
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
Freds_Emporium : String := "Fred's Emporium";
begin
...
Prepare(Q, "SELECT COMPNO,COMPANY_NAME");
Append_Line(Q,"FROM SUPPLIER");
Append(Q, "WHERE COMPANY_NAME = ");
Append_Quoted(Q,C,Freds_Emporium,New_Line);
\end{Example}
The effect of these calls is to build an SQL query\index{SQL} that looks as follows
(for PostgreSQL\index{PostgreSQL}):
\begin{SQL}
SELECT COMPNO,COMPANY_NAME
FROM SUPPLIER
WHERE COMPANY_NAME = 'Fred\'s Emporium'
\end{SQL}
Notice how the quote character was escaped for use by the PostgreSQL\index{PostgreSQL}
database server. Note also that even though the SQL case policy\index{case policy} was to
use Upper\_Case\index{Upper\_Case}, the case of the quoted text was preserved.
APQ will automatically adjust the quoting conventions\index{quoting conventions} to match the
database being used. The same example above when used for Sybase\index{Sybase},
would produce the following SQL text\index{SQL text} instead:
\begin{SQL}
SELECT COMPNO,COMPANY_NAME
FROM SUPPLIER
WHERE COMPANY_NAME = 'Fred''s Emporium'
\end{SQL}
Sybase uses a doubled-up quote\index{doubled-up quote} instead.
Using APQ's Append\_Quoted frees the programmer from worrying about
quoting conventions and guarantees that the case of the text will be
preserved.
\subsection{Append Non-String Types to SQL Query}
A fairly large set of builtin non-string\index{non-string types} data types are supported by varied
Append calls that differ in the second argument V. The following
is a list of their specifications:
\begin{Code}
procedure Append(
Q : in out Query_Type;
V : in APQ_Boolean;
After : in String := ""
);
\end{Code}
\begin{Code}
procedure Append(
Q : in out Query_Type;
V : in APQ_Date;
After : in String := ""
);
\end{Code}
\begin{Code}
procedure Append(
Q : in out Query_Type;
V : in APQ_Time;
After : in String := ""
);
\end{Code}
\begin{Code}
procedure Append(
Q : in out Query_Type;
V : in APQ_Timestamp;
After : in String := ""
);
\end{Code}
\begin{Code}
procedure Append(
Q : in out Query_Type;
V : in APQ_Bitstring;
After : in String := ""
);
\end{Code}
\begin{Code}
procedure Append(
Q : in out Query_Type;
V : in Row_ID_Type;
After : in String := ""
);
\end{Code}
These Append\index{Append} procedure calls automatically convert\index{convert} the supplied data
type in argument V, internally into a string\index{string} using the To\_String\index{To\_String} function
appropriate to the data type. Internally, the string Append procedure
is then utilized to perform the remaining work. The following example
illustrates their use:
\begin{Example}
declare
Q : Query_Type;
Ship_Date : APQ_Date;
begin
...
Prepare(Q, "SELECT COMPNO,COMPANY_NAME,SHIP_DATE");
Append_Line(Q,"FROM SUPPLIER");
Append(Q, "WHERE SHIP_DATE = ");
Append(Q,Ship_Date,New_Line);
\end{Example}
The example presented builds an SQL query that looks like this:
\begin{SQL}
SELECT COMPNO,COMPANY_NAME,SHIP_DATE
FROM SUPPLIER
WHERE SHIP_DATE = '2002-07-21'
\end{SQL}
Notice that the Append call for APQ\_Date\index{APQ\_Date} automatically supplies the
necessary quotes to the SQL query\index{SQL query} (if needed for the database being
used). All of the data types supported are molded into a format that
is acceptable in the native database SQL syntax\index{SQL syntax}.
There is one additional Append procedure call that has a special set
of arguments in order to support dates\index{dates} with time zones\index{time zones}. The arguments
for this procedure call are as follows:
\begin{Code}
procedure Append(
Q : in out Query_Type;
TS : in APQ_Timestamp;
TZ : in APQ_Timezone;
After : in String := ""
);
\end{Code}
Apart from the different argument names TS and TZ, this
procedure works in the same fashion as the former Append\index{Append} procedure
call. The TZ argument simply supplies the additional time zone\index{time zone}
information to be added to the timestamp\index{timestamp}.
\begin{description}
\item [Note:] Not all databases support the use of timezone values.
\end{description}
\subsection{Generic Append SQL Procedures}
Ada programmers often take advantage of the strong typing \index{strong typing}that
is available in the language. To accomodate this programming aspect,
generic procedures are available so that type conversions\index{type conversions}
are unnecessary. The following table documents the generic procedures
that accept one generic argument named Val\_Type and the data
types that they support:
\begin{Code}
generic
type Val_Type is new Boolean;
procedure Append_Boolean(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is range <>;
procedure Append_Integer(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is mod <>;
procedure Append_Modular(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is digits <>;
procedure Append_Float(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is delta <>;
procedure Append_Fixed(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is delta <> digits <>;
procedure Append_Decimal(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Time;
procedure Append_Date(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Day_Duration;
procedure Append_Time(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is new APQ_Timestamp;
procedure Append_Timestamp(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is new APQ_Bitstring;
procedure Append_Bitstring(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
After : in String := ""
);
\end{Code}
Each of the resulting instantiated procedures provide the following
calling signature:
\begin{Code}
procedure Append(
Q : in out Query_Type;
V : in Val_Type;
After : in String := ""
);
\end{Code}
The following code fragment illustrates how these are instantiated\index{instantiated} and used:
\begin{NumberedExample}
declare
type Price_Type is delta 0.01 digits 12;\label{Ex:TypeDef}
procedure Append is new Append_Decimal(Price_Type);\label{Ex:Inst}
Q : Query_Type;
Selling_Price : Price_Type;
begin
...
Prepare(Q,"UPDATE SUPPL_ORDER");
Append(Q."SET SELLING_PRICE = ");
Append(Q,Selling_Price,New_Line);\label{Ex:InstUse}
Append_Line(Q,"WHERE ...");
\end{NumberedExample}
In this example, the application defines its own type Price\_Type
in line~\ref{Ex:TypeDef}. After instantiating the Append\_Decimal
generic procedure as Append\index{Append} (line~\ref{Ex:Inst}), the application is
free to neatly append a price value from Selling\_Price in
line~\ref{Ex:InstUse}, as if it were natively supported.
\subsection{Generic Append\_Timezone}
The Append\_Timezone\index{Append\_Timezone} has an additional generic paramter. The instantiated\index{instantiated}
procedure also has a slightly different set of calling arguments. The generic
parameters are specified as follows:
\begin{Code}
generic
type Date_Type is new Ada.Claendar.Time;
type Zone_Type is new APQ_Timezone;
procedure Append_Timezone(
Q : in out Root_Query_Type'Class;
V : in Date_Type;
Z : in Zone_Type;
After : in String := ""
);
\end{Code}
The instantiated procedure has the following calling signature:
\begin{Code}
procedure Append(
Q : in out Root_Query_Type'Class;
V : in Date_Type;
Z : in Zone_Type;
After : in String := ""
);
\end{Code}
The following shows an example of its use:
\begin{NumberedExample}
declare
type Ship_Date_Type is new APQ_Timestamp;
type Ship_Zone_Type is new APQ_Timezone;
procedure Append is new Append_Timezone(\label{Ex:InstTZ}
Ship_Date_Type,Ship_Zone_Type);
Q : Query_Type;
Ship_Date : Ship_Date_Type;
Ship_Zone : Ship_Zone_Type;
begin
...
Prepare(Q,"SELECT COUNT(*)");
Append_Line(Q,"FROM ORDER");
Append(Q,"WHERE SHIP_DATE = ");
Append(Q,Ship_Date,Ship_Zone,New_Line);\label{Ex:UseInstTZ}
...
\end{NumberedExample}
The example shows how the application's types Ship\_Date\_Type
and Ship\_Zone\_Type are accomodated by the Append\index{Append} instantiation\index{instantiation}
of the generic procedure (line~\ref{Ex:InstTZ}). The instantiated
Append routine is applied in line~\ref{Ex:UseInstTZ}.
\subsection{Generic Append of Bounded SQL Text}
To accomodate the use of the package Ada\-.Strings\-.Bounded\index{Ada.Strings.Bounded},
the generic procedure Append\_Bounded\index{Append\_Bounded} was provided. Its instantiation
requirements differ from the preceeding ones because the instantiation
of the Bounded\_String\index{Bounded\_String} type must be provided to the Append\_Bounded
generic procedure. The generic procedure is defined as follows:
\begin{Code}
generic
with package P
is new Ada.Strings.Bounded.Generic_Bounded_Length(<>);
procedure Append_Bounded(
Q : in out Query_Type;
SQL : in P.Bounded_String;
After : in String
);
\end{Code}
In other words, Append\_Bounded can be instantiated from any instantiation
of the Ada.Strings.Bounded.Generic\_Bounded\_Length package. The following
example makes this easier to understand:
\begin{NumberedExample}
with Ada.Strings.Bounded;
...
declare
package B80
is new Ada.Strings.Bounded.Generic_Bounded_Length(80);
package B20
is new Ada.Strings.Bounded.Generic_Bounded_Length(20);
procedure Append is new Append_Bounded(B80);\label{Ex:B80}
procedure Append is new Append_Bounded(B20);\label{Ex:B20}
Q : Query_Type;
Item_Code : B20;
Item_Name : B80;
begin
...
Prepare(Q, "SELECT COUNT(*)");
Append_Line(Q,"FROM ORDER");
Append(Q, "WHERE ITEM_CODE = ","'");
Append(Q,Item_Code,"' AND ITEM_NAME = '");\label{Ex:UseB20}
Append(Q,Item_Name,"'" & New_Line);\label{Ex:UseB80}
...
\end{NumberedExample}
The example shows how two different generic procedures named Append
are instantiated from the Bounded\_String instantiations B80 (line~\ref{Ex:B80})
and B20 (line~\ref{Ex:B20}). Note that the Append\_Bounded procedure does not escape
special characters, nor provide the outer quotes (this is a poor example of its
use actually).
The Append\index{Append} call used in line~\ref{Ex:UseB20} is the one that was
instantiated on line~\ref{Ex:B20}. The other Append used on
line~\ref{Ex:UseB80} was instantiated on line~\ref{Ex:B80}. These
are matched according to the normal Ada95\index{Ada95} argument type matching
rules.
\subsection{Generic Append\_Bounded\_Quoted Procedure}
To accomodate the quoting needs of Bounded\_Strings, the Append\_Bounded\_Quoted\index{Append\_Bounded\_Quoted}
generic procedure may be used:
\begin{Code}
generic
with package P
is new Ada.Strings.Bounded.Generic_Bounded_Length(<>);
procedure Append_Bounded_Quoted(
Q : in out Query_Type;
C : in Connection_Type;
SQL : in P.Bounded_String;
After : in String
);
\end{Code}
It is otherwise very similar to the previous Append\_Unbounded\index{Append\_Unbounded} procedure.
The following example illustrates a safer\index{safer} version of the prior example:
\begin{Example}
with Ada.Strings.Bounded;
...
declare
package B80
is new Ada.Strings.Bounded.Generic_Bounded_Length(80);
package B20
is new Ada.Strings.Bounded.Generic_Bounded_Length(20);
procedure Append_Quoted is new Append_Bounded_Quoted(B80);
procedure Append_Quoted is new Append_Bounded_Quoted(B20);
C : Connection_Type;
Q : Query_Type;
Item_Code : B20;
Item_Name : B80;
begin
...
Prepare(Q, "SELECT COUNT(*)");
Append_Line(Q,"FROM ORDER");
Append(Q, "WHERE ITEM_CODE = ");
Append_Quoted(Q,C,Item_Code," AND ITEM_NAME = ");
Append_Quoted(Q,C,Item_Name,New_Line);
...
\end{Example}
The instantiations of Append\_Quoted\index{Append\_Quoted}%
\footnote{It is not necessary to instantiate these procedures as
Append\_Quoted, but it is recommended for readability.} here will
properly escape\index{escape} any special\index{special characters} characters that may appear in the program's
string variables Item\_Code and Item\_Name. Additionally, note that the
outer quotes\index{quotes} are provided automatically, easing the programmer's burden
in building up the SQL query. Like other Append\_Quoted API calls within
APQ, the case\index{case within quoted strings} within quoted strings is always preserved.
\subsection{Encoding Quoted Strings}
While strings are well covered by the category 1 support, it is necessary
to encode a NULL\index{NULL} in place of a quoted string\index{quoted string},
when the value is null. The generic specification for
Encode\-\_String\-\_Quoted\index{Encode\_String\_Quoted} is as follows:
\begin{Code}
generic
type Ind_Type is new Boolean;
procedure Encode_String_Quoted(
Q : in out Root_Query_Type'Class;
Connection : in Root_Connection_Type'Class;
SQL : in String;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
An example of its instantiation and use is shown below:
\begin{Example}
declare
type Cust_Name_Ind_Type is new Boolean;
procedure Encode_Quoted
is new Encode_String_Quoted(Cust_Name_Ind_Type);
Q : Query_Type;
Cust_Name : String(1..30);
Cust_Name_Ind : Cust_Name_Ind_Type; -- Indicator
begin
...
Prepare(Q,"UPDATE CUSTOMER");
Append_Line(Q,"SET CUST_NAME = ");
Encode_Quoted(Q,Cust_Name,Cust_Name_Ind);
\end{Example}
In this example, the String Cust\_Name is given outer quotes
and any special characters are escaped before the value is appended
to the current SQL query being collected in object Q. If however,
the indicator Cust\_Name\_Ind is True (indicating that the
value Cust\_Name should be interpreted as NULL\index{NULL}), then the string
``NULL'' is appended instead. When NULL is supplied, no outer
quotes are supplied. The following two SQL statements are possible,
depending upon Cust\_Name\_Ind. When the indicator is false,
a quoted\index{quoted value} value is supplied:
\begin{SQL}
UPDATE CUSTOMER
SET CUST_NAME = 'Fred Willard'
...
\end{SQL}
When the indicator is true (the value is null), the resulting query
becomes the following:
\begin{SQL}
UPDATE CUSTOMER
SET CUST_NAME = NULL
...
\end{SQL}
\subsection{Encoding Quoted Unbounded\_String}
To provide quoting\index{quoting support} support for Unbounded\-\_Strings\index{Ada.Strings.Unbounded},
the Encode\-\_Bounded\-\_Quoted gen\-eric procedure is provided by APQ.
The specifications for this procedure is given below:
\begin{Code}
generic
type Ind_Type is new Boolean;
procedure Encode_Unbounded_Quoted(
Q : in out Root_Query_Type'Class;
Connection : in Root_Connection_Type'Class;
SQL : in Ada.Strings.Unbounded.Unbounded_String;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
An example of its use is illustrated as follows:
\begin{Example}
declare
use Ada.Strings.Bounded;
type Cust_Name_Ind_Type is new Boolean;
procedure Encode_Quoted
is new Encode_Unbounded_Quoted(Cust_Name_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Cust_Name : Unbounded_String;
Cust_Name_Ind : Cust_Name_Ind_Type;
begin
...
Prepare(Q,"UPDATE CUSTOMER");
Append_Line(Q,"SET CUST_NAME = ");
Encode_Quoted(Q,C,Cust_Name,Cust_Name_Ind);
\end{Example}
In this example, the Unbounded\_String Cust\_Name is given
outer quotes and any special characters are escaped before the value
is appended to the current SQL query\index{SQL query} being collected in object Q.
If however, the indicator\index{indicator, null} Cust\_Name\_Ind is True (indicating
that the value \emph{Cust\_Name} should be interpreted as NULL), then
the string ``NULL''\index{NULL} is appended\index{appended} instead. When NULL is supplied,
no outer\index{outer quotes} quotes are supplied. The following two SQL statements are
possible, depending upon \emph{Cust\_Name\_Ind}. When the indicator
is false, a quoted value\index{quoted value} is supplied:
\begin{SQL}
UPDATE CUSTOMER
SET CUST_NAME = 'Fred Willard'
...
\end{SQL}
When the indicator is true, the resulting query becomes the following:
\begin{SQL}
UPDATE CUSTOMER
SET CUST_NAME = NULL
...
\end{SQL}
\subsection{Encoding Bounded Quoted Strings}
Bounded strings\index{bounded strings} require instantiations of
Ada\-.Strings\-.Bounded\-.Gen\-eric\-\_Bound\-ed\-\_Len\-gth
\index{Ada.Strings.Bounded}with a specific length. The instantiated
package\index{package} reference must be provided as an argment to the
Encode\-\_Bounded\-\_Quoted\index{Encode\_Bounded\_Quoted} instantiation:
\begin{Code}
generic
type Ind_Type is new Boolean;
with package P
is new Ada.Strings.Bounded.Generic_Bounded_Length(<>);
procedure Encode_Bounded_Quoted(
Q : in out Root_Query_Type'Class;
Connection : in Root_Connection_Type'Class;
SQL : in P.Bounded_String;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
An example showing its use is given below:
\begin{Example}
with Ada.Strings.Bounded;
declare
package B80 is new
Ada.Strings.Bounded.Generic_Bounded_Length(80);
type Cust_Name_Ind_Type is new Boolean;
procedure Encode_Quoted is new
Encode_Bounded_Quoted(Cust_Name_Ind_Type,B80);
C : Connection_Type;
Q : Query_Type;
Cust_Name : B80.Bounded_String;
Cust_Name_Ind : Cust_Name_Ind_Type; -- Indicator
begin
...
Prepare(Q,"UPDATE CUSTOMER");
Append_Line(Q,"SET CUST_NAME = ");
Encode_Quoted(Q,C,Cust_Name,Cust_Name_Ind);
...
\end{Example}
In this example, the Bounded\_String Cust\_Name is given outer
quotes and any special characters are escaped before the value is
appended to the current SQL query being collected in object Q.
If however, the indicator\index{indicator} Cust\_Name\_Ind is True (indicating
that the value Cust\_Name should be interpreted as NULL), then
the string ``NULL''\index{NULL} is appended instead. When NULL is supplied,
no outer quotes are supplied. The following two SQL\index{SQL} statements are
possible, depending upon Cust\_Name\_Ind. When the indicator is false,
a quoted value\index{quoted value} is supplied:
\begin{SQL}
UPDATE CUSTOMER
SET CUST_NAME = 'Fred Willard'
...
\end{SQL}
When the indicator is true, the resulting query becomes the following:
\begin{SQL}
UPDATE CUSTOMER
SET CUST_NAME = NULL
...
\end{SQL}
\subsection{Encoding Non-String Values}
There are a large number of generic\index{generic} encoding procedures that
allow encoding of non-string\index{non-string values} values into SQL queries. They are
listed below:
\begin{Code}
generic
type Val_Type is new Boolean;
type Ind_Type is new Boolean;
procedure Encode_Boolean(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is range <>;
type Ind_Type is new Boolean;
procedure Encode_Integer(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is mod <>;
type Ind_Type is new Boolean;
procedure Encode_Modular(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is digits <>;
type Ind_Type is new Boolean;
procedure Encode_Float(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is delta <>;
type Ind_Type is new Boolean;
procedure Encode_Fixed(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is delta <> digits <>;
type Ind_Type is new Boolean;
procedure Encode_Decimal(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is new APQ_Date;
type Ind_Type is new Boolean;
procedure Encode_Date(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is new APQ_Time;
type Ind_Type is new Boolean;
procedure Encode_Time(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is new APQ_Timestamp;
type Ind_Type is new Boolean;
procedure Encode_Timestamp(
Q : in out Root_Query_Type'Class;
V : in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
\begin{Code}
generic
type Val_Type is new APQ_Bitstring;
type Ind_Type is new Boolean;
procedure Encode_Bitstring(
Q : in out Root_Query_Type'Class;
V: in Val_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
The following example shows the application of one of these generic
procedures:
\begin{Example}
declare
type Cust_No_Type is new Integer range 1000..100_000;
type Cust_Age_Type is new Integer range 0..200;
procedure Append is new Append_Integer(Cust_No_Type);
procedure Encode is new
Encode_Integer(Cust_No_Type,Boolean);
Q : Query_Type;
Cust_No : Cust_No_Type; -- Customer # NOT NULL
Cust_Age : Cust_Age_Type; -- Can be NULL
Cust_Age_Ind : Boolean; -- Indicator
Cust_Name : String(1..30); -- Customer Name NOT NULL
begin
...
Prepare(Q,"INSERT INTO CUSTOMER (CUST_NO,AGE,CUST_NAME)");
Append(Q, "VALUES ( ");
Append(Q,Cust_No,",");
Encode(Q,Cust_Age,Cust_Age_Ind,",");
Append_Quoted(Q,Cust_Name," )" & New_Line);
...
\end{Example}
From the example, if variable Cust\_Name holds the value ``Martin Mull'',
and Cust\_No holds 12345, two possible SQL queries are possible,
depending upon the value of Cust\_Age\_Ind, the null indicator\index{indicator, null}. When
Cust\_Age\_Ind is false (not null), then the SQL query would be formed as
follows:
\begin{SQL}
INSERT INTO CUSTOMER (CUST_NO,AGE,CUST_NAME)
VALUES (12345,52,'Martin Mull')
\end{SQL}
When the indicator\index{indicator} Cust\_Age\_Ind is true (representing null), then the
query would be constructed as follows:
\begin{SQL}
INSERT INTO CUSTOMER (CUST_NO,AGE,CUST_NAME)
VALUES (12345,NULL,'Martin Mull')
\end{SQL}
Notice how Append\index{Append} procedures are used for values that can never be
null (no null indicator is involved). Encode routines are only necessary
when a null indicator may need to be encoded into the result.
\subsection{Encoding Timezone}
Encoding\index{encoding} APQ\_Timezone\index{APQ\_Timezone} values requires a special generic procedure
named Encode\-\_Timezone\index{Encode\_Timezone}. Its generic parameters are described by the
following table:
\begin{Code}
generic
type Date_Type is new APQ_Timestamp;
type Zone_Type is new APQ_Timezone;
type Ind_Type is new Boolean;
procedure Encode_Timezone(
Q : in out Root_Query_Type'Class;
D : in Date_Type;
Z : in Zone_Type;
Indicator : in Ind_Type;
After : in String := ""
);
\end{Code}
The following example demonstrates the instantiation and use of the
procedure:\label{Birthday Timezone Example}
\begin{Example}
declare
type Cust_No_Type is new Integer range 1000..100_000;
type Birthday_Type is new APQ_Timestamp;
procedure Append is new Append_Integer(Cust_No_Type);
procedure Encode is new
Encode_Integer(Cust_No_Type,Boolean);
procedure Encode is new
Encode_Timezone(Birthday_Type,APQ_Timezone,Boolean);
Q : Query_Type;
Cust_No : Cust_No_Type; -- Customer # NOT NULL
Birthday : Birthday_Type; -- Customer birthday
Birthday_TZ : APQ_Timezone; -- Timezone of the birthday
Birthday_Ind : Boolean; -- True when Birthday is NULL
begin
...
Prepare(Q,"INSERT INTO BIRTHDAY (CUST_NO,BIRTHDAY)");
Append(Q, "VALUES (");
Append(Q,Cust_No,",");
Encode(Q,Birthday,Birthday_TZ,Birthday_Ind,")" & New_Line);
...
\end{Example}
If the Birthday\_Ind indicator\index{indicator} is false (not null\index{null, not}),
then the resulting query would look something like this:
\begin{SQL}
INSERT INTO BIRTHDAY (CUST_NO,BIRTHDAY)
VALUES (12345,'1984-09-25 22:47:06+03')
\end{SQL}
The ``+03'' after the time represents the time zone \index{time zone}UTC+3
hours.
\section{Query Execution}
Once the SQL query has been constructed using all of the techniques
described in \Ref{SQL Initialization} and \Ref{SQL Query Building},
you are ready to send\index{send the query} the query to the database engine\index{engine, database} to have it
executed. This is done with the help of the Query\_Type's primitive
Execute\index{Execute}. The Execute call requires the following calling arguments:
\begin{Code}
procedure Execute(
Query : in out Root_Query_Type;
Connection : in out Root_Connection_Type'Class
);
\end{Code}
The Execute primitive can raise the exceptions that are listed
in Table~\ref{t:exx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Not\_Connected & There is no connection to use\\
Abort\_State & Transaction in {}``abort state{}``\\
SQL\_Error & The submitted SQL query failed\\
Failed & Hidden APQ query failure\\
\end{tabular}
\end{center}
\caption{Execute Exceptions}\label{t:exx}
\end{table}
The PostgreSQL\index{PostgreSQL} Abort\_State\index{Abort\_State}
exception is described in \Ref{Abort_State exception}. This exception indicates that
the current transaction has failed\index{failed transaction}. All other types of errors\index{errors} raise\index{raise}
the SQL\_Error\index{SQL\_Error} exception, unless the connection is bad. The Failed\index{Failed exception}
exception only occurs for some databases where a hidden\index{hidden SQL query} SQL query
must be performed and it unexpectedly failed.%
\footnote{For Sybase, APQ will do a SELECT @@identity after an INSERT query
is performed.%
}
The use of the Execute\index{Execute} primitive is illustrated by extending the example
from page \pageref{Birthday Timezone Example}:
\begin{Example}
declare
type Cust_No_Type is new Integer range 1000..100_000;
type Birthday_Type is new APQ_Timestamp;
procedure Append is new Append_Integer(Cust_No_Type);
procedure Encode is new
Encode_Integer(Cust_No_Type,Boolean);
procedure Encode is new
Encode_Timezone(Birthday_Type,APQ_Timezone,Boolean);
C : Connection_Type;
Q : Query_Type;
Cust_No : Cust_No_Type; -- NOT NULL
Birthday : Birthday_Type;
Birthday_TZ : APQ_Timezone; -- Timezone
Birthday_Ind : Boolean; -- Indicator
begin
...
Prepare(Q,"INSERT INTO BIRTHDAY (CUST_NO,BIRTHDAY)");
Append(Q, "VALUES (");
Append(Q,Cust_No,",");
Encode(Q,Birthday,Birthday_TZ,Birthday_Ind,")" & New_Line);
Execute(Q,C);
\end{Example}
The example shows the Execute primitive pairing the query object Q
with the database connection object C.
\subsection{Error Message Reporting\label{Error Message Reporting}}
It is useful to know that your SQL query failed, but more information
is usually necessary. The Error\_Message\index{Error\_Message} primitive can be invoked
on the Query\_Type object. This function has the following calling
signature:
\begin{Code}
function Error_Message(
Query : Query_Type;
) return String;
\end{Code}
The following example shows how this function might be used:
\begin{Example}
begin
...
Execute(Q,C);
exception
when SQL_Error =>
Put(Standard_Error,"SQL Error: ");
Put_Line(Standard_Error,Error_Message(Q));
raise;
when others =>
raise;
end
\end{Example}
\subsection{Is\_Duplicate\_Key Function}
Duplicate\index{duplicate key} key errors\index{errors} often occur while performing SQL INSERT\index{INSERT} operations
on a table. A duplicate key insertion\index{insertion error} error is a special case because
the insert operation may not be considered a failure for some applications.
For this reason, the Is\_Duplicate\_Key\index{Is\_Duplicate\_Key} predicate function is provided
for use after a SQL\_Error exception has been raised%
\footnote{At present, this test is implemented by calling Error\_Message and
looking at the message text. Future versions of the APQ binding may
use a more reliable indicator if the PostgreSQL libpq library provides
such a status indication.%
}. The specification is listed as follows:
\begin{Code}
function Is_Duplicate_Key(
Query : Query_Type
) return Boolean;
\end{Code}
The following example reports an SQL error\index{SQL error} only if the error is not
a duplicate key insert problem:
\begin{Example}
...
begin
Execute(Q,C); -- Execute an INSERT SQL statement
exception
when SQL_Error =>
if not Is_Duplicate_Key(Q) then
-- Report error if not a duplicate insert
Put(Standard_Error,"SQL Error: ");
Put_Line(Standard_Error,Error_Message(Q));
raise;
else
null; -- Ignore duplicate insert
end;
end;
\end{Example}
\subsection{Command\_Status Function (PostgreSQL)\label{Command_Status Function}}
The Command\_Status\index{Command\_Status} function provides a string of status information
after a PostgreSQL\index{PostgreSQL} query has been executed. The results returned depends
upon the type of execution that was last performed. Table~\ref{t:csrv}
summarizes the types of return status strings available:%
\marginpar{This is a PostgreSQL specific function, only. Avoid its use for portability.}
\begin{table}
\begin{center}
\begin{tabular}{|l|l|l|}
\hline
After Event & Result & Comments\\
\hline
CREATE ... & "CREATE" & \\
BEGIN WORK & "BEGIN" & \\
COMMIT WORK & "COMMIT" & \\
ROLLBACK WORK & "ROLLBACK" & \\
SELECT ... & "SELECT" & \\
INSERT ... & "INSERT <OID> <\#>" & \# is normally 1\\
\hline
\end{tabular}
\end{center}
\caption{Command\_Status Return Values}\label{t:csrv}
\end{table}
Notice that after an INSERT\index{INSERT} is performed, the returned status string
includes the OID\index{OID} (row ID\index{row ID}) of the new row, and the number of rows inserted
(normally 1). If you need to extract the OID value, see the Command\_Oid
function in \Ref{Command_Oid Function}.
The calling signature of Command\_Status is:
\begin{Code}
function Command_Status(
Query : Query_Type
) return String;
\end{Code}
The Command\_Status function can raise the exceptions listed in
Table~\ref{t:cstsx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There is no result status (no execution)\\
\end{tabular}
\end{center}
\caption{Command\_Status Exceptions}\label{t:cstsx}
\end{table}
\subsection{Command\_Oid Function \label{Command_Oid Function}}
After an INSERT\index{INSERT} operation, it is often required to know the OID\index{OID} (row ID\index{row ID})
value for the newly created row. When using PostgreSQL, this can be
extracted from the Command\_Status\index{Command\_Status} return string (see
\Ref{Command_Status Function}), but this approach is not
portable to other vendor databases.
The APQ user is encouraged to call the Command\_Oid function when
it is necessary to know the identity\index{identity} of the newly inserted row. This
function primitive hides the differences\index{differences} between the different database
products and makes your code more portable.
The calling signature for Command\_Oid is as follows:
\begin{Code}
function Command_Oid(
Query : Query_Type
) return Row_ID_Type;
\end{Code}
Table \ref{t:coidx} lists the exceptions that are possible for Command\_Oid.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There is no result status (no execution)\\
SQL\_Error & An SQL error occurred obtaining the OID\\
\end{tabular}
\end{center}
\caption{Command\_Oid Exceptions}\label{t:coidx}
\end{table}
Be aware that the exception No\_Result\index{No\_Result} can be raised for two different
reasons:
\begin{itemize}
\item There was no prior ``execution'' (thus no result)
\item The prior execution was not an INSERT operation (hence no OID value available)
\end{itemize}
APQ applications should \emph{not} be written to provoke these exceptions,
since different database products behave differently in this respect
(Sybase\index{Sybase} users will never see an exception from Command\_Oid for example).
The raising of either of these exceptions does however indicate that
there is a programming error\index{error, programming} that requires correction in the calling
application.
\subsubsection{Database OID (Row ID) Support}
Some databases do not support the concept of OID\index{OID} (row ID\index{row ID}) values.
This creates a huge portability\index{portability} problem for the application programmer.
However, all databases provide some technique for identifying\index{identifying rows} rows
uniquely in a table. Table~\ref{t:roids} summarizes the ways that
APQ adapts the database server to concept of OID values:%
\footnote{Applications should be written to avoid row ID concepts and use key values instead.}
\begin{table}
\begin{center}
\begin{tabular}{|l|l|l|l|}
\hline
Database & OID & How & How APQ Supports OID\\
\hline
PostgreSQL & Yes & OID = Row ID & PostgreSQL Object ID (OID)\\
MySQL & No & AUTO\_INCREMENT & Serial value from primary key\\
Sybase & No & Identity column & SELECT @@identity\\
\hline
\end{tabular}
\end{center}
\caption{Row ID Database Support}\label{t:roids}
\end{table}
\subsubsection{MySQL OID (Row ID) Support}
From the preceeding table, you can observe that MySQL\index{MySQL} does not support
any concept of a row ID\index{row ID} value. APQ can fake OID-like\index{OID} support, if the
table is defined using a primary key in the following form\index{AUTO\_INCREMENT}:
\begin{SQL}
INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY
\end{SQL}
When a MySQL table has a primary key like the one shown, APQ is able
to return the created primary key value using Command\_OID\index{Command\_OID}.
The following is an example table declaration:
\begin{SQL}
CREATE TABLE ITEM_DESC (
ITEM_ID INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
DESCRIPTION VARCHAR(80)
);
\end{SQL}
\subsubsection{Sybase OID (Row ID) Support}
Sybase\index{Sybase} does not support the concept of row ID\index{row ID} values. APQ however,
can provide row ID-like support if you declare your table with a primary
key in the following form\index{IDENTITY}:
\begin{SQL}
NUMERIC IDENTITY NOT NULL PRIMARY KEY
\end{SQL}
For Sybase, when the APQ procedure Execute is performed, APQ will
check to see if the SQL query peformed was an INSERT\index{INSERT} command. If it
was, a hidden SQL query is performed immediately afterwards on the
same connection to query the identity\index{identity of a row} of the row that was created\index{@@identity}:
\begin{SQL}
SELECT @@identity
\end{SQL}
The value returned by this hidden query will be saved as the row ID\index{row ID}
in the Query\-\_Type object used to perform the INSERT\index{INSERT}. A later call
to Command\_OID on this same Query\_Type object, will then return
this row identity value as a Row\_ID\_Type\index{Row\_ID\_Type}.
The following is an example Sybase table declaration:
\begin{SQL}
CREATE TABLE ITEM_DESC (
ITEM_ID NUMERIC IDENTITY NOT NULL PRIMARY KEY,
DESCRIPTION VARCHAR(80)
);
\end{SQL}
\subsubsection{Example of Command\_OID Use}
The following example will always work for PostgreSQL\index{PostgreSQL}. It will also
work for MySQL\index{MySQL} and Sybase\index{Sybase}, if the primary key\index{primary key} guidelines in the prior
subsections were followed.
This example shows how the INSERTed\index{INSERT} row's OID value (or primary key\index{primary key})
is obtained:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
Obj_Id : Row_ID_Type;
begin
...
Prepare(Q,"INSERT INTO CUST_ORDER (CATALOG_NO,QUANTITY,...");
...
Execute(Q,C);
Obj_Id := Command_Oid(Q); -- row id/identity of inserted row
\end{Example}
The variable named Obj\_ID will contain the PostgreSQL\index{PostgreSQL} OID\index{OID} value of
the inserted row, when PostgreSQL is used. For MySQL\index{MySQL} and Sybase\index{Sybase}, the
variable Obj\_ID will contain the primary key value of the newly created
row.
\subsubsection{Generic\_Command\_Oid Function}
To allow strong typing\index{strong typing} to be used in place of the supplied Row\_ID\_Type\index{Row\_ID\_Type}
type, the Generic\_Command\_Oid\index{Generic\_Command\_Oid} function can be instantiated for use
in the application. The instantiated function otherwise behaves identical
with the Command\_Oid function described on page \pageref{Command_Oid Function}.
The instantiation arguments for Generic\_Command\_Oid are as follows:
\begin{Code}
generic
type Oid_Type is new Row_ID_Type;
function Generic_Command_Oid(
Query : Query_Type'Class
) return Oid_Type;
\end{Code}
An instantiation example follows:
\begin{Example}
declare
type My_Oid_Type is new Row_ID_@Type;
function Command_Oid
is new Generic_Command_Oid(My_Oid_Type);
\end{Example}
\subsection{Error Status Reporting\label{Error Status Reporting}}
The Result\index{Result} function primitive is documented here for completeness.
Applications should avoid using this function, since the values that
it returns are very database technology specific.
\subsubsection{Result Codes}
The Result function primitive should be avoided in portable code. However,
there may be circumstances where a particular code is important to the
application developer.
\begin{Code}
function Result(
Query : Query_Type
) return Natural;
-- Returns Result_Type'Pos()
\end{Code}
The Result function returns a Natural\index{Natural} value. To obtain the Result\_Type\index{Result\_Type}
for the database being used, you should use;
\begin{Example}
declare
Q : Query_Type;
R : Result_Type;
begin
R := Result_Type'Val(Result(Q));
\end{Example}
\subsubsection{Notes:}
\begin{itemize}
\item The Execute\index{Execute} primitive will throw an exception if the execution failed
(the PostgreSQL Nonfatal\_Error\index{Nonfatal\_Error} case).
\item For SELECT\index{SELECT} queries, the fact that no rows are returned will be identifiable upon
the first FETCH\index{FETCH} operation (the PostgreSQL Empty\_Query\index{Empty\_Query}
case), or upon calling End\_of\_Query\index{End\_of\_Query}.
\item When rows are returned (the PostgreSQL Tuples\_OK\index{Tuples\_OK} case), the application will
successfully fetch at least one row.
\item For other SQL commands, successful execution is determined by Execute
not throwing an exception (the PostgreSQL Command\_OK\index{Command\_OK} case).
\end{itemize}
\subsubsection{PostgreSQL Result Codes}
The PostgreSQL\index{PostgreSQL} result\index{result types} types are declared in the APQ\-.PostgreSQL package.
The Result\_Type values are highly PostgreSQL engine\index{engine} specific and are
enumerated in Table~\ref{t:pqresc}.
\begin{longtable}{|c|c|l|}
\hline
Name & Value & Description\\
\hline
Empty\_Query & 0 & The query returned 0 rows of data\\
Command\_OK & 1 & The non-query statement executed successfully\\
Tuples\_OK & 2 & The SQL query returned at least 1 row of data\\
Copy\_Out & 3 & \\
Copy\_In & 4 & \\
Bad\_Response & 5 & Bad response from database server\\
Nonfatal\_Error & 6 & A non fatal error has occurred\\
Fata\_Error & 7 & A fatal error has occurred\\
\hline
\caption{PostgreSQL Result Codes}\label{t:pqresc}
\end{longtable}
\begin{quote}
Note that the numeric values in Table~\ref{t:pqresc} are subject to change if the
PostgreSQL\index{PostgreSQL} database server software designers choose to do so. Use
the enumerated names instead.
\end{quote}
\subsubsection{MySQL Result Codes}
Result types for MySQL\index{MySQL} are declared in package APQ\-.MySQL. These are
generated by the APQ install process from the MySQL database
C macros provided. The following is the list from MySQL version 4.0.14 :
\begin{Code}
type Result_Type is (
CR_NO_ERROR,
ER_HASHCHK,
ER_NISAMCHK,
ER_NO,
ER_YES,
ER_CANT_CREATE_FILE,
ER_CANT_CREATE_TABLE,
ER_CANT_CREATE_DB,
ER_DB_CREATE_EXISTS,
ER_DB_DROP_EXISTS,
ER_DB_DROP_DELETE,
ER_DB_DROP_RMDIR,
ER_CANT_DELETE_FILE,
ER_CANT_FIND_SYSTEM_REC,
ER_CANT_GET_STAT,
ER_CANT_GET_WD,
ER_CANT_LOCK,
ER_CANT_OPEN_FILE,
ER_FILE_NOT_FOUND,
ER_CANT_READ_DIR,
ER_CANT_SET_WD,
ER_CHECKREAD,
ER_DISK_FULL,
ER_DUP_KEY,
ER_ERROR_ON_CLOSE,
ER_ERROR_ON_READ,
ER_ERROR_ON_RENAME,
ER_ERROR_ON_WRITE,
ER_FILE_USED,
ER_FILSORT_ABORT,
ER_FORM_NOT_FOUND,
ER_GET_ERRNO,
ER_ILLEGAL_HA,
ER_KEY_NOT_FOUND,
ER_NOT_FORM_FILE,
ER_NOT_KEYFILE,
ER_OLD_KEYFILE,
ER_OPEN_AS_READONLY,
ER_OUTOFMEMORY,
ER_OUT_OF_SORTMEMORY,
ER_UNEXPECTED_EOF,
ER_CON_COUNT_ERROR,
ER_OUT_OF_RESOURCES,
ER_BAD_HOST_ERROR,
ER_HANDSHAKE_ERROR,
ER_DBACCESS_DENIED_ERROR,
ER_ACCESS_DENIED_ERROR,
ER_NO_DB_ERROR,
ER_UNKNOWN_COM_ERROR,
ER_BAD_NULL_ERROR,
ER_BAD_DB_ERROR,
ER_TABLE_EXISTS_ERROR,
ER_BAD_TABLE_ERROR,
ER_NON_UNIQ_ERROR,
ER_SERVER_SHUTDOWN,
ER_BAD_FIELD_ERROR,
ER_WRONG_FIELD_WITH_GROUP,
ER_WRONG_GROUP_FIELD,
ER_WRONG_SUM_SELECT,
ER_WRONG_VALUE_COUNT,
ER_TOO_LONG_IDENT,
ER_DUP_FIELDNAME,
ER_DUP_KEYNAME,
ER_DUP_ENTRY,
ER_WRONG_FIELD_SPEC,
ER_PARSE_ERROR,
ER_EMPTY_QUERY,
ER_NONUNIQ_TABLE,
ER_INVALID_DEFAULT,
ER_MULTIPLE_PRI_KEY,
ER_TOO_MANY_KEYS,
ER_TOO_MANY_KEY_PARTS,
ER_TOO_LONG_KEY,
ER_KEY_COLUMN_DOES_NOT_EXITS,
ER_BLOB_USED_AS_KEY,
ER_TOO_BIG_FIELDLENGTH,
ER_WRONG_AUTO_KEY,
ER_READY,
ER_NORMAL_SHUTDOWN,
ER_GOT_SIGNAL,
ER_SHUTDOWN_COMPLETE,
ER_FORCING_CLOSE,
ER_IPSOCK_ERROR,
ER_NO_SUCH_INDEX,
ER_WRONG_FIELD_TERMINATORS,
ER_BLOBS_AND_NO_TERMINATED,
ER_TEXTFILE_NOT_READABLE,
ER_FILE_EXISTS_ERROR,
ER_LOAD_INFO,
ER_ALTER_INFO,
ER_WRONG_SUB_KEY,
ER_CANT_REMOVE_ALL_FIELDS,
ER_CANT_DROP_FIELD_OR_KEY,
ER_INSERT_INFO,
ER_INSERT_TABLE_USED,
ER_NO_SUCH_THREAD,
ER_KILL_DENIED_ERROR,
ER_NO_TABLES_USED,
ER_TOO_BIG_SET,
ER_NO_UNIQUE_LOGFILE,
ER_TABLE_NOT_LOCKED_FOR_WRITE,
ER_TABLE_NOT_LOCKED,
ER_BLOB_CANT_HAVE_DEFAULT,
ER_WRONG_DB_NAME,
ER_WRONG_TABLE_NAME,
ER_TOO_BIG_SELECT,
ER_UNKNOWN_ERROR,
ER_UNKNOWN_PROCEDURE,
ER_WRONG_PARAMCOUNT_TO_PROCEDURE,
ER_WRONG_PARAMETERS_TO_PROCEDURE,
ER_UNKNOWN_TABLE,
ER_FIELD_SPECIFIED_TWICE,
ER_INVALID_GROUP_FUNC_USE,
ER_UNSUPPORTED_EXTENSION,
ER_TABLE_MUST_HAVE_COLUMNS,
ER_RECORD_FILE_FULL,
ER_UNKNOWN_CHARACTER_SET,
ER_TOO_MANY_TABLES,
ER_TOO_MANY_FIELDS,
ER_TOO_BIG_ROWSIZE,
ER_STACK_OVERRUN,
ER_WRONG_OUTER_JOIN,
ER_NULL_COLUMN_IN_INDEX,
ER_CANT_FIND_UDF,
ER_CANT_INITIALIZE_UDF,
ER_UDF_NO_PATHS,
ER_UDF_EXISTS,
ER_CANT_OPEN_LIBRARY,
ER_CANT_FIND_DL_ENTRY,
ER_FUNCTION_NOT_DEFINED,
ER_HOST_IS_BLOCKED,
ER_HOST_NOT_PRIVILEGED,
ER_PASSWORD_ANONYMOUS_USER,
ER_PASSWORD_NOT_ALLOWED,
ER_PASSWORD_NO_MATCH,
ER_UPDATE_INFO,
ER_CANT_CREATE_THREAD,
ER_WRONG_VALUE_COUNT_ON_ROW,
ER_CANT_REOPEN_TABLE,
ER_INVALID_USE_OF_NULL,
ER_REGEXP_ERROR,
ER_MIX_OF_GROUP_FUNC_AND_FIELDS,
ER_NONEXISTING_GRANT,
ER_TABLEACCESS_DENIED_ERROR,
ER_COLUMNACCESS_DENIED_ERROR,
ER_ILLEGAL_GRANT_FOR_TABLE,
ER_GRANT_WRONG_HOST_OR_USER,
ER_NO_SUCH_TABLE,
ER_NONEXISTING_TABLE_GRANT,
ER_NOT_ALLOWED_COMMAND,
ER_SYNTAX_ERROR,
ER_DELAYED_CANT_CHANGE_LOCK,
ER_TOO_MANY_DELAYED_THREADS,
ER_ABORTING_CONNECTION,
ER_NET_PACKET_TOO_LARGE,
ER_NET_READ_ERROR_FROM_PIPE,
ER_NET_FCNTL_ERROR,
ER_NET_PACKETS_OUT_OF_ORDER,
ER_NET_UNCOMPRESS_ERROR,
ER_NET_READ_ERROR,
ER_NET_READ_INTERRUPTED,
ER_NET_ERROR_ON_WRITE,
ER_NET_WRITE_INTERRUPTED,
ER_TOO_LONG_STRING,
ER_TABLE_CANT_HANDLE_BLOB,
ER_TABLE_CANT_HANDLE_AUTO_INCREMENT,
ER_DELAYED_INSERT_TABLE_LOCKED,
ER_WRONG_COLUMN_NAME,
ER_WRONG_KEY_COLUMN,
ER_WRONG_MRG_TABLE,
ER_DUP_UNIQUE,
ER_BLOB_KEY_WITHOUT_LENGTH,
ER_PRIMARY_CANT_HAVE_NULL,
ER_TOO_MANY_ROWS,
ER_REQUIRES_PRIMARY_KEY,
ER_NO_RAID_COMPILED,
ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE,
ER_KEY_DOES_NOT_EXITS,
ER_CHECK_NO_SUCH_TABLE,
ER_CHECK_NOT_IMPLEMENTED,
ER_CANT_DO_THIS_DURING_AN_TRANSACTION,
ER_ERROR_DURING_COMMIT,
ER_ERROR_DURING_ROLLBACK,
ER_ERROR_DURING_FLUSH_LOGS,
ER_ERROR_DURING_CHECKPOINT,
ER_NEW_ABORTING_CONNECTION,
ER_DUMP_NOT_IMPLEMENTED,
ER_FLUSH_MASTER_BINLOG_CLOSED,
ER_INDEX_REBUILD,
ER_MASTER,
ER_MASTER_NET_READ,
ER_MASTER_NET_WRITE,
ER_FT_MATCHING_KEY_NOT_FOUND,
ER_LOCK_OR_ACTIVE_TRANSACTION,
ER_UNKNOWN_SYSTEM_VARIABLE,
ER_CRASHED_ON_USAGE,
ER_CRASHED_ON_REPAIR,
ER_WARNING_NOT_COMPLETE_ROLLBACK,
ER_TRANS_CACHE_FULL,
ER_SLAVE_MUST_STOP,
ER_SLAVE_NOT_RUNNING,
ER_BAD_SLAVE,
ER_MASTER_INFO,
ER_SLAVE_THREAD,
ER_TOO_MANY_USER_CONNECTIONS,
ER_SET_CONSTANTS_ONLY,
ER_LOCK_WAIT_TIMEOUT,
ER_LOCK_TABLE_FULL,
ER_READ_ONLY_TRANSACTION,
ER_DROP_DB_WITH_READ_LOCK,
ER_CREATE_DB_WITH_READ_LOCK,
ER_WRONG_ARGUMENTS,
ER_NO_PERMISSION_TO_CREATE_USER,
ER_UNION_TABLES_IN_DIFFERENT_DIR,
ER_LOCK_DEADLOCK,
ER_TABLE_CANT_HANDLE_FULLTEXT,
ER_CANNOT_ADD_FOREIGN,
ER_NO_REFERENCED_ROW,
ER_ROW_IS_REFERENCED,
ER_CONNECT_TO_MASTER,
ER_QUERY_ON_MASTER,
ER_ERROR_WHEN_EXECUTING_COMMAND,
ER_WRONG_USAGE,
ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT,
ER_CANT_UPDATE_WITH_READLOCK,
ER_MIXING_NOT_ALLOWED,
ER_DUP_ARGUMENT,
ER_USER_LIMIT_REACHED,
ER_SPECIFIC_ACCESS_DENIED_ERROR,
ER_LOCAL_VARIABLE,
ER_GLOBAL_VARIABLE,
ER_NO_DEFAULT,
ER_WRONG_VALUE_FOR_VAR,
ER_WRONG_TYPE_FOR_VAR,
ER_VAR_CANT_BE_READ,
ER_CANT_USE_OPTION_HERE,
ER_NOT_SUPPORTED_YET,
ER_MASTER_FATAL_ERROR_READING_BINLOG,
ER_SLAVE_IGNORED_TABLE,
CR_UNKNOWN_ERROR,
CR_SOCKET_CREATE_ERROR,
CR_CONNECTION_ERROR,
CR_CONN_HOST_ERROR,
CR_IPSOCK_ERROR,
CR_UNKNOWN_HOST,
CR_SERVER_GONE_ERROR,
CR_VERSION_ERROR,
CR_OUT_OF_MEMORY,
CR_WRONG_HOST_INFO,
CR_LOCALHOST_CONNECTION,
CR_TCP_CONNECTION,
CR_SERVER_HANDSHAKE_ERR,
CR_SERVER_LOST,
CR_COMMANDS_OUT_OF_SYNC,
CR_NAMEDPIPE_CONNECTION,
CR_NAMEDPIPEWAIT_ERROR,
CR_NAMEDPIPEOPEN_ERROR,
CR_NAMEDPIPESETSTATE_ERROR,
CR_CANT_READ_CHARSET,
CR_NET_PACKET_TOO_LARGE,
CR_EMBEDDED_CONNECTION,
CR_PROBE_SLAVE_STATUS,
CR_PROBE_SLAVE_HOSTS,
CR_PROBE_SLAVE_CONNECT,
CR_PROBE_MASTER_CONNECT,
CR_SSL_CONNECTION_ERROR,
CR_MALFORMED_PACKET
);
\end{Code}
\subsubsection{Sybase Result Codes}
The Result\_Type values available from package APQ.Sybase are as follows;
\begin{Code}
type Result_Type is (
Execution_Failed, -- ct_results() call failed
No_Results, -- Cmd processed, but no results
Row_Results, -- Cmd processed, and row results
Cursor_Results, -- Cmd processed, and cursor row result
Info_Results, -- Cmd processed, no row data, but info
Compute_Results, -- Computed results
Param_Results, -- Parameter results
Status_Results -- Status results
);
\end{Code}
\subsection{Generic APQ.Result\label{Generic APQ.Result}}
To enable generic database processing, APQ version 2.0 adds a new
API function which is declared at the APQ\-.Root\_Query\_Type\index{APQ.Root\_Query\_Type} object
level. This function returns a Natural result:
\begin{Code}
function Result(
Query : Root_Query_Type;
) return Natural;
\end{Code}
The value returned, represents the Result\_Type'Pos(arg)\index{Result\_Type'Pos}. In generic
database code, you could use this generic function to retrieve the
value. Later it can be turned into the appropriate Result\_Type when
required by doing a conversion. The following example illustrates:
\begin{Example}
with APQ.MySQL.Client, APQ.PostgreSQL.Client;
...
procedure App(Q : Root_Query_Type'Class) is
R : Natural;
PQ_R : APQ.PostgreSQL.Result_Type;
My_R : APQ.MySQL.Result_Type;
begin
...
R := APQ.Result(Q);
if APQ.Engine_Of(Q) = Engine_MySQL then
My_R := APQ.MySQL.Result_Type'Val(R);
...
elsif APQ.Engine_Of(Q) = Engine_PostgreSQL then
PQ_R := APQ.PostgreSQL.Result_Type'Val(R);
...
...
\end{Example}
The code above demonstrates how generic database code is able to test
for specific database error codes, when required.
\subsection{Generic APQ.Engine\_Of\label{Generic APQ.Engine_Of}}
As seen in the example of \Ref{Generic APQ.Result}, it is
sometimes necessary to determine in portable code, what database
technology is being used. Once this fact is known, the correct, more
specific action can be taken. For example, the ``LIMIT n''\index{LIMIT} clause can
be added to MySQL\index{MySQL} queries to limit the number of returned rows for
greater efficiency.
The function primitive Engine\_Of\index{Engine\_Of} can be used to determine
the database technology being used:
\begin{Code}
type Database_Type is (
Engine_PostgreSQL,
Engine_MySQL,
Engine_Sybase
);
function Engine_Of(
Query : Root_Query_Type;
) return Database_Type;
\end{Code}
\subsection{Checked Execution}
For many utility programs \index{utility programs}where error reporting
and recovery have simple requirements, a more compact and convenient
way to execute queries can be applied. With checked execution, the
query is not only executed, but any SQL errors are intercepted and
reported\index{reported} to Standard\_Error\index{Standard\_Error} automatically. This saves the programmer
effort when writing simple utility programs. Once the SQL\_Error\index{SQL\_Error} exception
is intercepted and reported, the exception is re-raised to leave control
in the caller's hands. The important thing here is that the error\index{error}
is caught and reported.
The Execute\_Checked\index{Execute\_Checked} primitive has the following calling signature:
\begin{Code}
procedure Execute_Checked(
Query : in out Root_Query_Type;
Connection : in out Root_Connection_Type'Class;
Msg : in String := ""
);
\end{Code}
When the argument Msg is a non-empty\index{non-empty string} string like ``Dropping table
temp\_tbl'', the error message reported will be of the following
format:
\begin{Example}
*** SQL ERROR: Dropping table temp_tbl
FATAL_ERROR: ERROR: Relation "temp_tbl" does not exist
\end{Example}
The first line just identifies the fact that an SQL error occurred,
and reports the Msg text. The second line first reports Result\_Type'Image
of the error, and then reports the error message text as returned
by Error\_Message\index{Error\_Message}. In this case, the example shows that Result\_Type
Fatal\_Error was returned, and the error message returned from the
database server was ``ERROR: Relation ``temp\_tbl'' does not
exist''.
When the null string\index{null string} (or the default value for
the parameter) is given to argument Msg, then the SQL query is dumped\index{dumped}
out to Standard\_Error\index{Standard\_Error} instead. This is often useful for debugging\index{debugging}
purposes.
Changing the example found on page \pageref{Birthday Timezone Example}
slightly, we can apply the Execute\_Checked primitive in the place
of the Execute\index{Execute} call.
\begin{Example}
declare
type Cust_No_Type is new Integer range 1000..100_000;
type Birthday_Type is new APQ_Timestamp;
procedure Append is new Append_Integer(Cust_No_Type);
procedure Encode is new
Encode_Integer(Cust_No_Type,Boolean);
procedure Encode is new
Encode_Timezone(Birthday_Type,APQ_Timezone,Boolean);
C : Connection_Type;
Q : Query_Type;
Cust_No : Cust_No_Type; -- NOT NULL
Birthday : Birthday_Type;
Birthday_TZ : APQ_Timezone; -- Timezone
Birthday_Ind : Boolean; -- Indicator
begin
...
Prepare(Q,"INSERT INTO BIRTHDAY (CUST_NO,BIRTHDAY)");
Append(Q, "VALUES (");
Append(Q,Cust_No,",");
Encode(Q,Birthday,Birthday_TZ,Birthday_Ind,")" & New_Line);
Execute_Checked(Q,C);
\end{Example}
\subsection{Suppressing Checked Exceptions}
For utility work, it is sometimes convenient to have Execute\_Checked
report errors, but not raise SQL\_Error\index{SQL\_Error}. This is useful when you don't
care about the outcome but want the error to be reported when detected.
The raising or not raising of SQL\_Error can be controlled for the
Execute\_Checked\index{Execute\_Checked} primitive by calling
Raise\_Exceptions\index{Raise\_Exceptions}. It has the following calling
requirements:
\begin{Code}
procedure Raise_Exceptions(
Query : in out Query_Type;
Raise_On : in Boolean := True
);
\end{Code}
The following example shows how exceptions can be suppressed:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
...
Raise_Exceptions(Q,False); -- Suppress SQL_Error exception
Execute_Checked(Q,C); -- Report errors only
Raise_Exceptions(Q,True); -- Re-enable SQL_Error exceptions
\end{Example}
\subsection{Suppressing Checked Reports}
Occaisionally, it is useful to control whether or not reporting is
performed in the event of an SQL\_Error\index{SQL\_Error}. The reporting of errors can
be controlled by the Report\_Errors\index{Report\_Errors} primitive procedure:
\begin{Code}
procedure Report_Errors(
Query : in out Query_Type;
Report_On : in Boolean := True
);
\end{Code}
The default behaviour of a Query\_Type is to report errors and raise
SQL\_Error when Execute\_Checked experiences an SQL\_Error exception.
The reporting behaviour can be disabled\index{disable reporting} as follows:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
...
Report_Errors(Q,False); -- Suppress error reporting
Execute_Checked(Q,C);
\end{Example}
Normally application programmers would not use Execute\_Checked with
error reporting disabled. However, it may be useful as a temporary
measure to cause error reporting while debugging\index{debugging} a program. Once the
debugging has been completed, a global Boolean\index{Boolean} value could be set
to false to prevent these errors from being reported.
\section{Transaction Operations}
Database transaction\index{Transaction} operations consist of:
\begin{itemize}
\item BEGIN WORK\index{BEGIN WORK}
\item COMMIT WORK\index{COMMIT WORK}
\item ROLLBACK WORK\index{ROLLBACK WORK}
\end{itemize}
It is possible to build your own queries to accomplish these operations
but the programmer is encourage to use the primitive operations below
instead. One reason for using the APQ provided functions is to make
your application portable to different databases. There are slight
variations on the SQL syntax\index{syntax, SQL} required for these operations. It may
also be possible in the future to query the state of the transaction.%
\footnote{It is likely that a function like an In\_Transaction function will
be added in the future.%
}
The three primitives are named according to function \label{Begin, Commit and Rollback Work functions}
and are listed in Table~\ref{t:txp}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Primitive Name & SQL Function\\
\hline
Begin\_Work & BEGIN WORK\\
Commit\_Work & COMMIT WORK\\
Rollback\_Work & ROLLBACK WORK\\
\end{tabular}
\end{center}
\caption{Transaction Primitives}\label{t:txp}
\end{table}
The specifications of these primitives are listed below:
\begin{Code}
procedure Begin_Work(
Query : in out Query_Type;
Connection : in out Connection_Type'Class
);
\end{Code}
\begin{Code}
procedure Commit_Work(
Query : in out Query_Type;
Connection : in out Connection_Type'Class
);
\end{Code}
\begin{Code}
procedure Rollback_Work(
Query : in out Query_Type;
Connection : in out Connection_Type'Class
);
\end{Code}
These primitives will raise the exceptions listed in Table~\ref{t:tranpx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Not\_Connected & There is no connection\\
Abort\_State & A ROLLBACK is required\\
SQL\_Error & This should not normally occur\\
\end{tabular}
\end{center}
\caption{Transaction Primitives Exceptions}\label{t:tranpx}
\end{table}
The following simple example demonstrates the use of these primitives:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
...
Begin_Work(Q,C);
...
Commit_Work(Q,C);
\end{Example}
\begin{description}
\item [Note:] There is an implicit\index{implicit Clear} Clear operation before and after the
execution of these operations for the Query\_Type\index{Query\_Type} object. The original
fetch mode of the object is preserved after the call.
\end{description}
\subsection{The PostgreSQL Abort\_State}
The Abort\_State\index{Abort\_State} is unique to the PostgreSQL\index{PostgreSQL} database. Other databases
will tolerate failed steps within a transaction, but PostgreSQL will not.
The Abort\_State \label{Abort_State exception} exception indicates that the database
was in a transaction%
\footnote{A {}``BEGIN WORK'' statement was executed.%
} when a processing error occurred (like a duplicate key on insert
error). Once an error\index{error in transaction} is encountered within a PostgreSQL transaction,
the only course to recovery is by executing a ROLLBACK\index{ROLLBACK} WORK statement
(this is done by the Rollback\_Work\index{Rollback\_Work} call shown above). If duplicate\index{duplicate inserts}
inserts\index{inserts} may occur, you must test for them in advance of the INSERT\index{INSERT},
to avoid placing the transaction into the ``abort state''\index{abort state}. Note
that this PostgreSQL\index{PostgreSQL} behavior is different from other database vendor
offerings.
The ``abort state''\index{abort state} itself is maintained in the Connection\_Type\index{Connection\_Type}
object, causing the state\index{state} to influence all Query\_Type objects using
the same connection. To clear the status\index{status}, you must perform a Rollback\_Work\index{Rollback\_Work}
call on any Query\_Type object, using the affected Connection\_Type
object where the status is saved.
The Query\_Type object is used to form the SQL\index{SQL} statement and to hold
the result\index{result status} status. In application programming, you may want to dedicate
one Query\_Type object for each transaction in progress.%
\footnote{This will be important later, if you want to query whether or not
you are in a transaction.%
}
\section{Fetch Operations}
Some database operations, particularly SELECT\index{SELECT}, return
results. There are two fetch\index{fetch} related primitives:
\begin{enumerate}
\item Sequential\index{Sequential access} row fetch\index{fetch, sequential}
\item Random\index{Random access} access row fetch\index{fetch, random}
\end{enumerate}
The sequential fetch permits serial\index{serial access} access of the resulting rows (tuples\index{tuples}).
Random access fetching permits rapid\index{rapid access} access to particular row results.
\subsection{Fetch Limitations\label{Fetch Limitations}}
Some databases like PostgreSQL\index{PostgreSQL} have \emph{no} limitations\index{limitations} on how row
data is fetched. The fetch\index{fetch} may be sequential or random, as the application
requires. Some other databases however, require some planning by the
application programmer in this area. This distinction, and the API
to control this problem is new to APQ 2.0 and later, for database
engines\index{engines} that require it.
For example, MySQL\index{MySQL} retrieves row data into the client program's address\index{address space}
space in one of two ways:
\begin{itemize}
\item one row at a time, but all rows must be fetched
\item all rows are loaded into client memory\index{client memory}, for random access by the application
\end{itemize}
For large result sets\index{large result sets}, fetching one row%
\footnote{This is done using the mysql\_use\_result() function.%
} at a time is very practical. However, MySQL\index{MySQL} requires that the program
fetch \emph{all} row data. If the result set\index{result set} is large, and only an
initial number of rows are required, this can be a serious performance
issue. This is a greater problem if the application would like to
cancel\index{cancel} the operation.
When random access%
\footnote{This is done using the mysql\_store\_result() function.%
} of rows is required, MySQL\index{MySQL} requires that all row data be retrieved
and stored into the client program (behind the scenes). Fetching all
of this data into client memory\index{client memory} can be impractical for size\index{size} reasons
for large numbers of rows (there is an SQL work-around\index{SQL work-around} for this).
The default APQ query mode varies according to database as listed in Table~\ref{t:fchmd}.
\begin{table}
\begin{center}
\begin{tabular}{lll}
Database & Default Mode & Comments\\
\hline
PostgreSQL & Random\_Fetch & Random or Sequential supported\\
MySQL & Random\_Fetch & Watch \# of rows returned\\
Sybase & Sequential\_Fetch & Random\_Fetch not supported\\
\end{tabular}
\end{center}
\caption{APQ Fetch Modes}\label{t:fchmd}
\end{table}
From the table, you can see that PostgreSQL\index{PostgreSQL} has no difficulty in either
mode. MySQL\index{MySQL} supports both modes, but the programmer must be careful
about the result set size returned if Random\_Fetch mode is in use.
Finally, Sybase\index{Sybase} support does not support Random\_Fetch\index{Random\_Fetch} mode (Sybase
\emph{can} fetch rows randomly with a cursor, but only sequential
cursors\index{cursors} are currently supported by APQ).
All database engines\index{engines} support sequential\index{sequential} access \- even in random\index{random}
access mode. Even if you are using the default or configured Random\_Fetch\index{Random\_Fetch}
mode, APQ will return rows sequentially unless a specific row is requested.
If the application programmer is using a database that is limited
in this way (MySQL), and has determined that fetching all results
into client memory is not suitable, then the mode of the Query\_Type\index{Query\_Type}
needs to be changed by the program to use sequential access instead.
See the next few sections on how to control the fetch query mode.
If you are only planning to use PostgreSQL\index{PostgreSQL}, you can effectively ignore
the sections about Fetch Query modes. However, if you plan to write
your application in a database generic sort of way, or support MySQL\index{MySQL}
and/or Sybase\index{Sybase} code, then you need to plan for the fetch query modes
in your code.
\subsection{Fetch Query Modes\label{Fetch Query Modes}}
Due to the performance limitations of different database engines,
APQ provides the application programmer a way to control the fetch\index{fetch}
mode used. Package APQ defines the Fetch\_Mode\_Type\index{Fetch\_Mode\_Type} for this purpose:
\begin{Code}
type Fetch_Mode_Type is (
Sequential_Fetch, -- All databases
Random_Fetch, -- PostgreSQL, MySQL, not Sybase yet
Cursor_For_Update, -- Sybase
Cursor_For_Read_Only -- Sybase
);
\end{Code}
The last two modes related to cursors will be discussed separately.
The application programmer can query the fetch mode that is in effect.
The Fetch\-\_Mode\index{Fetch\_Mode} function primitive returns the current state
of the Query\-\_Type object:
\begin{Code}
function Fetch_Mode(
Q : Query_Type
) return Fetch_Mode_Type;
\end{Code}
To change the current mode in effect, use the function primitive Set\_Fetch\_Mode\index{Set\_Fetch\_Mode}:
\begin{Code}
procedure Set_Fetch_Mode(
Q : in out Query_Type;
Mode : in Fetch_Mode_Type
);
\end{Code}
The application should only change the query mode \emph{prior} to
the \emph{execution} of the query. When Execute\index{Execute} or Execute\_Checked\index{Execute\_Checked}
are called, APQ must commit to the fetch method being used. For this
reason, set the query mode when the Query\_Type is initially declared,
after a call to Reset\index{Reset} or Prepare\index{Prepare}. The mode must
be established prior to executing the query.
Table \ref{t:sfmdx} lists the exceptions that may be raised by Set\_Fetch\_Mode.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Failed & Query results exist - cannot change mode\\
\end{tabular}
\end{center}
\caption{Set\_Fetch\_Mode Exceptions}\label{t:sfmdx}
\end{table}
\subsection{Sequential Fetch}
The \emph{Query\_Type} object is always positioned at the first row\index{first row}
after the query has been executed. Sequential fetches\index{fetches} can then be
performed to retrieve the first row, through to the last resulting
row. The sequential \textbf{Fetch} primitive has the following calling
arguments:
\begin{Code}
procedure Fetch(
Q : in out Query_Type
);
\end{Code}
A sequential fetch can always be made, whether the query object is
in sequential or random mode. However, be aware that some databases
(MySQL\index{MySQL}) require that all results be fetched when in Sequential\_Fetch\index{Sequential\_Fetch}
mode. The APQ default varies according to the database software being
used. See \Ref{Fetch Query Modes} to establish a mode explicitly.
Table \ref{t:fchx} lists the exceptions that can be raised by Fetch.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no command executed\\
No\_Tuple & There were no result rows returned\\
Not\_Supported & The fetch mode in effect is not supported\\
\end{tabular}
\end{center}
\caption{Fetch Exceptions}\label{t:fchx}
\end{table}
The No\_Result\index{No\_Result} exception is raised when the Query\_Type
object is in the wrong\index{wrong state} state. For example, if the Query\_Type
object is cleared, and/or an SQL query is built but not Executed,
then a No\_Result exception will be raised.
The No\_Tuple\index{No\_Tuple} exception is raised to indicate that no rows
were available, or that there are no more rows remaining. In Sequential\_Fetch
mode, this indicates that there are no more rows to be returned. In
Random\_Fetch\index{Random\_Fetch} mode, this indicates that no rows were returned.%
\footnote{Note that requesting a non existant row in random fetch mode will
not raise an exception until a value is extracted.%
}
The Not\_Supported\index{Not\_Supported} exception is also possible with APQ 2.2
and later. This exception is raised to indicate that the database
software being used does not support the current Fetch\_Mode\index{Fetch\_Mode} that
is in effect.
The following code shows a normal sequential fetch loop:\label{Sequential Fetch Example}
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when APQ.No_Tuple =>
exit;
end;
...
end loop;
Clear(Q); -- Release any query results
\end{Example}
Clearing the query (or allowing it to fall out of scope) is recommended.
This releases\index{releases} resources\index{resources} that are
holding any prior query results.
\subsection{Random Fetch}
The random fetch\index{fetch} operation requires the use of the Tuple\_Index\_Type\index{Tuple\_Index\_Type}
defined in the package APQ:
\begin{Code}
type Tuple_Index_Type is mod 2 ** 64;
First_Tuple_Index : constant Tuple_Index_Type := 1;
\end{Code}
The random Fetch primitive has the following calling arguments:
\begin{Code}
procedure Fetch(
Q : in out Query_Type;
TX : in Tuple_Index_Type
);
\end{Code}
Table \ref{t:rfchx} lists the possible exceptions for
a random Fetch call.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no command executed\\
No\_Tuple & There were no result rows returned\\
Not\_Supported & Random access is not supported\\
\end{tabular}
\end{center}
\caption{Random Fetch Exceptions}\label{t:rfchx}
\end{table}
A random fetch example is provided below:\label{Random Fetch Example}
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
for TX in 1..Tuple_Index_Type(Tuples(Q)) loop
Fetch(Q,TX);
...
end loop;
Clear(Q);
\end{Example}
The function Tuples(Q)\index{Tuples} that was used in the \emph{for} loop, returns
the number of result rows for the query.%
\footnote{Which can be zero.%
} A slight modification of this loop could permit processing the rows
in reverse order.
\subsubsection{Notes:}
\begin{enumerate}
\item If the tuple\index{tuple} index \emph{TX} provided to Fetch is out
of range for the result set, no exception will be raised. An exception
\emph{will} be raised however, when the application attempts to fetch
any value from that out of range row.
\item Any subsequent sequential fetch operation will fetch the row following
the last randomly accessed row.
\end{enumerate}
\subsection{Function End\_of\_Query\label{End_of_Query}}
To facilitate sequential
fetch operations, the End\_of\_Query primitive function was provided in
early versions of APQ. This API remains, but is considered
\emph{obsolete} and should be avoided. MySQL\index{MySQL} users should not use it at
all, due to the bug\index{bug} present in the MySQL client library. See the note
that follows the tables.
\begin{quote}
Note: This function is depreciated. Catch the No\_Tuple exception
instead for greater database portability.
\end{quote}
The calling requirements are summarized in the following specification:
\begin{Code}
function End_of_Query(
Q : Query_Type
) return Boolean;
\end{Code}
Table \ref{t:eoqx} lists the exceptions for this function.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no command executed\\
\end{tabular}
\end{center}
\caption{End\_of\_Query Exceptions}\label{t:eoqx}
\end{table}
The End\_of\_Query\index{End\_of\_Query} function returns a Boolean\index{Boolean} result:
\begin{description}
\item [False] there is at least one more result row available (not at end)
\item [True] there are no more rows\index{rows} available (at end)
\end{description}
\begin{quote}
MySQL Note:
The MySQL\index{MySQL} implementation of End\_Of\_Query is not a good
one. End\_Of\_Query\index{End\_of\_Query} should \emph{not} be used. The problem is located
in the MySQL C client library that comes with MySQL. The C mysql\_eof()\index{mysql\_eof()}
function returns false after reading the last row. It is only by fetching
one more row and discovering that there are no more rows, that mysql\_eof()
then starts to return true. In other words, it returns true, when
the end has already been reached. Since there is no way to work around
this problem in MySQL, a developer should avoid using End\_Of\_Query
completely.
\end{quote}
Catch the exception No\_Tuple\index{No\_Tuple} instead, when fetching rows.
\subsection{Function Tuple}
The Tuple\index{Tuple} function primitive is an information function that
returns the current tuple number\index{tuple number} that was last
fetched. If there has been no fetch yet, the No\_Tuple\index{No\_Tuple} exception
is raised. The calling signature is as follows:
\begin{Code}
function Tuple(
Q : Query_Type
) return Tuple_Index_Type;
\end{Code}
Tuple can raise the exceptions listed in Table~\ref{t:tupx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Tuple & There was no fetch performed yet\\
\end{tabular}
\end{center}
\caption{Tuple Exceptions}\label{t:tupx}
\end{table}
The following example shows the function being used:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
X : Tuple_Index_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when APQ.No_Tuple =>
exit;
end;
TX := Tuple(Q); -- Get Row #
...
end loop;
Clear(Q);
\end{Example}
\subsection{Rewind Procedure}
Sometimes it is desireable to reprocess results sequentially. This
is easily accomplished with the Rewind\index{Rewind} primitive. This
primitive merely alters the state of the Query\_Type object such that
the next fetch\index{fetch} operation will start with the first row. This only
works when the fetch mode is Random\_Fetch\index{Random\_Fetch}.
The calling requirements are listed as follows:
\begin{Code}
procedure Rewind(
Q : in out Query_Type
);
\end{Code}
Table \ref{t:rwx} lists the possible exceptions for Rewind.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
SQL\_Error & The Query\_Type is not in Random\_Fetch mode\\
\end{tabular}
\end{center}
\caption{Rewind Exceptions}\label{t:rwx}
\end{table}
The following example shows the Rewind procedure being used:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when APQ.No_Tuple =>
exit;
end;
...
end loop;
-- REPROCESS THE QUERY RESULTS :
Rewind(Q);
loop
begin
Fetch(Q);
exception
when APQ.No_Tuple =>
exit;
end;
...
end loop;
Clear(Q);
\end{Example}
\subsection{Tuples Function}
You have already seen this function used in the example on page
\pageref{Random Fetch Example}. This information function returns the
number of result rows that are available. It should only be called after
the \emph{Query\_Type} has been executed however. Otherwise the
No\_Result exception will be raised by Tuples\index{Tuples}.
The calling requirement for this function is summarized as follows:
\begin{Code}
function Tuples(
Q : Query_Type
) return Tuple_Count_Type;
\end{Code}
Tuples can raise the exceptions listed in Table~\ref{t:tupsx}. For an
example of use, see \Ref{Random Fetch Example}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed yet\\
\end{tabular}
\end{center}
\caption{Tuples Exceptions}\label{t:tupsx}
\end{table}
\subsection{Using Cursors}
For databases supporting cursor\index{cursor} operations in their client\index{client libraries} libraries
(Sybase), APQ will automatically generate cursor names for each Query\_Type
object. The function Cursor\_Name\index{Cursor\_Name} will retrieve this for you (see
\Ref{Cursor_Name}).
To perform cursor operations, there are the following general steps
to follow:
\begin{enumerate}
\item Set the cursor mode of the Query\_Type object.
\item Prepare the SQL query to fetch rows.
\item Execute the SQL query.
\item Fetch a row.
\item Prepare the inner SQL query using ``WHERE CURRENT OF''\index{WHERE CURRENT OF}
\item Execute the inner query
\item Repeat steps 4-6 as required
\end{enumerate}
Describing cursor operation in APQ is probably best done with a concrete
example. Assume a simple SALARIES table like the one below:
\begin{SQL}
CREATE TABLE SALARIES (
EMPNO INT NOT NULL PRIMARY KEY,
SALARY REAL NOT NULL
);
\end{SQL}
Our example, will assume the following values in the table:
\begin{SQL}
select * from salaries
go
empno salary
----------- --------------------
2 56000.000000
3 82800.000000
4 82500.000000
5 43600.000000
4 rows affected
1>
\end{SQL}
Our application is tasked with the job of rewarding all employees
with salaries greater than or equal to \$50,000 with an increase of
5\% (life is often unfair). It is possible to construct an SQL\index{SQL} statement
to do this without using cursors but we're going to build the shell
of a program that will be required to get approval from the user (using
a GUI\index{GUI} etc.) Getting user approval is not possible in SQL, so we need
to code a fetch loop and an inner query to do the update if the approval
is granted. This is one example of how a cursor can be useful.
The following is a Sybase\index{Sybase} APQ program listing for the
update:\label{Cursor Example Program}
\begin{Example}
with Ada.Text _IO;
with APQ.Sybase.Client;
use APQ, APQ.Sybase.Client, Ada.Text_IO;
procedure Salaries is
function Value is new Integer_Value(Integer);
function Value is new Float_Value(APQ_Double);
procedure Append is new Append_Float(APQ_Double);
C : Connection_Type;
Q : Query_Type;
Q2 : Query_Type;
Empno : Integer;
Salary : APQ_Double;
begin
Set_Instance(C,"SYBIL");
Set_DB_Name(C,"wwg");
Set_User_Password(C,"wwg","somepw");
Connect(C);
Begin_Work(Q,C);
Set_Fetch_Mode(Q,Cursor_For_Update);
Prepare(Q, "SELECT EMPNO,SALARY");
Append_Line(Q,"FROM SALARIES");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
Empno := Value(Q,1);
Salary := Value(Q,2);
Put_Line("Empno=" & Empno'Img & " Salary="
& Salary'Img);
if Salary >= 50_000.0 then
Salary := Salary * 1.05; -- 5% raise
Prepare(Q2, "UPDATE SALARIES");
Append(Q2, "SET SALARY = ");
Append(Q2,Salary,Line_Feed);
Append_Line(Q2,"WHERE CURRENT OF " & Cursor_Name(Q));
Execute(Q2,C);
Clear(Q2);
end if;
end loop;
Clear(Q);
Commit_Work(Q,C);
Disconnect(C);
end Salaries;
\end{Example}
The fetch mode of query object Q is set to Cursor\_For\_Update\index{Cursor\_For\_Update}. This is
critical for the cursor\index{cursor} operation to work (you can also use
Cursor\_For\_Read\_Only for non-update operations). The outer query\index{outer query} is
formed, which is then executed. When the program decides it wants to
update a particular row (here we pretend the user has approved it from
the terminal), we prepare and execute the inner query\index{inner query} Q2. The special
WHERE clause ``WHERE CURRENT OF''\index{WHERE CURRENT OF} is used, naming the cursor being
used from the outer query object Q. The function Cursor\_Name(Q)\index{Cursor\_Name}
supplies the cursor name for it. Once the inner query is processed, more
outer query rows can be fetched\index{fetched} and processed in like manner.
Note that the inner query can also include DELETE\index{DELETE} ... WHERE CURRENT
OF\index{WHERE CURRENT OF} operations. Using a cursor\index{cursor} guarantees that when you go to delete
the row, that some other external process hasn't deleted it before
you have (this avoids experiencing an error). Similarly for updates\index{updates},
if the correct isolation\index{isolation level} level is used, you can be sure that the values
in the row have not changed by the time you perform the inner query.
\section{Column Information Functions}
After a query has been executed, which returns a set of rows, it is
sometimes necessary to obtain information\index{information, column} about the columns. Many
of the functions make use of the following data type:
\begin{Code}
type Column_Index_Type is new Postive;
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Function Name & Purpose\\
\hline
Columns & Return the \# of columns in each row\\
Column\_Name & Return the column name for an index value\\
Column\_Index & Return the index for a column name\\
Column\_Type & Return type information for the column\\
Is\_Null & Test if a column is null\\
\end{tabular}
\end{center}
\caption{Column Information Functions}\label{t:cif}
\end{table}
Table \ref{t:cif}
lists four column information functions that are available to the
application programmer.
All of these functions will raise the exception No\_Result\index{No\_Result}
if an execute has not been performed successfully on the Query\_Type
object.
Note that the case of the column name returned will match the SQL
case policy for the connection. If the policy is Upper\_Case\index{Upper\_Case}, then
column names are returned in uppercase. Other possibilities follow
the established case policy\index{case policy}.
\subsection{Function Columns}
The Columns primitive function returns the number of columns\index{columns}
available in each row of the result set. The calling arguments are
summarized as follows:
\begin{Code}
function Columns(
Q : Query_Type
) return Natural;
\end{Code}
The Columns\index{Columns} function may raise the exceptions found in
Table~\ref{t:cex}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
\end{tabular}
\end{center}
\caption{Columns Exceptions}\label{t:cex}
\end{table}
The following example shows the function at work:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when APQ.No_Tuple =>
exit;
end;
for CX in 1..Column_Index_Type(Columns(Q)) loop
...process each column...
end loop;
end loop;
Clear(Q);
\end{Example}
\subsection{Function Column\_Name}
The primitive Column\_Name\index{Column\_Name} returns the name of the column for a particular
column index\index{column index} value. The calling requirements
are summarized in the following table:
\begin{Code}
function Column_Name(
Query : in Query_Type;
Index : in Column_Index_Type
) return String;
\end{Code}
The Column\_Name function may raise the exceptions listed in Table~\ref{t:cnx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & Bad Column\_Index\_Type value\\
\end{tabular}
\end{center}
\caption{Column\_Name Exceptions}\label{t:cnx}
\end{table}
Note that the case of the column name returned will match the SQL
case policy for the connection. If the policy is Upper\_Case\index{Upper\_Case}, then
column names are returned in uppercase. Other possibilities follow
the established case policy\index{case policy}.
The following example shows the function in use:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q, "SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
for CX in 1..Column_Index_Type(Columns(Q)) loop
Put_Line("Column Name: " & Column_Name(Q,CX));
end loop;
end loop;
Clear(Q);
\end{Example}
\subsection{Function Column\_Index}
If you have a column name, but want to know the column index value,
then the Column\_Index\index{Column\_Index} primitive function can be used. It's calling
requirements are as follows:
\begin{Code}
function Column_Index(
Query : in Query_Type;
Name : in String
) return Column_Index_Type;
\end{Code}
The function may raise any of the exceptions listed in Table~\ref{t:cidxx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & Unknown column name\\
\end{tabular}
\end{center}
\caption{Column\_Index Exceptions}\label{t:cidxx}
\end{table}
The following rather contrived example shows the Column\_Index function
used in the pragma\index{pragma assert} assert statement:
\begin{NumberedExample}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM~CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
for CX in 1..Column_Index_Type(Columns(Q)) loop
declare
Col_Name : String := Column_Name(Q,CX);
begin
Put_Line("Column Name: " & Col_Name);
pragma assert(CX = Column_Index(Col_Name));\label{Ex:pragma}
end;
end loop;
end loop;
Clear(Q);
\end{NumberedExample}
The pragma statement in line~\ref{Ex:pragma} is not necessary, but
was included in this example to show how the Column\_Index and the
Column\_Name are related.
\subsection{Function Column\_Type}
\index{Column\_Type}The column type information varies according to the database product
being used. The following subsections are specific to the APQ supported
database products.
\subsubsection{PostgreSQL Type Information}
The Column\_Type\index{Column\_Type} primitive is the beginning of type information for
the column. This function returns the Row\_ID\_Type\index{Row\_ID\_Type}
value that describes the type in the pg\_type\index{pg\_type} PostgreSQL\index{PostgreSQL} table\index{table}. See
the PostgreSQL database documentation for more details.
The Column\_Type calling signature is as follows:
\begin{Code}
function Column_Type(
Q : in Query_Type;
CX : in Column_Index_Type
) return Row_ID_Type;
\end{Code}
Table \ref{t:ctypx} lists the exceptions that
may be raised by Column\_Type.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & Unknown column name\\
\end{tabular}
\end{center}
\caption{Column\_Type Exceptions}\label{t:ctypx}
\end{table}
\subsubsection{MySQL Type Information}
The field\index{field types} types supported by MySQL\index{MySQL} are defined by APQ\-.MySQL\-.Field\_Type.
The programmer may use the Query\_Type primitive APQ\-.MySQL\-.Client\-.Column\_Type
to determine the column's type:
\begin{Code}
function Column_Type(
Q : in Query_Type;
CX : in Column_Index_Type
) return Field_Type;
\end{Code}
At the writing of this manual, the values in Table~\ref{t:mysqlftyp}
are supported MySQL field (column) type names.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Field\_Type & MySQL Datatype\\
\hline
FIELD\_TYPE\_DECIMAL & DECIMAL\\
FIELD\_TYPE\_TINY & TINYINT | BOOLEAN\\
FIELD\_TYPE\_SHORT & SMALLINT\\
FIELD\_TYPE\_LONG & INTEGER\\
FIELD\_TYPE\_FLOAT & FLOAT\\
FIELD\_TYPE\_DOUBLE & DOUBLE\\
FIELD\_TYPE\_NULL & BOOLEAN\\
FIELD\_TYPE\_TIMESTAMP & TIMESTAMP\\
FIELD\_TYPE\_LONGLONG & BIGINT\\
FIELD\_TYPE\_INT24 & MEDIUMINT\\
FIELD\_TYPE\_DATE & DATE\\
FIELD\_TYPE\_TIME & TIME\\
FIELD\_TYPE\_DATETIME & DATETIME\\
FIELD\_TYPE\_YEAR & YEAR\\
FIELD\_TYPE\_NEWDATE & ?\\
FIELD\_TYPE\_ENUM & ENUM\\
FIELD\_TYPE\_SET & SET\\
FIELD\_TYPE\_TINY\_BLOB & TINYTEXT | TINYBLOB\\
FIELD\_TYPE\_MEDIUM\_BLOB & MEDIUMTEXT | MEDIUMBLOB\\
FIELD\_TYPE\_LONG\_BLOB & LONGTEXT | LONGBLOB\\
FIELD\_TYPE\_BLOB & TEXT | BLOB\\
FIELD\_TYPE\_VAR\_STRING & VARCHAR(N)\\
FIELD\_TYPE\_STRING & CHAR(N)\\
\end{tabular}
\end{center}
\caption{MySQL Field Types}\label{t:mysqlftyp}
\end{table}
APQ does not yet fully support all of MySQL data types.
\subsection*{Sybase Type Information}
Sybase\index{Sybase} also provides type information:
\begin{Code}
function Column_Type(
Q : in Query_Type;
CX : in Column_Index_Type
) return Field_Type;
\end{Code}
Sybase is capable of returning types listed in the Column\_Type column
of Table~\ref{t:sycoltyp}.
\begin{table}
\begin{center}
\begin{tabular}{lll}
Column\_Type & Sybase Database Type & APQ Support\\
\hline
Type\_CHAR & CHAR/VARCHAR & Yes\\
Type\_BINARY & BINARY/VARBINARY & No\\
Type\_LONGCHAR & \emph{None} & No\\
Type\_LONGBINARY & \emph{None} & No\\
Type\_TEXT & TEXT & Yes\\
Type\_IMAGE & IMAGE & No\\
Type\_TINYINT & TINYINT & Yes\\
Type\_SMALLINT & SMALLINT & Yes\\
Type\_INT & INT/INTEGER & Yes\\
Type\_REAL & REAL & Yes\\
Type\_FLOAT & FLOAT & Yes\\
Type\_BIT & BIT & Yes\\
Type\_DATETIME & DATETIME & Yes\\
Type\_DATETIME4 & SMALLDATETIME & Yes\\
Type\_MONEY & MONEY & Yes\\
Type\_MONEY4 & SMALLMONEY & Yes\\
Type\_NUMERIC & NUMERIC & Yes\\
Type\_DECIMAL & DECIMAL & Yes\\
Type\_VARCHAR & VARCHAR & Yes\\
Type\_VARBINARY & VARBINARY & No\\
Type\_LONG & LONG & Yes\\
Type\_SENSITIVITY & \emph{None} & No\\
Type\_BOUNDARY & BOUNDARY & No\\
Type\_VOID & \emph{None} & No\\
Type\_USHORT & USHORT & Yes\\
Type\_UNICHAR & UNICHAR/UNIVARCHAR & No\\
Type\_BLOB & BLOB & No\\
Type\_DATE & DATE & Yes\\
\end{tabular}
\end{center}
\caption{Sybase Column Types}\label{t:sycoltyp}
\end{table}
\subsection{Is\_Null Function}
If a column is capable of returning a NULL\index{NULL} value, it
becomes necessary to test for this. The Is\_Null\index{Is\_Null} function calling
specification is as follows:
\begin{Code}
function Is_Null(
Q : in Query_Type;
CX : in Column_Index_Type
) return Boolean;
\end{Code}
The Is\_Null function may raise the exceptions listed in Table~\ref{t:isnullx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & Unknown column name\\
\end{tabular}
\end{center}
\caption{Is\_Null Exceptions}\label{t:isnullx}
\end{table}
The following example shows how to test if the CUST\_NAME column is
null\index{null} or not:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME,BIRTH_DATE");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
...
if Is_Null(Q,2) then
-- CUST_NAME value is null
end if;
...
end loop;
Clear(Q);
\end{Example}
\subsection{Column\_Is\_Null Generic Function}
If you need to test for null\index{null} using strongly typed
indicators\index{indicators}, you may want to instantiate the
Column\_Is\_Null\index{Column\_Is\_Null} generic function. The generic parameters are:
\begin{Code}
generic
type Ind_Type is new Boolean;
function Column_Is_Null(
Q : in Query_Type'Class;
CX : in Column_Index_Type
) return Ind_Type;
\end{Code}
Table~\ref{t:isnullx} lists exceptions that also apply to the Column\_Is\_Null function.
%\begin{tabular}{ll}
%Exception Name & Reason\\
%\hline
%No\_Result & There was no execute performed\\
%No\_Column & No column at index\\
%\end{tabular}
The following example illustrates its use:
\begin{Example}
declare
type Cust_Name_Ind_Type is new Boolean;
function Is_Null
is new Column_Is_Null(Cust_Name_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Cust_Name_Ind : Cust_Name_Ind_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
Cust_Name_Ind := Is_Null(Q,2);
if not Cust_Name_Ind then
-- Get Cust_Name since it is not null
end if;
end loop;
Clear(Q);
\end{Example}
\section{Value Fetching Functions\label{Value Fetching Functions}}
Once a fetch\index{fetch} operation has been performed, the application needs to
retrieve the values for each column from the row. The function primitive
Value\index{Value} assumes that the column's value is \emph{not} going
to be NULL\index{NULL}. If it should be null however, the exception
Null\_Value\index{Null\_Value} is raised. A better set of primitives should be used for
columns that may return NULL. See \Ref{Value and Indicator Fetch Procedures}.
The following subsections will cover the function primitives for extracting
the values for builtin types\index{builtin types}.
\subsection{Function Value\label{Standard Value Functions}}
The value for a Row\_ID\_Type\index{OID}, string, bit string or
Unbounded\_String\index{Unbounded\_String} can be extracted for a column
using the Value function primitive. This function should only used
for columns that cannot return a NULL \index{NULL}value.%
\footnote{If the value is NULL, the exception Null\_Value will be raised.%
} The calling requirements for these primitives are the same with
different return types:
\begin{Code}
function Value(
Query : in Query_Type;
CX : in Column_Index_Type
) return Row_ID_Type;
\end{Code}
\begin{Code}
function Value(
Query : in Query_Type;
CX : in Column_Index_Type
) return String;
\end{Code}
\begin{Code}
function Value(
Query : in Query_Type;
CX : in Column_Index_Type
) return Ada.Strings.Unbounded.Unbounded_String;
\end{Code}
\begin{Code}
function Value(
Query : in Query_Type;
CX : in Column_Index_Type
) return APQ_Bitstring;
\end{Code}
Table \ref{t:valx} lists the possible exceptions for these functions.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
Null\_Value & The column's value is NULL\\
\end{tabular}
\end{center}
\caption{Value Exceptions}\label{t:valx}
\end{table}
The following example shows how all the column values are fetched:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
for CX in 1..Column_Index_Type(Columns(Q)) loop
declare
Col_Value : String := Value(Q,CX);
begin
Put("Column");
Put(Column_Index_Type'Image(CX));
Put(" = '");
Put(Value(Q,CX));
Put_Line("'");
end;
end loop;
end loop;
Clear(Q);
\end{Example}
\subsection{Null\_Oid Function\label{Null_Oid Function}}
Since different database engines have different approaches to row
ID values%
\footnote{MySQL for example, does not return row ID values.%
}, it is necessary to know how to represent a null row ID\index{row ID} value in
the current database context. Use the Null\_Oid\index{Null\_Oid} primitive
to obtain that value:
\begin{Code}
function Null_Oid(
Query : Query_Type
) return Row_ID_Type;
\end{Code}
\begin{floatingtable}{
\begin{tabular}{lc}
Database & Value\\
\hline
PostgreSQL & 0\\
MySQL & 0\\
Sybase & 0\\
\end{tabular}}
\caption{Null Oid Values by Product}\label{t:nulloid}
\end{floatingtable}
Using the Null\_Oid function in generic database code allows helps
to eliminate the need to identify the database engine being used.
Table~\ref{t:nulloid} lists the numeric values that represent a
null OID (row ID) value. The application programmer should rely
of the function Null\_Oid to avoid hardcoding a numeric value
that might change in the future.
\subsection{Generic Value Functions}
The Value functions documented in \Ref{Standard Value Functions}
were suitable for the specific data types that they supported. However,
Ada programmers often derive distinct new types to prevent accidental
mixing of values in expressions. To accomodate all of these custom
data types, you need to use generic functions for the purpose:
\begin{Code}
generic
type Val_Type is new Boolean;
function Boolean_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return Val_Type;
\end{Code}
\begin{Code}
generic
type Val_Type is range <>;
function Integer_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return Val_Type;
\end{Code}
\begin{Code}
generic
type Val_Type is mod <>;
function Modular_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return Val_Type;
\end{Code}
\begin{Code}
generic
type Val_Type is digits <>;
function Float_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return Val_Type;
\end{Code}
\begin{Code}
generic
type Val_Type is delta <>;
function Fixed_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return Val_Type;
\end{Code}
\begin{Code}
generic
type Val_Type is delta <> digits <>;
function Decimal_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return Val_Type;
\end{Code}
\begin{Code}
generic
type Val_Type is new APQ_Date;
function Date_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return Val_Type;
\end{Code}
\begin{Code}
generic
type Val_Type is new APQ_Time;
function Time_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return Val_Type;
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Time;
function Timestamp_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return Val_Type;
\end{Code}
Table \ref{t:gvalx} lists the exceptions possible for these
instantiated routines.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
Null\_Value & The column's value is NULL\\
\end{tabular}
\end{center}
\caption{Generic Value Exceptions}\label{t:gvalx}
\end{table}
The following example illustrates the use of the Integer\_Value and
Date\_Value generic functions:
\begin{Example}
declare
type Cust_No_Type is new APQ_Integer;
type Cust_Birthday_Type is new APQ_Date;
function Value is new Integer_Value(Cust_No_Type);
function Value is new Date_Value(Cust_Birthday_Type);
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME,BIRTH_DATE");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
declare
Cust_Name : String := Value(Q,2);
Cust_No : Cust_No_Type;
Birthday : Cust_Birthday_Type;
begin
Cust_No := Value(Q,1); -- CUST_NO is col 1
Birthday := Value(Q,3); -- BIRTH_DATE is col 3
...
end;
end loop;
Clear(Q);
\end{Example}
In the example shown, \emph{Cust\_Name} is returned by the builtin
function Value for String types. The variables \emph{Cust\_No} and
\emph{Birthday} are assigned through the generic instantiations of
the functions Integer\_Value\index{Integer\_Value} and Date\_Value\index{Date\_Value} respectively.
\subsection{Fixed Length String Value Procedure}
Sometimes in an application it is desireable to work with fixed\index{fixed length} length
string\index{string} values. The following Value\index{Value} procedure does just this:
\begin{Code}
procedure Value(
Query: in Query_Type;
CX : in Column_Index_Type;
V : out String
);
\end{Code}
This function raises the exceptions listed in Table~\ref{t:fxflsx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
Null\_Value & The column's value is null\\
\end{tabular}
\end{center}
\caption{Fixed Length String Value Exceptions}\label{t:fxflsx}
\end{table}
The following example extracts the CUST\_NAME column result into variable
\emph{Cust\_Name} as a 30 byte string value:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
Cust_Name : String(1..30);
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q,"FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
...
Value(Q,2,Cust_Name);
...
end loop;
Clear(Q);
\end{Example}
\subsection{APQ\_Timezone Value Procedure}
A TIMESTAMP\index{TIMESTAMP} value that carries with it a time zone\index{time zone}
value, requires a special procedure since two values must be extracted
for the same column:
\begin{itemize}
\item The Ada.Calendar.Time%
\footnote{From which APQ\_Timestamp is derived.} value holding the TIMESTAMP value
\item The APQ\_Timezone\index{APQ\_Timezone} value holding the time zone
offset.
\end{itemize}
The generic procedure requires the following type arguments:
\begin{Code}
generic
type Date_Type is new Ada.Calendar.Time;
type Zone_Type is new APQ_Timezone;
procedure Timezone_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type;
TS : out Date_Type;
TZ : out Zone_Type
);
\end{Code}
Table \ref{t:tzvx} lists the exceptions for Timezone\_Value.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
Null\_Value & The column's value is null\\
\end{tabular}
\end{center}
\caption{Timezone\_Value Exceptions}\label{t:tzvx}
\end{table}
The following example shows how the procedure can be used:
\begin{Example}
declare
procedure Value is new Timezone_Value(APQ_Timestamp,APQ_Timezone);
C : Connection_Type;
Q : Query_Type;
Birth_Date : APQ_Timestamp;
Birth_Zone : APQ_Timezone;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME,BIRTH_DATE");
Append(Q,"FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
...
Value(Q,3,Birth_Date,Birth_Zone); -- Column BIRTH_DATE
...
end loop;
end loop;
Clear(Q);
\end{Example}
In this example code fragment, the Value procedure call expects the
column's value to be column 3 (argument CX). This works as long as
column BIRTH\_DATE can never be null. If a NULL value is encountered
in this program, the exception Null\_Value\index{Null\_Value} will be raised and not
caught by the code in this example.%
\footnote{Either an exception handler must be added or a different way of extracting
the value must be used. Fetch\_Timezone is recommended if NULL is
possible.}
\subsection{Bounded\_Value Function}
Bounded\index{bounded strings} strings require a separate instantiation of
Ada\-.Strings\-.Bounded\index{Ada.Strings.Bounded} for each string length.
For this reason, a function supporting bounded strings must be provided
in generic form. The Bounded\_Value\index{Bounded\_Value} generic function accepts
the following generic arguments:
\begin{Code}
generic
with package P is new
Ada.Strings.Bounded.Generic_Bounded_Length(<>);
function Bounded_Value(
Query : in Query_Type'Class;
CX : in Column_Index_Type
) return P.Bounded_String;
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
Null\_Value & The column's value is null\\
\end{tabular}
\end{center}
\caption{Bounded\_Value Exceptions}\label{t:bvx}
\end{table}
Table \ref{t:bvx} lists the exceptions possible for Bounded\_Value.
The example below illustrates the use of Bounded\_Value:
\begin{Example}
with Ada.Strings.Bounded;
declare
package B30 is new
Ada.Strings.Bounded.Generic_Bounded_Length(30);
function Value is new Bounded_Value(B30);
C : Connection_Type;
Q : Query_Type;
Cust_Name : B30;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME,BIRTH_DATE");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
end;
...
Cust_Name := Value(Q,2);
...
end loop;
end loop;
Clear(Q);
\end{Example}
\section{Value and Indicator Fetch Procedures\label{Value and Indicator Fetch Procedures}}
The Value\index{Value} functions\index{value functions} presented in
\Ref{Value Fetching Functions} were useful when the returned value was
always going to be present. However, their use becomes clumsy and less
efficient if exception handlers must be used to handle the
NULL\index{NULL} value case. This section documents Fetch procedures to
return both a value and a null indicator together. With this convenience
comes the added responsibility of checking the null
indicator\index{indicator} values, that are returned.
\subsection{Char and Unbounded Fetch}
The Char\_Fetch and Unbounded\_Fetch generic procedures
fetch both a string value and an indicator value. In the Char\_Fetch
case, the returned value is blank filled to the full size of the receiving
String buffer. Each of these has the following instantiation parameters:
\begin{Code}
generic
type Ind_Type is new Boolean;
procedure Char_Fetch(
Query : in Query_Type'Class;
CX : in Column_Index_Type;
V : out String;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Ind_Type is new Boolean;
procedure Unbounded_Fetch(
Query : in Query_Type'Class;
CX : in Column_Index_Type;
V : out Ada.Strings.Unbounded.Unbounded_String;
Indicator : out Ind_Type
);
\end{Code}
The Unbounded\_Fetch routine may raise any of the exceptions listed in Table~\ref{t:ufx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
\end{tabular}
\end{center}
\caption{Unbounded\_Fetch Exceptions}\label{t:ufx}
\end{table}
The following example illustrates two different column fetch applications:
\begin{Example}
with Ada.Strings.Unbounded;
declare
type Cust_Name_Ind_Type is new Boolean;
type Cust_City_Ind_Type is new Boolean;
subtype Cust_Name_Type is String(1..30);
subtype Cust_City_Type is
Ada.Strings.Unbounded.Unbounded_String;
procedure Value is new
Char_Fetch(Cust_Name_Ind_Type);
procedure Value is new
Unbounded_Fetch(Cust_City_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Cust_Name : Cust_Name_Type;
Cust_Name_Ind : Cust_Name_Ind_Type;
Cust_City : Cust_City_Type;
Cust_City_Ind : Cust_City_Ind_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME,CITY");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
end;
...
Value(Q,2,Cust_Name,Cust_Name_Ind);
Value(Q,3,Cust_City,Cust_City_Ind);
...
end loop;
Clear(Q);
\end{Example}
\subsection{Varchar\_Fetch and Bitstring\_Fetch Procedures}
To return a varying length string\index{varying length string} requires
the use of a function. However, to return two values, we must resort
to a procedure call for the purpose. In order to return both a varying
length string and a null indicator, an additional return value is
returned that indicates the length of the string. To accomodate strongly
typed indicators\index{indicators}, these two procedures are provided in generic form.
The instantiation parameters are:
\begin{Code}
generic
type Ind_Type is new Boolean;
procedure Varchar_Fetch(
Query : in Query_Type'Class;
CX : in Column_Index_Type;
V : out String;
Last : out Natural;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Ind_Type is new Boolean;
procedure Bitstring_Fetch(
Query : in Query_Type'Class;
CX : in Column_Index_Type;
V : out APQ_Bitstring;
Last : out Natural;
Indicator : out Ind_Type
);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
\end{tabular}
\end{center}
\caption{Bitstring\_Fetch Exceptions}\label{t:bfx}
\end{table}
Table \ref{t:bfx} lists the exceptions for Bitstring\_Fetch.
The next example illustrates two different column fetch applications:
\begin{Example}
declare
type Cust_Name_Ind_Type is new Boolean;
type Cust_City_Ind_Type is new Boolean;
procedure Value is new
Varchar_Fetch(Cust_Name_Ind_Type);
procedure Value is new
Varchar_Fetch(Cust_City_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Cust_Name : String(1..30);
Cust_Name_Last : Natural;
Cust_Name_Ind : Cust_Name_Ind_Type;
Cust_City : String(1..40);
Cust_City_Last : Natural;
Cust_City_Ind : Cust_City_Ind_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME,CITY");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
...
Value(Q,2,Cust_Name,Cust_Name_Last,Cust_Name_Ind);
Value(Q,3,Cust_City,Cust_City_Last,Cust_City_Ind);
...
end loop;
Clear(Q);
\end{Example}
After the first Value call in the example, the customer name would
be represented by the expression:
\begin{Code}
Cust_Name(1..Cust_Name_Last)
\end{Code}
provided that the value Cust\_Name\_Ind was false.
\subsection{Bounded\_Fetch Procedure}
To fetch both a Bounded\_String value and its associated null\index{null indicator} indicator,
you instantiate and call the Bounded\_Fetch\index{Bounded\_Fetch}. The instantiation
parameters are as follows:
\begin{Code}
generic
type Ind is new Boolean;
with package P is new
Ada.Strings.Bounded.Generic_Bounded_Length(<>);
procedure Bounded_Fetch(
Query : in Query_Type'Class;
CX : in Column_Index_Type;
V : out P.Bounded_String;
Indicator : out Ind);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
\end{tabular}
\end{center}
\caption{Bounded\_Fetch Exceptions}\label{t:bfx2}
\end{table}
The Bounded\_Fetch routine may raise any of the exceptions listed in Table~\ref{t:bfx2}.
The example below illustrates a fetch instantiation and call:
\begin{Example}
with Ada.Strings.Bounded;
declare
package B32 is new
Ada.Strings.Bounded.Generic_Bounded_Length(32);
type Cust_Name_Ind_Type is new Boolean;
procedure Value is new
Bounded_Fetch(Cust_Name_Ind_Type,B32);
C : Connection_Type;
Q : Query_Type;
Cust_Name : B32;
Cust_Name_Ind : Cust_Name_Ind_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
...
Value(Q,2,Cust_Name,Cust_Name_Ind);
...
end loop;
Clear(Q);
\end{Example}
\subsection{Discrete Type Fetch Procedures}
Several of the discrete\index{discrete types} types can be grouped and documented in this
section. The following table indicates the generic procedure names
and their associated class of data type for which they are designed:
\begin{Code}
generic
type Val_Type is new Boolean;
type Ind_Type is new Boolean;
procedure Boolean_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Val_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Val_Type is range <>;
type Ind_Type is new Boolean;
procedure Integer_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Val_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Val_Type is mod <>;
type Ind_Type is new Boolean;
procedure Modular_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Val_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Val_Type is digits <>;
type Ind_Type is new Boolean;
procedure Float_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Val_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Val_Type is delta <>;
type Ind_Type is new Boolean;
procedure Fixed_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Val_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Val_Type is delta <> digits <>;
type Ind_Type is new Boolean;
procedure Decimal_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Val_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Time;
type Ind_Type is new Boolean;
procedure Date_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Val_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Day_Duration;
type Ind_Type is new Boolean;
procedure Time_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Val_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Time;
type Ind_Type is new Boolean;
procedure Timestamp_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Val_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
\end{tabular}
\end{center}
\caption{Timestamp\_Fetch Exceptions}\label{t:tfx2}
\end{table}
The Timestamp\_Fetch exceptions are listed in Table~\ref{t:tfx2}.
The following example illustrates how to instantiate and call a
Integer\_Fetch procedure.
\begin{Example}
declare
type Cust_No_Type is new Integer;
type Cust_No_Ind_Type is new Boolean;
procedure Value is new Integer_Fetch
(Cust_No_Type,Cust_No_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Cust_No : Cust_No_Type;
Cust_No_Ind : Cust_No_Ind_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
...
Value(Q,1,Cust_No,Cust_No_Ind);
...
end loop;
Clear(Q);
\end{Example}
\subsection{Timezone\_Fetch Procedure}
The Timezone\_Fetch\index{Timezone\_Fetch} generic procedure is unique because it returns
an additional parameter: the timezone\index{timezone}. The procedure's
instantiation parameters are listed below:
\begin{Code}
generic
type Date_Type is new Ada.Calendar.Time;
type Zone_Type is new APQ_Timezone;
type Ind_Type is new Boolean;
procedure Timezone_Fetch(
Query : in Root_Query_Type'Class;
CX : in Column_Index_Type;
V : out Date_Type;
Z : out Zone_Type;
Indicator : out Ind_Type
);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & There was no execute performed\\
No\_Column & No column at index\\
\end{tabular}
\end{center}
\caption{Timezone\_Fetch Exceptions}\label{t:tzfx}
\end{table}
Table \ref{t:tzfx} lists the possible exceptions for Timezone\_Fetch.
The following example illustrates how to instantiate and call a Timezone\_Fetch
procedure.
\begin{Example}
declare
type Bday_Type is new Integer;
type Bday_Zone_Type is new APQ_Timezone;
type Bday_Ind_Type is new Boolean;
procedure Value is new Timezone_Fetch
(Bday_Type,Bday_Zone_Type,Bday_Ind_Type);
C : Connection_Type;
Q : Query_Type;
Bday : Bday_Type;
Bday_Zone : Bday_Zone_Type;
Bday_Ind : Bday_Ind_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME,BIRTH_DATE");
Append(Q, "FROM CUSTOMER");
Execute(Q,C);
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
...
Value(Q,3,Bday,Bday_Zone,Bday_Ind);
...
end loop;
Clear(Q);
\end{Example}
\section{Information Functions}
You have already seen two information functions Result\index{Result} and Error\_Message\index{Error\_Message}
in \Ref{Error Message Reporting} and \Ref{Error Status Reporting}.
Another useful Query\_Type primitive is the To\_String\index{To\_String} function. It
is described in the next subsection.
\subsection{The To\_String Function}
The To\_String\index{To\_String} primitive allows the caller to retrieve the collected
SQL text from the Query\_Type object. The function's calling signature
is as follows:
\begin{Code}
function To_String(
Query : Query_Type
) return String;
\end{Code}
The To\_String function returns the full text of the SQL query, including
newline characters.%
\footnote{One is included at the end of the string if it is missing.%
} If there has not been any SQL text\index{SQL text} collected, the
function returns an empty string.%
\footnote{In this case, no newline is provided.%
}
The following example shows how a programmer can dump out the SQL\index{SQL}
query, but only when it fails:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT CUST_NO,CUST_NAME,BIRTH_DATE");
Append(Q, "FROM CUSTOMER");
begin
Execute(Q,C);
exception
when SQL_Error =>
Put_Line("The failed SQL Query was:");
Put_Line(To_String(Q));
raise;
when others =>
raise;
end;
\end{Example}
\subsection{Cursor Names\label{Cursor_Name}}
While PostgreSQL\index{PostgreSQL} and MySQL\index{MySQL} do not yet support cursors\index{cursors} in their client
libraries \footnote{PostgreSQL supports server cursors, but cursor support is absent in libpq.},
other database products like Sybase\index{Sybase} do. Cursors allow the programmer
to work with the concept of a ``current row''\index{current row}. For those databases
that do support the use of cursors, you can retrieve the cursor name\index{cursor name}
with the use of the Cursor\_Name\index{Cursor\_Name} function primitive:
\begin{Code}
function Cursor_Name(
Query : Query_Type
) return String;
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
No\_Result & No cursor results pending\\
\end{tabular}
\end{center}
\caption{Cursor\_Name Exceptions}\label{t:cnamx}
\end{table}
The Cursor\_Name exceptions are documented in Table~\ref{t:cnamx}.
To use cursors within APQ, you must set the fetch mode of the Query\_Type
to one of the following:
\begin{itemize}
\item Cursor\_For\_Update\index{Cursor\_For\_Update}
\item Cursor\_For\_Read\_Only\index{Cursor\_For\_Read\_Only}
\end{itemize}
Once you have set the fetch mode to one of the cursor fetch modes
listed above, and you have executed the query to produce cursor results,
\emph{then} the call to Cursor\_Name is valid. For a description of
fetch query modes in \Ref{Fetch Query Modes}.
\chapter{Blob Support}
The MySQL\index{MySQL} database provides a very different type of blob support\index{blob support}.
For the moment, blobs are unsupported in MySQL. Blob support is also
absent for Sybase\index{Sybase}. These are two areas ripe for further work in APQ.
Blobs are supported for PostgreSQL\index{PostgreSQL} in APQ however. This provides the
application programmer with the ability to store large amounts of
information in a ``blob''\index{blob}. In many ways this resembles
a file\index{file}, with the exception that the contents are stored
in the database and is accessed by number (OID\index{OID}). The APQ
binding provides full PostgreSQL blob support for the Ada programmer.
In addition, the Ada\index{Ada} stream\index{stream} concept is employed to
provide reliable and Ada95\index{Ada95} convenient access to the blob.
\subsubsection{Endian Note:}
The application programmer must keep in mind that any binary data
written to a blob, by means of the Ada stream, is not endian\index{endian} neutral.
This becomes a concern when a client application accesses or writes
to blobs stored on a database over the network, on another host. If
the endianess of the server and client differ, endian problems will
emerge.
\section{Introduction}
Blob functions are managed primarily through the Blob\_Type\index{Blob\_Type} access
type.%
\footnote{The object itself is of type Blob\_Object. Blob\_Type is an access
to Blob\_Object type.%
} Stream I/O to and from the blob is performed using an Ada streams
access value.%
\footnote{Internally named Root\_Stream\_Access type, which is the type ''access
all Ada.Streams.Root\_Stream\_Type'Class''.%
}
The blob support can generally be grouped into the following categories:
\begin{itemize}
\item Create, Open and Close operations
\item Index setting and querying operations
\item Information operations for Size and OID
\item Stream accessor\index{stream accessor} function
\item Blob destruction\index{blob destruction}
\item File and Blob operations
\end{itemize}
The following sections will document the blob support using these
groupings.
\section{Blob Memory Leak Prevention}
\index{memory leak prevention}It is extremely important that the
programmer realize that the Blob\_Type data type is an access type.%
\footnote{This design choice was necessary to accomodate Ada stream oriented
I/O.%
} Additionally this access\index{access value} value is a pointer\index{pointer} to a dynamically\index{dynamic} allocated
tagged\index{tagged} record (type Blob\_Object). For this reason, the programmer
must take great care to ``close'' the Blob\_Type before discarding
the Blob\_Type value, when it goes out of scope. Failure to close
a Blob\_Type value, will result in a memory leak\index{memory leak} and cause subsequent
database performance issues. Use the Blob\_Type value as if it were
an open file that needs closing.
The following example represents a ``Blob\_Type leak'':
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
begin
...
B := Blob_Create(C'Access);
...
end;
\end{Example}
The example above is bad because a ``blob leak''\index{blob leak}
occurs when the ``end'' statement is reached.%
\footnote{It should also be noted that after creating a blob in the database,
the application must save the OID value for the blob somewhere. Otherwise,
you will have a blob in the database that will never be accessed!%
} The variable \emph{C} finalizes itself OK because it is a controled
object.%
\footnote{Both Connection\_Type and Query\_Type objects are controlled records
with finalization.%
} However, B is an access type, pointing to a Blob\_Object record.
When variable B falls out of scope, only the pointer value
in B is lost. The object it pointed to has not been released!
The following example code is better:
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
begin
...
B := Blob_Create(C'Access);
...
Blob_Close(B);
end;
\end{Example}
The call to Blob\_Close\index{Blob\_Close} insures that the memory associated with the
opened blob is released, before the value \emph{B} falls out of scope.%
\footnote{Note that Close does not destroy the blob in the database.%
} However, if there is a chance that an exception may be raised, you
may still be vulnerable to leaks. The following example covers all
of the bases:
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
begin
...
B := Blob_Create(C'Access);
...
Blob_Close(B);
exception
when others =>
if B /= null then
Blob_Close(B);
end if;
...recovery steps...
end;
\end{Example}
While the recovery steps have been left to the reader's imagination
in the example above, the exception is caught and the value for variable
\emph{B} is tested. Only if \emph{B} is not null, should the Blob\_Close
procedure call made. Only you can prevent blob memory leaks!
\section{Create, Open and Close of Blobs}
The most basic operations possible in an Ada program using blobs are:
\begin{itemize}
\item Creating a new blob in the database (Blob\_Create)
\item Opening an existing blob in the database (Blob\_Open)
\item Flushing buffered writes to the database (Blob\_Flush)
\item Closing a blob (Blob\_Close)
\end{itemize}
The following subsections will explain how to perform these operations
in detail.
\subsection{Blob\_Create Procedure}
Before the application can open an existing blob\index{opening a blob},
there must be some way to create a blob\index{creating a blob}. The
Blob\_Create\index{Blob\_Create} function does just this with the following calling signature:%
\marginpar{Note: Blob operations must be performed within the context of a transaction.%
}
\begin{Code}
function Blob_Create(
DB : access Connection_Type;
Buf_Size : in Natural := Buf_Size_Default
) return Blob_Type;
\end{Code}
The returned value is a Blob\_Type that is capable of being used to
read and/or write a blob. The blob is positioned at index position
1 (the beginning). See \Ref{Blob OID Function} for information
about how to determine the created blob's OID\index{OID}.
Starting with APQ version 1.2, all blob I/O is buffered if the Buf\_Size
argument is supplied with a value greater than zero, or is not supplied
such that the default value applies. Table~\ref{t:bcbsgx} summarizes
the Buf\_Size\index{Buf\_Size} argument behaviour. The exceptions
are listed in Table~\ref{t:blbcx}.
\begin{table}
\begin{center}
\begin{tabular}{lll}
Buf\_Size Value & Description & Performance\\
\hline
0 & Unbuffered blob I/O & Very poor\\
0 < Buf\_Size < 1024 & Buffered & Poor\\
1024 <= Buf\_Size < Buf\_Size\_Default & Buffered blob I/O & Better\\
Buf\_Size\_Default & Buffered: 5120 bytes & Very good\\
\end{tabular}
\end{center}
\caption{Blob\_Create Buf\_Size Guidelines}\label{t:bcbsgx}
\end{table}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & There was no blob created\\
\end{tabular}
\end{center}
\caption{Blob\_Create Exceptions}\label{t:blbcx}
\end{table}
Possible reasons for a Blob\_Error\index{Blob\_Error} exception to be raised would include:
\begin{itemize}
\item bad database connection object%
\footnote{Or the database connection object went out of scope.}
\item a database error occurred (no more blob space?)
\end{itemize}
The following example shows how a new blob can be created:
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
begin
...
B := Blob_Create(C'Access);
...
Blob_Close(B);
end;
\end{Example}
\subsubsection{Note:}
The argument DB in the call to the Blob\_Create\index{Blob\_Create}, is an access
to Connection\_Type argument. You must guarantee that the Connection\_Type
object does not finalize before the created blob has been closed.
\subsection{Blob\_Open Function\label{Blob_Open Function}}
To open an existing blob\index{existing blob}, you must know the OID\index{OID} of the blob in the
database. This is normally a value that is stored in a database column
somewhere. See \Ref{Blob OID Function} for information on
how to determine the OID of a created blob.%
\marginpar{Note: Blob operations must be performed within the context of a transaction.%
}
Blobs can be opened for various types of access:
\begin{description}
\item [Read\index{Read}] for readonly access to the blob contents
\item [Write\index{Write}] for writing to the blob
\item [Read\_Write\index{Write}] for both reading and writing of the blob
\end{description}
The Blob\_Open\index{Blob\_Open} function has the following specification:
\begin{Code}
type Mode_Type is (
Write,
Read,
Read_Write
);
function Blob_Open(
DB : access Connection_Type;
Oid : in Row_ID_Type;
Mode : in Mode_Type;
Buf_Size : in Natural := Buf_Size_Default
) return Blob_Type;
\end{Code}
The returned value is a Blob\_Type that is accessable according to
the Mode selected. The blob is positioned\index{blob position} at index value 1
(the beginning).
Starting with APQ version 1.2, all blob I/O is buffered\index{buffered blob I/O} if the Buf\_Size
argument is supplied with a value greater than zero, or is not supplied
such that the default value applies. Refer to Table~\ref{t:bcbsgx} for guidance on
the value to use for Buf\_Size. The exceptions are documented
in Table~\ref{t:bopnx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & There was no blob opened\\
\end{tabular}
\end{center}
\caption{Blob\_Open Exceptions}\label{t:bopnx}
\end{table}
Possible reasons for a Blob\_Error exception to be raised would include:
\begin{itemize}
\item bad database connection object
\item the Oid value supplied is not known by the database
\item a database error occurred
\end{itemize}
The following example shows how blob 73763 can be opened for reading:
\label{Example-code-with-OID-73763}
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
OID : Row_ID_Type := 73763;
begin
...
B := Blob_Open(C'Access,OID,Read);
...
Blob_Close(B);
exception
when others =>
if B /= null then
Blob_Close(B);
end if;
raise;
end;
\end{Example}
\subsubsection{Note:}
The argument DB in the call to the Blob\_Open, is an access
to Connection\_Type argument. You must guarantee that the Connection\_Type
object does not finalize\index{finalize} before the opened blob has been closed.
\subsubsection{Generic\_Blob\_Open Function}
To allow the application programmer to use strong types in place of
the supplied Row\_ID\_Type\index{Row\_ID\_Type} type, a generic procedure for opening blobs
is also provided. The instantiated function behaves exactly as described
for Blob\_Open\index{Open\_Blob} on page \pageref{Blob_Open Function}. The instantiation
arguments for Generic\_Blob\_Open\index{Generic\_Blob\_Open} are:
\begin{Code}
type Mode_Type is (
Write,
Read,
Read_Write
);
generic
type Oid_Type is new Row_ID_Type;
function Generic_Blob_Open(
DB : access Connection_Type;
Oid : in Oid_Type;
Mode : in Mode_Type;
Buf_Size : in Natural := Buf_Size_Default
) return Blob_Type;
\end{Code}
The following example shows how to instantiate the function:
\begin{Example}
declare
type My_Oid_Type is new Row_ID_Type;
function Blob_Open is new
Generic_Blob_Open(My_Oid_Type);
\end{Example}
\subsection{Blob\_Flush Procedure}
\index{Blob\_Flush}When you are using buffered\index{buffered blob I/O} blob I/O%
\footnote{Buffered blob I/O is the default for performance reasons.%
} and your application has performed one or more writes to the blob,
you may need to be certain that all of the buffered data is physically
written out to the database. For example, you may have a timing\index{timing} opportunity
to perform this expensive operation while the user is waiting for
something else to occur. Buffer flushes\index{flush} are automatically performed
when the blob is closed or due to changes made by the Blob\_Set\_Index\index{Blob\_Set\_Index}
operation. To give the application programmer control over the timing
of the physical write to the database, the Blob\_Flush\index{Blob\_Flush} procedure can
be used.%
\marginpar{Blob\_Flush calls are ignored when unbuffered blob I/O is being used.
This makes it easy for the application to choose buffered or unbuffered
operation without source code changes.}
The Blob\_Flush procedure has the specification below. Table~\ref{tblbflx} lists the exceptions.
\begin{Code}
procedure Blob_Flush(Blob : Blob_Type);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & The blob is not open\\
\end{tabular}
\end{center}
\caption{Blob\_Flush Exceptions}\label{t:blbflx}
\end{table}
\subsection{Blob\_Close Procedure}
When the programmer no longer requires access to a open/created blob,
the procedure Blob\_Close\index{Blob\_Close} should be called. Since an open blob depends
upon a hidden access value that points back to the Connection\_Type
object, the programmer should call Blob\_Close as soon as is practical.
This reduces the possibility of error that will occur if the Connection\_Type
object is finalized too soon.
The Blob\_Close procedure has the following specification. Exceptions are
listed in Table~\ref{t:bclsx}.
\begin{Code}
procedure Blob_Close(Blob : in out Blob_Type);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & The blob is not open\\
\end{tabular}
\end{center}
\caption{Blob\_Close Exceptions}\label{t:bclsx}
\end{table}
Normally the Blob\_Error\index{Blob\_Error} exception will indicate an attempt to close
a blob that is not open. However, it is possible that the database
engine may experience a problem that will raise the same exception.
The procedure Blob\_Close will also null out the the Blob\_Type value
that was passed in. This is done to eliminate any accidental access
to a Blob\_Object that no longer exists.
\section{Index Setting Operations}
Like a file, a blob's ``position''\index{position of a blob} can be changed and queried.
The index\index{index} operations require the use of two types defined for the
purpose. They are:
\begin{Code}
type Blob_Count is new
Ada.Streams.Stream_Element_Offset
range 0..Ada.Streams.Stream_Element_Offset'Last;
\end{Code}
\begin{Code}
subtype Blob_Offset is
Blob_Count range 1..Blob_Count'Last;
\end{Code}
The type Blob\_Count\index{Blob\_Count} is used where there is a count involved
(which may require the value zero). The type Blob\_Offset\index{Blob\_Offset} is
used whenever a blob offset is used, since it starts at the value
1.
The next subsections describe facilities for performing blob indexing
operations.
\subsection{Blob\_Set\_Index Procedure}
The Blob\_Set\_Index\index{Blob\_Set\_Index} procedure is used when the caller needs to seek
to a new position within the opened blob. See \Ref{Blob Size Function}
if you need to know the size of the blob.
The calling requirements for Blob\_Set\_Index are summarized below
(exceptions in Table~\ref{t:blbsxx}).
\begin{Code}
procedure Blob_Set_Index (
Blob : in Blob_Type;
To : in Blob_Offset
);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & Not open or seek failed\\
\end{tabular}
\end{center}
\caption{Blob\_Set\_Index Exceptions}\label{t:blbsxx}
\end{table}
The following example shows how to seek to the end of the blob:
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
B_Size : Blob_Count;
End_Blob : Blob_Index;
begin
...
B_Size := Blob_Size(B);
if B_Size > 0 then
End_Blob := B_Size;
Blob_Set_Index(B,End_Blob);
...
\end{Example}
\section{Blob\_Index Function}
Applications sometimes need to query where they are positioned in
the blob. The Blob\_Index\index{Blob\_Index} function returns the current Blob\_Offset\index{Blob\_Offset}
position\index{position} information. The specification is shown below,
while the exceptions are listed in Table~\ref{t:blbxx}.
\begin{Code}
function Blob_Index(
Blob : in Blob_Type
) return Blob_Offset;
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & Not open\\
\end{tabular}
\end{center}
\caption{Blob\_Index Exceptions}\label{t:blbxx}
\end{table}
The following example code determines where in the presently opened
blob the blob position index is:
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
Pos_Blob : Blob_Index;
begin
...
Pos_Blob := Blob_Index(B);
\end{Example}
\section{Information Functions}
The following subsections describe information gathering functions.
They provide the programmer a way to obtain size\index{size} and identification\index{identification}
information.
\subsection{Blob Size Function\label{Blob Size Function}}
To determine the present size\index{blob size} of a blob, the Blob\_Size\index{Blob\_Size}
function can be used. Table~\ref{t:blbszx} documents the exceptions while the specification
is listed as follows:
\begin{Code}
function Blob_Size(
Blob : in Blob_Type
) return Blob_Count;
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & Not open\\
\end{tabular}
\end{center}
\caption{Blob\_Size Exceptions}\label{t:blbszx}
\end{table}
Notice that the return type Blob\_Count\index{Blob\_Count} does permit the value zero
to be returned (blob is empty).
The following example code determines the size of the presently opened
blob:
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
Blob_Size : Blob_Count;
begin
...
Blob_Size := Blob_Size(B);
\end{Example}
\subsection{Blob\_OID Function\label{Blob OID Function}}
After a blob is created, it is very necessary to determine the OID\index{OID}
for the blob. The Blob\_Oid function may be called after Blob\_Create\index{Blob\_Create}
or Blob\_Open\index{Blob\_Open} to obtain OID information.
Table~\ref{t:blboidx} lists the exceptions and the specification is
shown below:
\begin{Code}
function Blob_Oid(
Blob : in Blob_Type
) return Row_ID_Type;
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & Not open\\
\end{tabular}
\end{center}
\caption{Blob\_OID Exceptions}\label{t:blboidx}
\end{table}
The following example code determines the OID\index{OID} value for the newly
created blob\index{blob}:
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
Blob_OID : Row_ID_Type;
begin
...
B := Blob_Create(C'Access);
Blob_OID := Blob_Oid(B);
\end{Example}
\subsubsection{Generic\_Blob\_Oid Function}
To use a strongly typed version of the Blob\_Oid\index{Blob\_Oid} function, the application
programmer can instantiate from Generic\_Blob\_Oid. The instantiated
function otherwise behaves exactly as the Blob\_Oid function on page
\pageref{Blob OID Function}. The instantiation parameters for Generic\_Blob\_Oid\index{Generic\_Blob\_Oid}
are:
\begin{Code}
generic
type Oid_Type is new Row_ID_Type;
function Generic_Blob_Oid(
Blob : in Blob_Type
) return Oid_Type;
\end{Code}
The following example shows how to instantiate the function:
\begin{Example}
declare
type My_Oid_Type is new Row_ID_Type;
function Blob_Oid is new Generic_Blob_Oid(My_Oid_Type);
\end{Example}
\subsection{End\_Of\_Blob Function}
The End\_Of\_Blob\index{End\_Of\_Blob} function can be used by programs that sequentially
read through a blob. The calling signature for this function is given
below:%
\marginpar{Note that this function results in poor performance if the buffer
size is set to zero (unbuffered) in the opening Blob\_Open/Blob\_Create
calls.%
}
\begin{Code}
function End_of_Blob(
Blob : in Blob_Type
) return Boolean;
\end{Code}
The return value is True if the current position in the blob is at
the end of the blob. Otherwise the value False is returned. Table~\ref{teoblbx}
lists the possible exceptions.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & Not open\\
\end{tabular}
\end{center}
\caption{End\_of\_Blob Exceptions}\label{t:eoblbx}
\end{table}
The following example code reads a series of strings from the blob,
using the End\_Of\_Blob function:
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
begin
...
B := Blob_Open(...);
declare
S : Root_Stream_Access := Blob_Stream(B);
begin
while not End_Of_Blob(B) loop
declare
Line : String := String'Input(S);
begin
Put_Line(Line);
end;
end loop;
end;
Blob_Close(B);
\end{Example}
\section{Stream Access}
In order for an Ada program to perform stream I/O\index{stream I/O}
on a blob, you must obtain a useable stream pointer\index{stream pointer}.
The APQ binding defines a type named Root\_Stream\_Access\index{Root\_Stream\_Access} for
this purpose. It is defined as follows:
\begin{Code}
type Root_Stream_Access is access all
Ada.Streams.Root_Stream_Type'Class;
\end{Code}
The function Blob\_Stream\index{Blob\_Stream} returns this stream pointer to the caller.
Use of this returned pointer makes it possible to use the native Ada\index{Ada}
stream\index{stream I/O} I/O facilities. The function Blob\_Stream is
specified below while Table~\ref{t:blbstrx} documents the exceptions
possible.
\begin{Code}
function Blob_Stream(
Blob : in Blob_Type
) return Root_Stream_Access;
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & Not open\\
\end{tabular}
\end{center}
\caption{Blob\_Stream Exceptions}\label{t:blbstrx}
\end{table}
The following example shows how a blob is created, a stream access
value is obtained, and a APQ\_Timestamp\index{APQ\_Timestamp} value is written to the new
blob:
\begin{Example}
declare
C : aliased Connection_Type;
B : Blob_Type;
Str : Root_Stream_Access;
Some_Date : APQ_Timestamp;
begin
...
B := Blob_Create(C'Access);
declare
Str : Root_Stream_Access := Blob_Stream(B);
begin
APQ_Timestamp'Write(Str,Some_Date);
...
end;
Blob_Close(B);
end;
\end{Example}
Notice in this example, that the declaration and the existance of
the stream pointer Str was restricted as much as possible.
While not strictly necessary, there are good reasons for following
this practice. See the special following note for the details.
\subsubsection{Note:}
The programmer does not have to worry about ``closing'' or freeing\index{freeing}
the returned stream pointer (Str in the example). It can be
nulled or left to fall out of scope. Only the type Blob\_Type
must be ``closed'' by calling Blob\_Close\index{Blob\_Close}.
The programmer must however be careful to never use the stream\index{stream pointer} pointer
after the blob has been closed, or after the connection object has
been closed or finalized\index{finalized}. The stream pointer should be nulled\index{nulled} when
it has outlived its usefulness, or allowed to fall out of scope.
\section{Blob Destruction}
To release a blob\index{releasing a blob}, you must use the Blob\_Unlink\index{Blob\_Unlink}
procedure call. Table~\ref{t:blbunlkx} lists the exceptions while the specification
is shown below:
\begin{Code}
procedure Blob_Unlink(
DB : in Connection_Type;
Oid : in Row_ID_Type
);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & No such Oid\\
\end{tabular}
\end{center}
\caption{Blob\_Unlink Exceptions}\label{t:blbunlkx}
\end{table}
The following code releases the blob referenced in the example on
page \pageref{Example-code-with-OID-73763}.
\begin{Example}
declare
C : aliased Connection_Type;
Oid : Row_ID_Type := 73763;
begin
...
Blob_Unlink(C,Oid);
\end{Example}
\subsubsection{Generic\_Blob\_Unlink Procedure}
To use a strongly typed version of the Blob\_Unlink procedure, the
application programmer can instantiate from Generic\_Blob\_Unlink\index{Generic\_Blob\_Unlink}.
The instantiated function otherwise behaves exactly as the Blob\_Unlink
function. The instantiation parameters for Generic\_Blob\_Unlink are:
\begin{Code}
generic
type Oid_Type is new Row_ID_Type;
procedure Generic_Blob_Unlink(
DB : in Connection_Type;
Oid : in Oid_Type
);
\end{Code}
The following example shows how to instantiate the function:
\begin{Example}
declare
type My_Oid_Type is new Row_ID_Type;
procedure Blob_Unlink is new
Generic_Blob_Unlink(My_Oid_Type);
\end{Example}
\section{File and Blob Operations}
Blobs are very similar to files\index{files}. It should be no surprise
then that sometimes a file is imported\index{imported} into a blob,
or exported\index{exported} from a blob.
A file is imported into a blob with the Blob\_Import\index{Blob\_Import} call:
\begin{Code}
procedure Blob_Import(
DB : in Connection_Type;
Pathname : in String;
Oid : out Row_ID_Type
);
\end{Code}
Blob\_Import returns the Oid of the newly created blob, that now contains
a copy of the file specified by the Pathname argument.
A blob's contents can be written out (exported) to a file with a call
to Blob\_Export\index{Blob\_Export}:
\begin{Code}
procedure Blob_Export(
DB : in Connection_Type;
Oid : in Row_ID_Type;
Pathname : in String
);
\end{Code}
After a successful return from Blob\_Export, the file named by the
Pathname argument, contains a copy of the specified blob.
If any error in these import/export operations occur, the
exceptions listed in Table~\ref{t:blbxpx} occur.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Blob\_Error & Import/export failed\\
\end{tabular}
\end{center}
\caption{Blob\_Export Exceptions}\label{t:blbxpx}
\end{table}
Note that Blob\_Import creates a new blob if necessary. Blob\_Export
creates a new file if necessary.
\subsubsection{Generic\_Blob\_Import and Generic\_Blob\_Export Procedures}
To use strongly typed versions of the Blob\_Import and Blob\_Export,
the application programmer can instantiate from Generic\_Blob\_Import\index{Generic\_Blob\_Import}
and Generic\_Blob\_Export\index{Generic\_Blob\_Export} respectively. The instantiated procedure
otherwise behaves exactly as the Blob\_Import or Blob\_Export function.
The instantiation parameters for Generic\_Blob\_Import or Generic\_Blob\_Export
are:
\begin{Code}
generic
type Oid_Type is new Row_ID_Type;
procedure Generic_Blob_Import(
DB : in Connection_Type;
Pathname : in String;
Oid : out Oid_Type
);
\end{Code}
\begin{Code}
generic
type Oid_Type is new Row_ID_Type;
procedure Generic_Blob_Export(
DB : in Connection_Type;
Oid : in Oid_Type;
Pathname : in String
);
\end{Code}
The following example shows how to instantiate the function:
\begin{Example}
declare
type My_Oid_Type is new Row_ID_Type;
procedure Blob_Import is new
Generic_Blob_Import(My_Oid_Type);
\end{Example}
\chapter{Utility Functions} % Chapter 5
\section{To\_String Support}
To ease the job for programming, a number of builtin To\_String\index{To\_String} functions
are provided to allow conversion from the data type to its string
representation. The following To\_String functions are available with
the following builtin types (only one function requires a second argument):
\begin{Code}
function To_String(
V : APQ_Boolean
) return String;
\end{Code}
\begin{Code}
function To_String(
V : APQ_Date
) return String;
\end{Code}
\begin{Code}
function To_String(
V : APQ_Time
) return String;
\end{Code}
\begin{Code}
function To_String(
V : APQ_Timestamp
) return String;
\end{Code}
\begin{Code}
function To_String(
V : APQ_Timestamp;
TZ : APQ_Timezone
) return String;
\end{Code}
\begin{Code}
function To_String(
V : APQ_Timezone
) return String;
\end{Code}
\begin{Code}
function To_String(
V : APQ_Bitstring
) return String;
\end{Code}
The following illustrates one example:
\begin{Example}
declare
Ship_Date : APQ_Date;
begin
Put({
Put_Line(To_String(Ship_Date));
\end{Example}
\section{Generic To\_String Support}
Programs that make use of distinct types will require the use of generic
functions to perform To\_String\index{generic To\_String} conversions. The following generic
functions are available for instantiation:
\begin{Code}
generic
type Val_Type is new Boolean;
function Boolean_String(
V : Val_Type
) return String;
\end{Code}
\begin{Code}
generic
type Val_Type is range <>;
function Integer_String(
V : Val_Type
) return String;
\end{Code}
\begin{Code}
generic
type Val_Type is mod <>;
function Modular_String(
V : Val_Type
) return String;
\end{Code}
\begin{Code}
generic
type Val_Type is delta <>;
function Fixed_String(
V : Val_Type
) return String;
\end{Code}
\begin{Code}
generic
type Val_Type is digits <>;
function Float_String(
V : Val_Type
) return String;
\end{Code}
\begin{Code}
generic
type Val_Type is delta <> digits <>;
function Decimal_String(
V : Val_Type
) return String;
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Time;
function Date_String(
V : Val_Type
) return String;
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Day_Duration;
function Time_String(
V : Val_Type
) return String;
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Time;
function Timestamp_String(
V : Val_Type
) return String;
\end{Code}
\begin{Code}
generic
type Val_Type is new APQ_Timezone;
function Timezone_String(
V : Val_Type
) return String;
\end{Code}
The following example illustrates their use:
\begin{Example}
declare
type My_Date_Type is new APQ_Timestamp;
function To_String is new
Timestamp_String(My_Date_Type);
Execution_Date : My_Date_Type;
begin
...
Put("Program Execution Date: ");
Put_Line(To_String(Execution_Date));
\end{Example}
\section{Conversion Generic Functions}
Sometimes a programmer must convert from a text format string into
another data type for manipulation. Several generic conversion \index{conversion functions} functions are
provided for the purpose (exceptions listed in Table~\ref{t:cvtx}):
\begin{Code}
generic
type Val_Type is new Boolean;
function Convert_To_Boolean(
S : String
) return Val_Type;
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Time;
function Convert_To_Date(
S : String
) return Val_Type; -- YYYY-MM-DD format
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Day_Duration;
function Convert_To_Time(
S : String
) return Val_Type; -- HH:MM:SS format
\end{Code}
\begin{Code}
generic
type Val_Type is new Ada.Calendar.Time;
function Convert_To_Timestamp(
S : String
) return Val_Type; -- YYYY-MM-DD HH:MM:SS
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Invalid\_Format & The input value was not a proper value for the type\\
\end{tabular}
\end{center}
\caption{Conversion Exceptions}\label{t:cvtx}
\end{table}
The following example illustrates some converions:
\begin{Example}
declare
type Bool is new APQ_Boolean;
type Birth_Date_Type is new APQ_Date;
function To_Boolean is new Convert_To_Boolean(Bool);
function To_Date is new Convert_To_Date(Birth_Date_Type);
My_Bool : Bool;
Elvis : Birth_Date_Type;
begin
...
My_Bool := To_Boolean("F");
Elvis := To_Timestamp("1957-01-08");
\end{Example}
\section{The Convert\_Date\_and\_Time Generic Function}
Sometimes the programmer needs the convenience of putting separate
date and time values together into a returned timestamp\index{timestamp}
value. For example the date of birth may be stored in one database
column\index{column}, while the time of birth is stored in another.
It may be necessary to work with a timestamp value instead, that contains
both of these components. To permit the use of strongly typed values\index{strongly typed values},
a generic function is provided for this purpose.
The generic specification for Convert\_Date\_and\_Time\index{Convert\_Date\_and\_Time} is:
\begin{Code}
generic
type Date_Type is new Ada.Calendar.Time;
type Time_Type is new Ada.Calendar.Day_Duration;
type Result_Type is new Ada.Calendar.Time;
function Convert_Date_and_Time(
DT : Date_Type;
TM : Time_Type
) return Result_Type;
\end{Code}
The following example shows how to apply this function:
\begin{Example}
declare
type My_Date_Type is new APQ_Date;
type My_Time_Type is new APQ_Time;
type My_Timestamp_Type is new APQ_Timestamp;
function To_Timestamp is new
Convert_Date_and_Time(
Date_Type => My_Date_Type,
Time_Time => My_Time_Type,
Result_Type => My_Timestamp_Type);
Some_Date : My_Date_Type;
Some_Time : My_Time_Type;
Some_Timestamp : My_Timestamp_Type;
begin
...
Some_Timestamp := To_Timestamp(Some_Date,Some_Time);
\end{Example}
\section{The Extract\_Timezone Generic Procedure}
When a database table or result column provides a timestamp and timezone
together, it is sometimes necessary to extract\index{extract} these
components so that they can be manipulated separately. To permit the
use of application defined types, a generic procedure is provided.
The Extract\_Timezone\index{Extract\_Timezone} generic procedure is defined below,
while Table~\ref{t:xtzx} documents the exceptions:
\begin{Code}
generic
type Date_Type is new Ada.Calendar.Time;
type Zone_Type is new APQ_Timezone;
procedure Extract_Timezone(
S : in String;
DT : out Date_Type;
TZ : out Zone_Type
);
\end{Code}
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Invalid\_Format & The input value was not a proper value for the type\\
\end{tabular}
\end{center}
\caption{Extract\_Timezone Exceptions}\label{t:xtzx}
\end{table}
The following example shows how to apply this procedure:
\begin{Example}
declare
type My_Date_Type is new APQ_Timestamp;
type My_Zone_type is new APQ_Timezone;
procedure Extract is new
Extract_Timezone(My_Date_Type,My_Zone_Type);
Ex_Date : My_Date_Type; -{
Ex_Zone : My_Zone_Type; -{
begin
...
Extract("1957-01-08 01:13:45+04",Ex_Date,Ex_Zone);
\end{Example}
\chapter{Calendar Functions}
There is frequently the need in applications to separate out the hour\index{hour},
minute\index{minute} and second\index{second} from a time\index{time}
value. To make this easier, and to permit the continued use of strong
typing, the following generic functions are available:%
\footnote{It could be argued that these generic functions do not go the full
generic distance, because the return value types are standard types
only (types Hour\_Number, Minute\_Number and Second\_Number).%
}
\begin{Code}
generic
type Time_Type is new Ada.Calendar.Day_Duration;
function Generic_Hour(
TM : Time_Type
) return Hour_Number;
\end{Code}
\begin{Code}
generic
type Time_Type is new Ada.Calendar.Day_Duration;
function Generic_Minute(
TM : Time_Type
) return Minute_Number;
\end{Code}
\begin{Code}
generic
type Time_Type is new Ada.Calendar.Day_Duration;
function Generic_Second(
TM : Time_Type
) return Second_Number;
\end{Code}
The following example shows how to apply this procedure:
\begin{Example}
declare
type Evt_Time_Type is new Ada.Calendar.Day_Duration;
function Hour is new Generic_Hour(Evt_Time_Type);
function Minute is new Generic_Minute(Evt_Time_Type);
Evt_Time : Evt_Time_Type;
HH : Hour_Number;
MM : Minute_Number;
begin
...
HH := Hour(Evt_Time);
MM := Minute(Evt_Time);
\end{Example}
\chapter{Decimal Support}
In order to support accurate number calculations, particularly for
financial work, the package APQ\-.PostgreSQL\-.Decimal\index{APQ.PostgreSQL.Decimal}
is available for the programmer to use. This package is based upon
the C source\index{C source} code extracted out of the PostgreSQL server.%
\footnote{Portions copyright (c) 1996-2001, The PostgreSQL Global Development
Group, and portions copyright (c) 1994, The Regents of the University
of California.%
} The decimal support\index{decimal support} is \emph{not} a floating
point\index{floating point} package, but does support approximately
1,000 digits worth of accuracy\index{accuracy}. Note that this is currently PostgreSQL\index{PostgreSQL}
specific code, and as such, it has not been reworked for general use
in databases like MySQL\index{MySQL}.
\section{Introduction}
The APQ\-.PostgreSQL\-.Decimal package is a binding to the extracted server
decimal code. This gives the Ada programmer access to the same numeric
support\index{numeric support} as used by the database engine to
sum columns etc. Because it is decimal\index{decimal} based, you will not have to
worry about representation issues for values like 0.3,%
\footnote{In binary floating point, the value 0.3 must be represented as 0.29999
repeat.} allowing for accurate sums and hash total calculations.
\begin{quote}
Special Note: The APQ\-.PostgreSQL\-.Decimal package is still under development,
and is subject to change. One of the most serious limitations at present
is the fact that assignment clobbers any prior concept of precision\index{precision}
and scale\index{scale} for the variable being assigned to. To overcome this, it
is possible that a future implementation of this package may provide
task safe storage to preserve the variable's precision and scale.
This can be done by saving the variable's precision and scale in task
safe storage at finalization time. When the Adjust primitive is later
called, the saved precision and scale can be restored and followed
by a call to the Constrain()\index{Constrain} function. This will implicitly keep the
variable within its configured precision and scale parameters.
\end{quote}
\section{Decimal Exceptions}
The APQ\-.PostgreSQL\-.Decimal binding can raise any of the exceptions
listed in Table~\ref{t:decx}.
\begin{table}
\begin{center}
\begin{tabular}{ll}
Exception Name & Reason\\
\hline
Decimal\_NaN & The value is ``Not a Number{}`` (or NULL)\\
Decimal\_Format & Input does not represent a decimal number\\
Decimal\_Overflow & Value over/under-flowed\\
Undefined\_Result & Computation does not have a defined result\\
Divide\_By\_Zero & An attempt to divide by zero occurred\\
\end{tabular}
\end{center}
\caption{Decimal Exceptions}\label{t:decx}
\end{table}
\section{``Not a Number'' Operations}
A new Decimal\_Type\index{Decimal\_Type} value is initialized to NaN\index{NaN} (Not a
Number). This is a special status for the value, which can be assigned
to other Decimal\_Type values. When this status is detected in an
expression where a computation is being performed, the exception
Decimal\_NaN\index{Decimal\_NaN exception} is raised to indicate that no
valid result can be determined.
\section{The Decimal\_Type Type}
Decimal values are manipulated in a type, which is defined in terms
of a tagged\index{tagged} controlled\index{controlled} record:
\begin{Code}
type Decimal_Type is new
Ada.Finalization.Controlled with private;
\end{Code}
These values are further defined by the following additional two attributes:
\begin{description}
\item [Precision] specifies the precision of the decimal variable
\item [Scale] specifies the scale of the decimal variable
\end{description}
\section{Is\_NaN Function}
To test if a value is ``Not a Number'', the Is\_NaN\index{Is\_NaN} function can
be used:
\begin{Code}
function Is_Nan(
DT : Decimal_Type
) return Boolean;
\end{Code}
The following example shows how to apply the function:
\begin{Example}
declare
D : Decimal_Type;
begin
if Is_NaN(D) then
Put_Line("D is NaN!");
...
\end{Example}
\section{Convert Procedure}
To import\index{import} a large decimal value from a String, the programmer may
invoke the Convert\index{Convert} procedure:
\begin{Code}
procedure Convert(
DT : in out Decimal_Type;
S : in String;
Precision : in Precision_Type := 0;
Scale : in Scale_Type := 2
);
\end{Code}
The arguments \emph{Precision} and \emph{Scale} arguments can be omitted
if you can accept the default values of 0 and 2 for the precision
and scale respectively. When \emph{Precision} is given as zero, the
value has no defined precision, and may grow to whatever size is necessary
to carry the result.%
\footnote{The source code indicates that the maximum precision is approximately
1,000 decimal digits.}
The following example shows how to initialize a Decimal\_Type from
a string:
\begin{Example}
declare
D : Decimal_Type;
begin
Convert(D,"12345.6789",0,4);
\end{Example}
\section{To\_String Function}
To make a Decimal\_Type value printable, you can call upon the To\_String\index{To\_String}
function:
\begin{Code}
function To_String(
DT : Decimal_Type
) return String;
\end{Code}
The To\_String will return the string ``NULL''\index{NULL} if the value is
in the ``Not a Number'' state.
The following example shows how to use it in a Put\_Line call:
\begin{Example}
declare
D : Decimal_Type;
begin
...
Put_Line("D := " & To_String(D));
\end{Example}
\section{Constrain Function}
Sometimes it is desireable to constrain\index{constraining values}
a result to a particular precision and scale, while watching for overflows.
The Constrain function takes an input value, and returns a new value
with the values constrained to the given precision and scale\index{Constrain}:
\begin{Code}
function Constrain(
DT : in Decimal_Type;
Precision : in Precision_Type;
Scale : in Scale_Type
) return Decimal_Type;
\end{Code}
The returned value is rounded (if necessary) to accomodate the \emph{Scale}\index{scale}
argument. The result must fit within the precision\index{precision} given by the \emph{Precision}
argument. The following example illustrates how the function is used:
\begin{Example}
declare
A : Decimal_Type;
B : Decimal_Type;
begin
A := ...some calculation...;
B := Constrain(A,10,2); -- Precision 10, Scale 2
\end{Example}
\section{Expression Operations}
The Decimal\_Type values can be both assigned and computed with the
normal set of operators\index{operators} as shown in Table~\ref{t:decopr}.
\begin{table}
\begin{center}
\begin{tabular}{|c|c|}
\hline
Operator & Description\\
\hline
+ & Add\\
- & Subtract\\
{*} & Multiply\\
/ & Divide\\
unary - & Negate\\
= & Equal\\
< & Less than\\
<= & Less than or equal\\
> & Greater than\\
>= & Greater than or equal\\
\hline
\end{tabular}
\end{center}
\caption{Decimal Operators}\label{t:decopr}
\end{table}
The following code fragment shows some Decimal\_Type expressions\index{expressions}
at work:
\begin{Example}
declare
Watts_per_Hp : Decimal_Type;
Watts : Decimal_Type;
Volts : Decimal_Type;
Amperes : Decimal_Type;
Hp : Decimal_Type;
begin
Convert(Watts_per_Hp,"745.577",0,3); -- Watts/HP
Convert(Volts,"120.0",0,1);
Convert(Amperes,"7.0",0,1);
Watts := Volts * Amperes; -- # of Watts
Hp := Watts / Watts_per_Hp; -- # of Horsepower
\end{Example}
\section{Minimum and Maximum Values}
The Min\_Value\index{Min\_Value} and Max\_Value\index{Max\_Value} functions are available to the programmer
to conveniently return the minimum\index{minimum} or maximum\index{maximum}
value of a pair, respectively. These functions share the following
common calling signature:
\begin{Code}
function Min_Value(
Left, Right : Decimal_Type
) return Decimal_Type;
\end{Code}
\begin{Code}
function Max_Value(
Left, Right : Decimal_Type
) return Decimal_Type;
\end{Code}
The following example illustrates its use:
\begin{Example}
declare
A, B : Decimal_Type;
Smallest : Decimal_Type;
begin
Smallest := Min_Value(A,B);
\end{Example}
\section{Abs\_Value, Sign, Ceil and Floor Functions}
The functions in the following table are documented in this section\index{Abs\_Value}\index{Sign}\index{Ceil}
\index{Floor}:
\begin{Code}
function Abs_Value(
DT : Decimal_Type
) return Decimal_Type;
\end{Code}
\begin{Code}
function Sign(
DT : Decimal_Type
) return Decimal_Type;
\end{Code}
\begin{Code}
function Ceil(
DT : Decimal_Type
) return Decimal_Type;
\end{Code}
\begin{Code}
function Floor(
DT : Decimal_Type
) return Decimal_Type;
\end{Code}
The following example illustrates its use:
\begin{Example}
declare
A, B : Decimal_Type;
Pos_Val : Decimal_Type;
begin
Pos_Val := Abs_Value(A,B);
\end{Example}
\section{Sqrt, Exp, Ln and Log10 Functions}
The functions in the following table are documented in this section%
\index{Sqrt}\index{Exp}\index{Ln}\index{Log10}:
\begin{Code}
function Sqrt(
X : Decimal_Type
) return Decimal_Type;
\end{Code}
\begin{Code}
function Exp(
X : Decimal_Type
) return Decimal_Type;
\end{Code}
\begin{Code}
function Ln(
X : Decimal_Type
) return Decimal_Type;
\end{Code}
\begin{Code}
function Log10(
X : Decimal_Type
) return Decimal_Type;
\end{Code}
The following example illustrates its use:
\begin{Example}
declare
X : Decimal_Type;
L10 : Decimal_Type;
begin
L10 := Log10(X);
\end{Example}
\section{The Log Function}
The Log\index{Log} function permits the caller to evaluate a logrithm $\log$
$_{\textrm{base}}$ x . It has the following calling requirements:
\begin{Code}
function Log(
X, Base : Decimal_Type
) return Decimal_Type;
\end{Code}
The following example illustrates its use:
\begin{Example}
declare
X : Decimal_Type;
Base : Decimal_Type;
L : Decimal_Type;
begin
L := Log(X,Base);
\end{Example}
\section{The Power Function}
The Power\index{Power} function permits the caller to evaluate the expression x$^{\textrm{y}}$.
The function accepts the following calling arguments:
\begin{Code}
function Power(
X, Y : Decimal_Type
) return Decimal_Type;
\end{Code}
The following example assigns to \emph{P}, the value x$^{\textrm{y}}$.
\begin{Example}
declare
X : Decimal_Type;
Y : Decimal_Type;
P : Decimal_Type;
begin
P := Power(X,Y);
\end{Example}
\section{The Round and Trunc Functions}
To round\index{round} or truncate\index{truncate} a Decimal\_Type
value, the application designer may call the Round\index{Round} and Trunc\index{Trunc} functions
respectively. They both accept the following calling arguments:
\begin{Code}
function Round(
DT : in Decimal_Type;
Scale : in Scale_Type
) return Decimal_Type;
\end{Code}
\begin{Code}
function Trunc(
DT : in Decimal_Type;
Scale : in Scale_Type
) return Decimal_Type;
\end{Code}
The following example assigns to \emph{R}, the rounded value of \emph{X},
to 2 decimal places:
\begin{Example}
declare
X : Decimal_Type;
R : Decimal_Type;
begin
R := Round(X,2);
\end{Example}
\section{Builtin Decimal\_Type Constants}
The builtin decimal constants\index{decimal constants} are defined
as the following functions%
\index{Zero}\index{One}\index{Two}\index{Ten}\index{NaN}:
\begin{Code}
function Zero return Decimal_Type;
function One return Decimal_Type;
function Two return Decimal_Type;
function Ten return Decimal_Type;
function NaN return Decimal_Type;
\end{Code}
The NaN function can be used to put a value into a ``Not a Number''
state. This doubles as setting the value to NULL\index{NULL}, for SQL query use.
\section{Using Decimal\_Types with Query\_Type}
Creating SQL\index{SQL} queries using the Decimal\_Type\index{Decimal\_Type} and retrieving values
from SQL queries has been made easy for the application programmer.
The NaN\index{NaN} state is used to represent a NULL\index{NULL} value. This eliminates the
need for the application programmer to define indicator values.
The Append procedure allows the programmer to build SQL queries with
Decimal\_Type values. The Value\index{Value} function, permits the programmer to
retrieve a column value into a Decimal\_Type variable (with or without
a NULL\index{NULL} value).
\subsection{Using Decimal\_Type with Append}
The Append procedure has the following specification:
\begin{Code}
procedure Append(
Query : in out PostgreSQL.Client.Query_Type;
DT : in Decimal_Type'Class;
After : in String := ""
);
\end{Code}
\subsection{Fetching Decimal\_Type Values}
A decimal value may be retrieved from a SQL query, using the Value
function:
\begin{Code}
function Value(
Query : in PostgreSQL.Client.Query_Type;
CX : in Column_Index_Type
) return Decimal_Type;
\end{Code}
If the returned value for the column is NULL\index{NULL}, the value
returned will be in the NaN state. The following example illustrates
how to apply the Value\index{Value} function:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
D : Decimal_Type := NaN;
begin
...
Prepare(Q, "SELECT QTY, ...");
Append_Line("FROM ORDERS");
Execute(Q,C);
while not End_of_Query loop
Fetch(Q);
D := Value(Q,1); -- Fetch Decimal_Type
end loop;
Clear(Q);
\end{Example}
\chapter{Generic Database Programming}
With APQ 2.0, the support of the MySQL database becomes available.
The future may allow APQ to support even more database technologies.
With this in mind, it becomes very desireable in some circumstances
to write applications in a database neutral way. Within this documentation,
we will use the term ``Generic Database Programming'' to describe
portable\index{portable} database code.
This chapter is about programming for databases generically. Given
that APQ is built using object oriented techniques (tagged\index{tagged} Ada95\index{Ada95} records),
it should be possible to leverage this in a way to write application
procedures once, and enjoy the flexibility of choosing or changing
the database technology used later. \Ref{Generic APQ.Result}
identified one aspect of generic database processing.
\section{Generic Connections}
For most routine database work, the only object that needs to be defined
up front, is the database connection. In APQ version 2.2 and later,
there are three concrete choices:
\begin{enumerate}
\item APQ.PostgreSQL.Client.Connection\_Type
\item APQ.MySQL.Client.Connection\_Type
\item APQ.Sybase.Client.Connection\_Type
\end{enumerate}
Once the high level layer of the application chooses one of these
connection objects, and establishes a connection with the database,
the connection object may be passed around as parameters to procedures.
The recommended generic way to do this, is to pass the connection
as a APQ\-.Root\_Connection\_Type\-'Class\index{Root\_Connection\_Type'Class} parameter. See the following
example:
\begin{Example}
procedure MyApp(C : in out APQ.Root_Connection_Type'Class) is
begin
...
\end{Example}
The classwide parameter then permits any database connection object
to be passed as a parameter. The classwide attribute causes all operations
performed upon that object to be dispatching calls. By dispatching
on the object's primitives, you ensure that database specific operations
are carried out according to the type of database being used.
\section{Database Specific Code}
Due to the wide differences that sometimes exist between database
engines\index{engines}, it is sometimes necessary to take different course of action,
depending upon the database being used. For example, PostgreSQL\index{PostgreSQL} allows
a varchar(256)\index{varchar} column to be defined, where MySQL\index{MySQL} is limited to varchar(255)
instead.%
\footnote{MySQL requires you declare the type as TEXT if you need more than
255 characters.%
}
To determine the database being used, use the Engine\_Of\index{Engine\_Of}
predicate\index{predicate} function. This primitive exists on both the Root\_Connection\_Type\index{Root\_Connection\_Type}
and Root\_Query\_Type objects. \Ref{Generic Database Engine_Of}
and \Ref{Generic APQ.Engine_Of} describe functions and examples for
this purpose.
Obviously, if you are only given a Root\_Connection\_Type'Class connection
argument to use, you cannot know in advance which Query\_Type\index{Query\_Type} object
to use. Make use of the New\_Query\index{New\_Query} factory\index{factory} function to create
one (See \Ref{Query_Type Factories}) or use cloning\index{cloning}
(\Ref{Query_Type Cloning}) if you have an existing Query\_Type object
available.
\subsection{Row ID Values}\label{Portability Note for Row ID Values}
When designing a new system, it is important to plan for the use of
row ID\index{row ID} values. MySQL\index{MySQL} does not support them at all, while PostgreSQL\index{PostgreSQL}
encourages their use.%
\footnote{For example, a blob is identified by a Oid value, which is basically
a row ID.%
} MySQL encourages the use of serial values instead, which is a good
practice. For generic database programming you must plan for these
differences to reduce the amount of specialized code. For more information
about obtaining row ID values, see the \Ref{Command_Oid Function},
and \Ref{Portability Note for Row ID Values} for portability\index{portability}
notes.
Additionally, the assumptions about what constitutes a null row ID\index{null row ID}
must be scrutinized. Since different databases use different values
to represent ``no row'', you should make careful use of the APQ
Null\_Oid\index{Null\_Oid} function, rather than depend upon a particular
constant. See \Ref{Null_Oid Function} for information about
that.
\section{Data Types}
When writing generic database code it is important to choose your
datatypes\index{datatypes} very carefully. One example where this is important is when
using a PostgreSQL\index{PostgreSQL} timezone\index{timezone} type (APQ\_Timezone\index{APQ\_Timezone}).
While a timezone
variable can be used in MySQL\index{MySQL} specific code, it should be emphasized
that MySQL does not support timezone values within a TIMESTAMP\index{TIMESTAMP} database
column type. Sybase\index{Sybase} does not support timezones at all.
A similar problem exists with PostgreSQL bit string types (APQ\_Bitstring\index{APQ\_Bitstring}).
MySQL and Sybase do not support them. So if you want to write portable
code, stick to simple data types in your application.
When you must make use of special database types, be prepared to specialize
the code somewhat, depending upon the database being used.
\subsection{Column Types}
Another area that is important to consider is the database column
\index{column types} types that are chosen for tables. Comparing the table in
\Ref{PostgreSQL SQL Data Types} and \Ref{MySQL Data Types}, the
reader can see that most columns can be declared in SQL using the
same column type declarations. However, there are some important differences.
For example, a SERIAL\index{SERIAL} column in PostgreSQL must be declared as an
INTEGER\index{INTEGER} type when using MySQL. For most applications, this is not
too much of an issue, because applications usually don't create and
drop tables. However, this can be an issue with temporary tables.
As noted in the prior section, MySQL also does not directly support
some data types such as the time zone value within a DATETIME\index{DATETIME} type.
If time zones must be supported, the writer may simply add a time
zone column declared in SQL as a SMALLINT\index{SMALLINT} value, and work with the
timezone separately.
\section{Pulling it All Together}
This section will examine a fairly trivial example of a generic database
procedure. It will make one exception for MySQL\index{MySQL}, so that the reader
will know how to work with database engine\index{engine} differences. Ideally, you
would want to avoid differences, where possible.
The example is a real world example. A procedure is required to fetch
the most recent stock price available on file, for a given security
(by ticker symbol). While there may be a price for the security on
the given day, if there is not one listed, the procedure is expected
to fall back to the most recent price available. The table being consulted,
is defined as follows:\label{PRICE_HIST Table Definition}
\begin{SQL}
CREATE TABLE PRICE_HIST (
SECURITY CHAR(10) NOT NULL,
PRICE_DATE DATE NOT NULL,
PRICE REAL NOT NULL,
PRIMARY KEY(SECURITY,PRICE_DATE)
);
\end{SQL}
Here is the package spec for the Prices module, which makes the procedure
Last\_Price available for use:
\begin{Example}
with APQ;
use APQ;
package Prices is
procedure Last_Price(
C : in out Root_Connection_Type'Class;
Security : in String;
Price : out APQ_Double
);
end Prices;
\end{Example}
Given any database connection, and a ticker symbol provided in argument
Security, the procedure Last\_Price is expected to lookup the most
recent stock price in the PRICE\_HIST table and return that price
in the Price argument. Here is the body of the package, written to
work with any database:
\begin{NumberedExample}
package body Prices is
procedure Last_Price(
C : in out Root_Connection_Type'Class;\label{Ex:RootConn}
Security : in String;
Price : out APQ_Double
) is
function Value is new Float_Value(APQ_Double);
Q : Root_Query_Type'Class := New_Query(C);\label{Ex:QFact}
begin
Prepare(Q, "SELECT SECURITY,PRICE_DATE,PRICE");
Append_Line(Q, "FROM PRICE_HIST");
Append(Q, "WHERE SECURITY = ");
Append_Quoted(Q,C,Security,Line_Feed);
Append_Line(Q, "ORDER BY SECURITY,PRICE_DATE DESC");\label{Ex:OrBy}
if Engine_Of(C) = Engine_MySQL then\label{Ex:EngOf}
Append_Line(Q,"LIMIT 1");\label{Ex:Limit1_Again}
end if;
Execute(Q,C);
begin
Fetch(Q);
exception
when No_Tuple =>
raise; -- Indicates no price
end;
Price := Value(Q,3);
end Last_Price;
end Prices;
\end{NumberedExample}
A few notes are in order here: The spec already with's and uses the
package APQ. So it is not repeated in the body of the package. The
Last\_Price procedure takes a Root\_Connection\_Type'Class
(line~\ref{Ex:RootConn} connection object type, so it can be supplied
with a MySQL or PostgreSQL database connection\index{connection} (Connection\_Type).
The New\_Query factory\index{factory} function (line~\ref{Ex:QFact}) is used to create
the correct Query\_Type object necessary to match the connection. It is
used to form and execute the query. The Prepare, Append\_line,
Append\_Quoted calls build up an SQL query, and then the type of the
database is queried by calling Engine\_Of (line \ref{Ex:EngOf}). If the
database being used is a MySQL database, the query is optimized
\footnote{One could also argue that it is {}``fixed'' here, since MySQL
insists that all row results of a query be fetched.} so that only one
row is returned by use of the extended SQL ``LIMIT 1''\index{LIMIT} clause
(line~\ref{Ex:Limit1_Again}).
Note that the ``ORDER BY''\index{ORDER BY} clause in line~\ref{Ex:OrBy} requires that
the sort order be descending (most recent dates first). Given that the
``ORDER BY'' clause specifies indexed columns, this retrieval should
be quick since a reverse index retrieval is possible (if the database
cannot do this, you should create a new index or fix the primary key to
be descending).
Since we are only interested in the most recent price (ie. one price),
only one Fetch call is made. This is not a problem for PostgreSQL,
but it is for MySQL if there there are more than one row (see
\Ref{Fetch Limitations} to find out why). If the database is MySQL
the problem is addressed by adding to the query a MySQL extended clause
``LIMIT 1''\index{LIMIT}, to limit the results to one row (line~\ref{Ex:Limit1_Again}).
The price is then fetched from column 3 (PRICE) and the procedure
returns. If no rows are returned, we simply raise the APQ.No\_Tuple
exception here to keep the example simple. A finished application
would handle this in a more elegant way perhaps.
The important thing to recognize here is that there is nothing specific
to the type of database being used in this Prices package, except
for the MySQL work-around. The only APQ package being used is the
top level package APQ, and the root types for connection and query
types.
Here is a PostgreSQL main program:
\begin{Example}
with Ada.Text_IO;
with APQ.
with Prices;
use APQ, Prices, APQ.
procedure Price_PG is
C : Connection_Type;
P : APQ_Double;
begin
Set_DB_Name(C,"investments");
Connect(C);
Last_Price(C,"RHAT",P);
Put_Line("RHAT $" & APQ_Double'Image(P));
Disconnect(C);
end Price_PG;
\end{Example}
Please notice the following points about the main program:
\begin{enumerate}
\item The database specific package is with'ed as APQ.PostgreSQL.Client
here to choose the database connection being used.
\item The Connection\_Type object is declared in APQ.PostgreSQL.Client and
derives from APQ.Root\_Connection\_Type.
\item The database is chosen and a connection is established.
\item The Last\_Price procedure is called, providing only the connection
and the security's ticker symbol that the price is being sought for.
\item The returned price P is then printed (albeit crudely)
\item The application disconnects from the server and exits.
\end{enumerate}
The same main program using MySQL looks like this:
\begin{Example}
with Ada.Text_IO;
with APQ.
with Prices;
use APQ, Prices, APQ.
procedure Price_My is
C : Connection_Type;
P : APQ_Double;
begin
Set_DB_Name(C,"investments");
Connect(C);
Last_Price(C,"RHAT",P);
Put_Line("RHAT $" & APQ_Double'Image(P));
Disconnect(C);
end Price_My;
\end{Example}
The only difference between this MySQL\index{MySQL} main program and the prior
PostgreSQL\index{PostgreSQL} main program, is the name of the package used (APQ\-.MySQL\-.Client).
APQ truly is the closest thing to database independance!
\section{Miscellaneous Portability Issues}
There are a number of other database portability issues that should
be born in mind. An incomplete list has begun in this document below:
\begin{itemize}
\item temporary tables creation
\item SELECT ... INTO TABLE ...
\end{itemize}
This list will grow with submissions and experience.
\footnote{Contributions are welcome.}
\subsection{Temporary Tables\label{Creating Temp Tables}}
Many databases allow the SQL programmer to create a temporary\index{temporary tables} table
prior to its use in the application. This temporary table is only
visible to the user of the established database connection. When the
database connection is closed or disconnected, the temporary table
is automatically discarded and its space recycled by the database
engine.
The difficulty that a generic database programmer needs to be aware
of is that some databases work differently. Normally, an application
would perform something like the following to create a temporary table
in the database session that required it:
\begin{SQL}
CREATE TEMP TABLE INTERMED_RESULTS (
SECURITY CHAR(10) NOT NULL,
HOLDINGS BIGINT NOT NULL
);
\end{SQL}
Subsequent to the successful creation\index{create temp table} of this temporary table, the
application would populate it and use it as necessary. The application
may even create indexes on the table after the table is populated,
to help performance in later stages of the table's use.
While this works for PostgreSQL\index{PostgreSQL} and MySQL\index{MySQL}, the generic programmer
should be aware that this will not work on an Oracle\index{Oracle} database (when
APQ gets there some day). Oracle permits the same syntax, but operates
differently: Oracle only permits one CREATE TEMP TABLE\index{CREATE TEMP TABLE} operation to
be performed, in the same way that a permanent table is created. Once
created, the user implicitly gets access to the table upon demand.
Upon the first reference to the temporary table in a particular session,
you get a temporary table created, which is empty. You then populate
and use that temporary table without ever having to create it within
that particular session. When the session is over, the table's contents
are discarded.
So how do you plan for this? If the Engine\_Of\index{Engine\_Of} function
indicates Engine\_Oracle\index{Engine\_Oracle}, you must \emph{not} create the
temporary table during your database session. This will be done when
the permanent tables are created.%
\footnote{In many respects, this is perhaps the best time to declare and plan
for a temporary table.%
} For other database engines, you should create the temporary table
when you are about to use them in your application.
Perhaps the most sensible thing for temporary tables is to isolate
much of that work to stored\index{stored procedures} procedures. Your program can then just
invoke the stored procedure in a portable fashion.
\subsubsection{Indexes on Temporary Tables}
There is an additional piece of advice to consider when creating indexes
for temporary tables. For performance reasons, it is often best to
populate the temp table with no indexes\index{indexes} created. After the table has
been populated, indexes can then be efficiently added and dropped
as the needs arise.
In the Oracle case, these indexes are likely to be predefined as is
the declaration of the temporary table itself. So when creating indexes
for temporary tables, you should also probably test for Oracle in
the generic code. When using Oracle, you probably do \emph{not} want
to create or drop the index\index{index, create/drop}, as it will probably affect all users
of that temporary table definition.%
\footnote{The author has not verified this point, but the reader is encouraged
to do so.%
}
\subsection{SELECT ... INTO TABLE}
A number of database engines support a SQL syntax along the lines
of:
\label{SelectIntoTempTable}
\begin{SQL}
SELECT *
FROM MY_TABLE
WHERE ...
INTO TEMP TABLE TEMP123
\end{SQL}
The above SQL code performs the usual SELECT\index{SELECT INTO TEMP}, but places its results
into a temporary table named TEMP123. \footnote{One application
framework that the author is familiar with used a suffix of ``123'' to
denote the name of a temporary table.} Alternatively, databases will
also often permit:
\begin{SQL}
SELECT *
FROM MY_TABLE
WHERE ...
INTO TABLE RESULTS
\end{SQL}
This query places the results into a permanent table named RESULTS
(note that the keyword TEMP was dropped).
Both of these operations are very convenient for processing intermediate
results. However, database engines vary in their support. Neither
of these formats are supported by PostgreSQL or MySQL, but they are
supported by INFORMIX.
The SQL-99\index{SQL-99} way to perform this operation is specified as follows:
\begin{SQL}
INSERT INTO RESULTS
SELECT *
FROM MY_TABLE
WHERE ...
\end{SQL}
This syntax is supported by both PostgreSQL\index{PostgreSQL} and MySQL\index{MySQL} for permanent
tables.
There is no provision currently to create a temporary table on the
fly with syntax shown on page \pageref{SelectIntoTempTable}
using PostgreSQL or MySQL. So even SQL-99 syntax won't help you there.
You can only create a temporary table, and then use the INSERT INTO\index{INSERT INTO}
... SELECT syntax after the temporary table is created. But don't
forget the limitation in \Ref{Creating Temp Tables}.
\chapter{Troubleshooting}
There are several problems\index{problems} that can crop up in applications using
the APQ Binding. These problems usually fall into one of the following
categories:
\begin{itemize}
\item PostgreSQL database server ``personality''
\item The PostgreSQL libpq C library interface
\item The MySQL client library
\item Sybase libraries and/or interfaces file
\item The APQ binding itself
\end{itemize}
The APQ Binding attempts to insulate the user as much as is practical
from the client library issues and the database server. However, some
issues still manage to poke through. This chapter is an attempt to
provide some useful advice for those people that are encountering
unexpected behaviour, using the APQ Binding.
\section{General Problems}
The following subsections provide general troubleshooting help with
APQ binding issues.
\subsection{Missing Rows After Inserts (PostgreSQL)}
The first step in identifying whether this section applies or not,
is to ask:
\begin{itemize}
\item is a transaction\index{transaction} processing being used?
\item or, is a transaction pending when it shouldn't be?
\end{itemize}
If the second bullet applies to you, then you need to correct the
logic in your program (but read on to find out why).
On the other hand, if you are purposely using transactions (first
case) and you are losing\index{losing rows} inserted row information, then it is likely
that you are suffering from an aborted transaction in PostgreSQL\index{PostgreSQL} (this
is PostgreSQL specific). It might also represent an APQ binding bug\index{bug},
but check first to make sure that you have not put PostgreSQL into
an ``abort state''\index{abort state} (ie. in a snit). This is unusal database behavior,
but the PostgreSQL group seems to be proud of it.
The APQ Binding should prevent aborted\index{aborted transactions} transactions from being left
unnoticed.%
\footnote{If however, the Abort\_State\index{Abort\_State} exception is never being raised, then
it is possible you have a PostgreSQL porting issue. If the PostgreSQL
notice message format changes, the APQ binding code will fail to recognize
the notification of an ``abort state'' from the database server.%
} When the database server notificaties the APQ binding that an {}``abort
state'' has been entered%
\footnote{After a duplicate key on insert error, for example.%
}, any further attempts to execute SQL queries or COMMIT WORK\index{COMMIT WORK} on that
connection, will raise the Abort\_State exception for PostgreSQL (see
also \Ref{In_Abort_State Function} and \Ref{Abort_State exception}).
One common reason this happens is when an application inserts\index{insert of rows} rows
into a table, and intercepts the SQL\_Error\index{SQL\_Error} exception. This exception
is caught because the application writer wants to ignore the insert
on a duplicate\index{duplicate key insert} key error. The difficulty here is that the PostgreSQL
database engine will enter an ``abort state'' after the failed
INSERT\index{INSERT} operation, regardless of how the application handles the exception.
The only recourse to recovery at this point is to rollback the transaction
with a call to Rollback\_Work (\Ref{Begin, Commit and Rollback Work functions}).
This brings up a question about the APQ Binding. Why doesn't the APQ
binding raise Abort\_State immediately after the failed INSERT\index{INSERT} operation
within a transaction? There are two reasons:
\begin{enumerate}
\item The ``Abort State'' notice is provided to the APQ binding in the
form of a callback.
\item Processing SQL\_Error exception within a transaction implies an aborted
transaction (for PostgreSQL only).
\end{enumerate}
Notices are received by the APQ binding by registering a callback
with the database server. As a result, it is not always possible to
know about the ``abort state''\index{abort state} when it might be critical to the
application. Even if the information is available, this may not always
be so in future versions of PostgreSQL\index{PostgreSQL} (timing may change).
The very fact that you've started a transaction with Begin\_Work and
you have encountered an SQL\_Error exception should tell you that
you must Rollback\_Work and recover (remember this is only for PostgreSQL).
So as the developer, you should be thinking:
$Abort\, State=Begin\, Work+SQL\, Error$
The APQ binding has been designed to avoid several SQL statements
from being executed and being ignored because the database server
is in this ``Abort State''. This is why the Execute and Commit\_Work
calls check for this and raise the Abort\_State\index{Abort\_State} exception. However,
the best advice is to not rely on this mechanism when programming
the logic of your application.
\subsection{Missing Time Data (Or Time is 00:00:00)}
You build a query to insert or update a row with date and time\index{time} information,
but only the date\index{date} is getting stored in the database. The time component
always reads midnight\index{midnight} (00:00:00). Or perhaps you provide a date and
timestamp as part of a WHERE\index{WHERE clause} clause, but it fails because only the
date value is being put into the query (the time component always
shows as midnight). You print out the variables using To\_String and
they show the correct values, as follows:
\begin{Example}
declare
type My_Date_Type is new APQ_Timestamp;
My_Date : My_Date_Type;
begin
...
Put_Line(
"My_Date='"
& To_String(APQ_Timestamp(My_Date))
& "'"
);
\end{Example}
The above symptoms are the result of a common problem. This human
error is easy to make and is due to choosing the incorrect generic
procedure. Look for a generic instantiation statement like the following:
\begin{Code}
procedure Append
is new Append_Date(My_Date_Type);
\end{Code}
If your data type My\_Date\_Type holds time information, then
it is likely that you meant to code the following instead:
\begin{Code}
procedure~Append
is new Append_Timestamp(My_Date_Type);
\end{Code}
The error was choosing generic procedure Append\_Date\index{Append\_Date} over the correct
Append\_Timestamp\index{Append\_Timestamp} routine.
A similar mistake can be made choosing between Encode\_Date\index{Encode\_Date} and Encode\_Timestamp\index{Encode\_Timestamp}
generic procedures. So watch for these subtle differences!
\subsection{Exception No\_Tuple}
If you are having the exception No\_Tuple\index{No\_Tuple} being raised when you don't
think it should be, then check to see if the following apply:
\begin{itemize}
\item Are you using MySQL\index{MySQL}?
\item Do you use the End\_of\_Query\index{End\_of\_Query} function calls?
\end{itemize}
If you do, then you need to look for any code calling End\_of\_Query,
particularly loops:
\begin{Example}
while not End_of_Query(Q) loop
Fetch(Q);
...
end loop;
\end{Example}
This type of code works well for PostgreSQL\index{PostgreSQL}, but may be problematic
with some other databases (MySQL has a problem with this). Restructure
your code to eliminate the calls to End\_of\_Query (this call is now
considered \emph{obsolete} within APQ). \Ref{End_of_Query}
describes the problem in greater detail. Restructure the loop to something
like the following:
\begin{Example}
loop
begin
Fetch(Q);
exception
when No_Tuple =>
exit;
end;
...
end loop;
\end{Example}
\subsection{Null Values}
If you are using Sybase\index{Sybase} and experiencing a problem where you are receiving
a Null\_Value\index{Null\_Value} exception when there should be a value, then check to
make sure that you have called Fetch\index{Fetch}. MySQL and PostgreSQL will raise
No\_Result\index{No\_Result} when this happens. Sybase however, will appear to APQ as
holding row results (which it might be), but APQ will not realize
that Fetch has not yet been called. The Sybase library will then return
a NULL\index{NULL} value if an attempt to get a column value is made, without
a prior call to Fetch.
Forgetting to call Fetch is easy to do when you code a SELECT\index{SELECT} to return
one row with the help of a primary key reference in a WHERE\index{WHERE clause} clause.
Since you are expecting one row to be returned, you will not code
it as part of a traditional loop. So it is human nature to forget
to code the call to Fetch after the Execute call. The following example
might be typical of this:
\begin{Example}
Prepare(Sy_Q, "SELECT PUB_ID,PUB_NAME,CITY,STATE");
Append_Line(Sy_Q, "FROM PUBLISHERS");
Append(Sy_Q, "WHERE PUB_ID = ");
Append_Quoted(Sy_Q,Sy_C,Pub_Id);
Execute(Sy_Q,Sy_C);
Fetch(Sy_Q); -- Easy to forget
\end{Example}
\subsection{Database Client Problems}
If problems with the database engine begin to occur after a particular
query, look for the following:
\begin{itemize}
\item Are you using MySQL\index{MySQL}?
\item Are your doing a SELECT\index{SELECT}, or otherwise returning row results?
\item Is your Query\_Type object in Sequential\_Fetch mode?
\item Is your code fetching all row data?
\end{itemize}
This problem may occur with MySQL\index{MySQL}, since the client library for MySQL
requires that all row result data be fetched. Failure to fetch all
rows may cause a backlog in communication with the database server
and cause strange behaviour or errors. Check the Query\_Type fetch
mode.
\subsection{Client Performance or Memory Problems}
Check to see if the following apply:
\begin{itemize}
\item Are you using MySQL\index{MySQL}?
\item Are you doing a SELECT\index{SELECT} or otherwise returning large row sets?
\item Is your Query\_Type object in Random\_Fetch\index{Random\_Fetch} mode?
\end{itemize}
If the above are true, then it is possible you have formed a query
that has generated a large row set. Since the default for the MySQL
Query\_Type object is for Random\_Fetch mode, the APQ library calls
upon mysql\_store\_result() to fetch all of the result set into the
client's memory for random access. For reasonable sized sets of rows,
this works well, but for larger results, this can be very expensive
and may run your application out of memory.
Consider the PRICE\_HIST table like the one discussed on page \pageref{PRICE_HIST Table Definition}.
For MySQL, if you fail to include the LIMIT 1 clause, and your Query\_Type
object uses the default Random\_Fetch mode, you could easily find
your application selecting the entire history of one security into
your application client memory! If you have several years of price
history for that security, your application may be destined to run
out of memory the first time that query is run.
When using the MySQL database, you must consider the following:
\begin{itemize}
\item MySQL fetches in Random\_Fetch mode must guarantee a \emph{reasonably
small result set} (use the LIMIT clause if necessary).
\item MySQL fetches in Sequential\_Fetch mode must fetch \emph{all} row
data
\end{itemize}
Unless otherwise noted, you probably do not need to be concerned about
this. PostgreSQL\index{PostgreSQL} for example, does not require all row data to be
fetched. However, if there are ways to restrict the row set, this
may improve database server performance.
\subsection{Can't Find Existing Table Names}
Some databases use caseless\index{caseless} references to database objects, while
others are case\index{case sensitive} sensitive (MySQL can be either). If you are using
MySQL and experiencing problems, one solution is to configure the MySQL parameter:
\begin{Code}
[mysqld]
set-variable = lower_case_table_names=1
\end{Code}
By default, MySQL distinguishes
between table names PRICE\_HIST, Price\_Hist, and price\_hist for
example. Setting the parameter true (1), causes all table names
to be lowercased (effectively caseless)\index{caseless table names}.
The another approach is to check the SQL case policy\index{case policy} being used. APQ
can work with MySQL in Lower\_Case, Upper\_Case or Preserve\_Case
mode. The last choice only makes sense of course, if the SQL text
in the program is correct.
The suggested approach is to configure lower\_case\_table\_names=1
(as shown above) and to Set\_Case(C,Upper\_Case). Uppercase\index{uppercase} is easier
to read in the trace logs, since the SQL stands out from the other trace
information.
If you are using Sybase\index{Sybase}, you cannot change the server. This means
that either a Upper\_Case or Lower\_Case policy has to work for you,
or you have to use exact case\index{exact case} for SQL code in the Ada code. It is
possible to use a Lower\_Case policy most of the time, and make exceptions
where they are required. The following shows how to make exceptions
for a table name only:
\begin{Example}
declare
C : Connection_Type;
Q : Query_Type;
begin
Prepare(Q,"SELECT DESCRIPTION");
Append(Q,"FROM ");
Set_Case(Q,Preserve_Case);
Append(Q,"Part_Info",Line_Feed);
Set_Case(Q,Lower_Case);
Append_Line(Q,"WHERE ...");
...
Execute(Q,C);
\end{Example}
In the example presented, the case policy\index{case policy} was changed temporarily
while building the query. Here the table name Part\_Info will have
its case preserved, even though it is not a quoted string\index{quoted string}. The example
assumes here that the normal policy is Lower\_Case.
Note however, that any case policy change in the Query\_Type object
is lost once Execute is called. An example will clarify this. Assume
from our example above, two things:
\begin{enumerate}
\item The case policy in effect in the connection object C, is Lower\_Case
(all SQL text is lowercased except where case must be preserved).
\item Assume that the second Set\_Case(Q,Lower\_Case) call in the example
code was commented out (the policy for Q is left at Preserve\_Case)
\end{enumerate}
If the above two assumptions are true, then upon return from the Execute(Q,C)
call, the Query\_Type object would now hold the case policy of Lower\_Case
(this came from Connection\_Type). Even after you call Clear, or Prepare
and start a new query, this is the SQL case policy that is now in
effect for Q.
\section{Blob Related Problems}
Blob operations on a database can be tricky to get right. The following
subsections provide some assistance with blob related issues.
\section{Blob\_Create and Blob\_Open Fails}
You have written what seems like a simple piece of code that creates
a blob, and then writes some data to it. It couldn't possibly fail
on paper, but it does when you run it. Or you are wondering why that
Blob\_Open\index{Blob\_Open failures} call keeps failing, because you are certain that the OID
of that blob surely does exist. These are both symptoms of the same
problem!
\begin{quote}
\emph{``All blob operations in PostgreSQL must be performed within
a transaction''}
\end{quote}
Repeat it to yourself again. It is too easy to forget this fact!
Unless you have started a transaction on the connection that you are
using, \emph{all blob operations will fail}. They will only succeed within
a transaction\index{transaction}. Furthermore, make certain your application commits\index{commit}
the changes to your blob, after they have been performed successfully.
Otherwise your application may fall prey to the default actions of
PostgreSQL, which may be to rollback\index{rollback} your changes.%
\footnote{Check your PostgreSQL documentation to determine what the default
transaction action is for your version of PostgreSQL database.}
\section{Blob I/O Buffering Bugs Suspected}
If you have good reason to believe that the APQ binding software%
\footnote{Only APQ versions 1.2 and later have buffered blob I/O.%
} has a bug\index{bug} in its buffered\index{buffered blob I/O} blob I/O, you can disable blob I/O buffering.
This is done by specifying a value of zero for the Buf\_Size argument
in the Blob\_Open and/or Blob\_Create calls that you are troubleshooting.
Be prepared to accept a large degradation in performance when specifying
unbuffered I/O this way. The performance\index{performance} is especially poor when array
I/O is performed.
Another possibility might be that you need to call upon Blob\_Flush\index{Blob\_Flush}
at strategic points in your application. While the buffering algorithms
used are such that you should not need to worry about this, it is
worth investigating when problems exist.
Note also that multiple write access to the same blob is definitely
\emph{not} supported by APQ.
\section{Transaction Problems}
The following subsections deal with transaction problems that may
occur with application termination.
\subsection{Abnormal Termination of Transactions}
The APQ binding is designed to commit or rollback a transaction when the
Connection\_Type object finalizes. The default behavior of the
Connection\_Type is to ROLLBACK WORK\index{ROLLBACK WORK}, when the object finalizes\index{finalizes}%
\footnote{Provided that the Connection\_Type object is connected to the
database at the time of finalization.}. Consequently, if your program
raises an uncaught exception (perhaps Program\_Error or
Constraint\_Error), the Connection\_Type object will finalize\index{finalize} and
rollback\index{rollback} the transaction on you. \footnote{Unless you have changed the
default setting for the object. } If this is undesired behaviour, then
check out the Set\_Rollback\_On\_Finalize primitive in section
\Ref{Set_Rollback_On_Finalize Procedure}.
\subsection{Aborted Applications}
The APQ binding can only perform the default COMMIT/ROLLBACK action
(see \Ref{Set_Rollback_On_Finalize Procedure}) if the Connection\_Type
object is permitted to have its Finalize\index{finalize} primitive called. If the
process under UNIX for example, is terminated with a signal (by the
kill(1)\index{kill(1) command} command), the objects within your application may not experience
a Finalize call, because normal Ada shutdown procedures were not invoked.%
\footnote{There are Ada95 ways to deal with UNIX signals, which permit an orderly
Ada shutdown of your application. However, a kill -9 prevents any
action at all from being performed by the application!%
} If this is the reason for your problem, then you have two courses
of action:
\begin{itemize}
\item Commit/Rollback explicitly in the program (prior to receiving a signal)
\item Avoid signalling the application
\item Add signal\index{signal handling} handling capability to your Ada application, to permit
an orderly application shutdown
\item Not use kill -9, which prevents any application recovery or notification
\end{itemize}
The choice is generally up to the application designer. Whenever possible
however, where it is important, the application should perform its
own explicit commit or rollback operation.
Note however, that if the Connection\_Type object is not permitted
to finalize\index{finalize} successfully on its own, the database software itself
has default procedures for dealing with disconnected sessions. Some
databases will rollback transactions if the socket/pipe connection
to the server is disconnected. Others will commit. You'll need to
check your server documentation and configuration to sort that one
out.
\section{SQL Problems\label{SQL Problems}}
If you are experiencing SQL problems that you don't understand, the
quickest way to inspect what is really going on is to use the APQ
trace\index{trace facility} facility. The documentation for the SQL trace facility is given
in \Ref{Trace Facilities}. So RTFM.
\subsection{Tracing SQL}
Where your Connection\_Type connects to the database, add a call to
Open\_DB\_Trace as follows:
\begin{Example}
declare
C : Connection_Type;
begin
...
Connect(C);
Open_DB_Trace(C,"trace_file.txt",Trace_APQ);
\end{Example}
Without adding another line of code, every SQL interaction will be
captured to trace\_file.txt, which you can inspect when the application
completes.%
\footnote{Note however that the tracing facilities are not task (thread) safe.
If your application uses tasking, then disable tracing in the tasks
or avoid using APQ in more than one task.%
}
\subsection{Too Much Trace Output}
If your application performs so many SQL operations that the trace
file becomes too large, then disable\index{disable tracing} the tracing until you get to
a strategic point in the program:
\begin{Example}
declare
C : Connection_Type;
begin
...
Connect(C);
Open_DB_Trace(C,"trace_file.txt",Trace_APQ);
Set_Trace(C,False); -- Disable trace for now..
...
Set_Trace(C,True); -- Start tracing now
\end{Example}
The overhead of the Set\_Trace primitive is light, unless you have
selected Trace\_libpq or Trace\_Full (these add the overhead of invoking
libpq functions PQtrace() and PQuntrace()). Light overhead permits
you to use Set\_Trace within a loop without severe penalty, to gather
only the information you need.
\subsection{Captured SQL Looks OK}
If the SQL code captured in \Ref{SQL Problems} looks OK,
but the database engine is still reporting a problem, then try the
following:
\begin{enumerate}
\item Create a capture file using Trace\_APQ (or use the current one you
have).
\item Edit (cut) out the portion of the SQL queries in the capture file
that you are having difficulty with.
\item Use the database interactive SQL command (psql for PostgreSQL) and
replay the extracted problem SQL queries.
\item Edit SQL query and repeat step \#3 as necessary until you discover
your error.
\end{enumerate}
This allows you to experiment with the SQL text as your applicaton
created it. Once you achieve success with psql, you can then go back
and correct your application to form the query correctly.
\subsection{You Want to Report a Problem to PostgreSQL}
If you want to report a trace file in terms that the PostgreSQL people
understand, simply choose the Trace\_libpq trace mode when creating
a trace file. Then send them the trace file with a description of
the problem.
\subsection{Missing Trace Information}
The trace information is collected at the Connection\_Type object
level. Check to see if you have more than one Connection\_Type object
involved. If so, make sure you set the appropriate trace settings\index{trace settings}
on the connections that you want to collect trace information for.
Different instances of a Connection\_Type object should write its
traces to different files.
Note also, that when a Connection\_Type object finalizes\index{finalizes}, its trace
file is closed.
\section{Cursor Related Problems}
To use a cursor\index{cursor} you generally need an SQL phrase of the form\index{WHERE CURRENT OF}:
\begin{SQL}
WHERE CURRENT OF <Cursor_Name>
\end{SQL}
Obviously, the APQ function primitive Cursor\_Name\index{Cursor\_Name} is expected to
provide this name. But does this function primitive seem to raise
the exception \emph{No\_Results}\index{No\_Results} for you? If so, you've probably supplied
the wrong Query\_Type object to the function Cursor\_Name.
Review the test program on page \pageref{Cursor Example Program},
where you see the statement:
\begin{Example}
Append_Line(Q2,"WHERE CURRENT OF " & Cursor_Name(Q));
\end{Example}
There are two Query\_Type objects being used:
\begin{enumerate}
\item Q for the cursor fetch (outer query)
\item Q2 for the inner SQL query (the UPDATE)
\end{enumerate}
When coding this statement, it is very easy to type Q2 for Cursor\_Name
argument, instead of Q.%
\footnote{The author made this very mistake the first time the example program
was written.%
} However, the cursor name is only available for the outer query\index{outer query} (the
one with the cursor and cursor results). So be certain to carefully
distinguish between the inner and outer query objects.
\section{Connection Related Problems}
If you are experiencing trouble establishing a connection to the database
itself, then there are a number of environment\index{environment} related issues.
\subsection{PostgreSQL Connections}
A number of environment variables affect a PostgreSQL database connection:%
\footnote{Check your PostgreSQL documentation for the final word on this subject.%
}
\begin{description}
\item [PGHOST]Host name of the database server
\item [PGPORT]IP port number or UNIX socket pathname of the database server
\item [PGDATABASE]Database name within the database server
\item [PGUSER]Database user name
\item [PGPASSWORD]Database password
\item [PGREALM]Kerberos realm for the database server
\item [PGOPTIONS]Database server options
\end{description}
Any of these connection mode parameters that are not configured in
the application are defaulted to the ones defined by the above environment
variables. If you are experiencing trouble, make certain that your
variables are \emph{exported}\index{exported variables}. In many shells, like the Bourne\index{Bourne shell} and
Korn\index{Korn shell} shells,%
\footnote{I won't encourage anyone here to use the csh.%
} this is done as follows (for the PGHOST\index{PGHOST} variable):
\begin{Example}
export PGHOST
\end{Example}
Some shells, like the Korn shell and the GNU bash\index{bash shell, GNU} shell, allow multiple
variable names to be listed at once:
\begin{Example}
export PGHOST PGPORT PGDATABASE PGUSER
\end{Example}
Once you have the environment configured correctly, you should be
able to access the database with the PostgreSQL psql\index{psql} command. If the
psql%
\footnote{Do a ``man psql'' for details about the psql client command.%
} command still fails, then you may need to revisit your environment
variable settings or possibly even the database server configuration.%
\footnote{Check the security aspects of your connection first.%
}
\subsubsection{PostgreSQL UNIX (Local) Connections}
The way that the local socket\index{local socket} is specified for PostgreSQL seems to
have changed with its different releases. Make sure you choose the
correct Set\_Port\index{Set\_Port} procedure to specify the local UNIX socket. Use
the Set\_Port that accepts a string argument. The string indicates
that a local UNIX connection is required. PostgreSQL 7.3.5 and later
(unless it has changed again), requires only the ``number'' to
specify the local socket. For example, if you ``netstat -na'' command
shows the following:\footnote{The output lines have had the RefCnt
and Flags columns removed to allow the lines to fit the space
available.}
\begin{NumberedExample}
$ netstat -na --unix
Active UNIX domain sockets (servers and established)
Proto Type State I-Node Path
unix DGRAM 2086 /dev/log
unix STREAM LISTENING 2937 /var/run/mysqld/mysqld.sock
unix STREAM LISTENING 2942 /tmp/.s.PGSQL.5432\label{Ex:5432}
unix STREAM CONNECTED 3363
unix STREAM CONNECTED 3362
unix DGRAM 3138
...
\end{NumberedExample}
From this display, you can see that a database connection is available
with UNIX\index{UNIX socket} socket /tmp/.s.PGSQL.5432 (line~\ref{Ex:5432}). For Set\_Port, you only need
to supply the last numerical part, namely ``5432'' (which happens
to match the default IP port number). So to specify a UNIX socket
connection for this, you would code:
\begin{Example}
Set_Port(C,"5432");
\end{Example}
Note especially, that the number must be in a \emph{string} to cause
a UNIX\index{UNIX socket} local\index{local socket} socket to be used. If you specify an integer costant,
a TCP/IP\index{TCP/IP socket} socket will be used, which uses the IP port number you specified.
\subsection{MySQL Connections}
APQ does not currently look for environment variables for MySQL.\footnote{although changes to MySQL are possible}
If you suspect environmental influences, check the MySQL C client library
documentation for conditions where the environment may be consulted.
A successful MySQL connection must have:
\begin{enumerate}
\item A designated host name or address for the database server\index{host name}
\item A port number\index{port number}
\item Userid\index{userid} and password\index{password} (or ``'')
\item Options (only if necessary)\index{options}
\end{enumerate}
Any supplied instance information is ignored.
\subsection{Sybase Connections}
APQ itself does not currently look for environment variables for Sybase\index{Sybase}.
The Sybase client libraries \emph{probably} do, if the variables exist.
Check the Sybase documentation (\emph{todo: check documentation for
influencing environment variables that are believed to exist}).
A successful Sybase connection must have:
\begin{enumerate}
\item A designated instance name (Set\_Instance)\index{Set\_Instance}
\item A userid\index{userid} and password\index{password} (or {}``'')
\item Options (only if necessary)\index{options}
\end{enumerate}
Sybase ignores the host name/address and port information. The database
name is only important once the connection has been established. See
the Sybase specific notes about Set\_DB\_Name in \Ref{Context_Setting_Operations}.
The instance\index{instance name} name must exist in the local hosts \emph{interfaces}
file. In most cases this file can be found in /opt/sybase/interfaces
(\$SYBASE/interfaces) on UNIX platforms or possibly C:\textbackslash{}opt\textbackslash{}sybase\textbackslash{}ini\textbackslash{}sql.ini
(\%SYBASE\%\textbackslash{}ini\textbackslash{}sql.ini) on windows
(depending upon where it was installed). There may be exceptions to
this rule in more advanced Sybase configurations.
\subsection{Sybase Disconnect Problems}
If you experience a APQ.Not\_Connected\index{Not\_Connected} exception
in one of the following scenarios:
\begin{itemize}
\item When the Connection\_Type object is finalized\index{finalized}
\item When Disconnect is called on the Connection\_Type object
\end{itemize}
then look for Query\_Type objects that are still hanging onto query
results. This most often happens in a program where the Connection\_Type
object and Query\_Type objects are declared together and the Connection\_Type
object finalizes\index{finalizes} first. The solution is to either arrange it so that
all Query\_Type objects finalize first, or clear the query results
explicitly by calling Clear, prior to disconnecting or finalizing
the connection. For example if Q is the Query\_Type object and C the
connection, then the following sequence will ensure that the disconnect
(or finalize) will always succeed\index{Clear}:
\begin{Example}
Clear(Q); -- Release query results
Disconnect(C); -- Disconnect (or finalize)
\end{Example}
\subsection{Sybase Options}
APQ permits the application developer to set various Sybase\index{Options} server
options. Some of these are known to create problems for APQ. Rather
than dictate policy for the developer, APQ gives you full access to
the Sybase options. Clearly some options should be avoided when using
APQ.
One such option is the following:
\begin{Example}
Set_Options(C,"SHOWPLAN=TRUE"); -- CS_OPT_SHOWPLAN
\end{Example}
This option setting seems to do something strange to the underlying
Sybase connection after it is set. APQ has been observed raising Program\_Error\index{Program\_Error}
when other exceptions were supposed to have been raised. Unless you
know what you are doing, you seem to be well advised to stay clear
of this option when using APQ for Sybase.
The developer should also avoid using any Sybase options that change
the way the date is formatted. APQ functions look for dates to be
in a specific format so that they can be converted into APQ data types.
\subsection{Connection Cloning Problems}
If the original Connection\_Type object connects OK, but the Connect
clone\index{clone} call fails, then it could be that the network has gone bad since
the original connection was made. If exceptions other than Not\_Connected
are being raised, then check that:
\begin{itemize}
\item Make sure the parameters are in the correct order in the Connect call.
\item Make certain that the connected object, is indeed connected.
\item Make certain that the new object is not already connected.
\item Make sure you haven't exceeded the number of allowed database server
connections
\end{itemize}
\subsection{Connection Tracing}
Problem: Your first Connection\_Type object is tracing to a file successfully,
but the cloned\index{cloned} Connection\_Type object is not.
Reason: Cloned connections do not have the trace\index{cloned trace} file parameters cloned.
This was a compromise to make APQ more portable to other platforms
that may not share files well.
Solution: Configure the cloned connection to trace to a file separate
from the original connection, after the clone operation is complete.
\appendix
\chapter{PostgreSQL Credits}
\section*{PostgreSQL Decimal C Sources}
PostgreSQL Database Management System (formerly known as Postgres,
then as Postgres95)
\begin{itemize}
\item Portions Copyright (c) 1996-2001, The PostgreSQL Global Development
Group
\item Portions Copyright (c) 1994, The Regents of the University of California
\end{itemize}
Permission to use, copy, modify, and distribute this software and
its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all
copies.
IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER
IS ON AN ``AS IS'' BASIS, AND THE UNIVERSITY OF CALIFORNIA
HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
OR MODIFICATIONS.
\section*{Modification Notice}
The numeric C routines required extensive interface modifications
for use in this APQ Binding. These modified C sources were extracted
from the PostgreSQL server project. No guarantee is made with regard
to the quality of these modifications.
\section*{Contributor Notice}
In no event shall the author or contributors to the APQ Binding be
liable to any party for any cause that the modified PostgreSQL software
may cause or contribute to.
\chapter{APQ License}
\section*{Scope of the APQ Binding License}
The {}``APQ Binding'' license covers those software modules not
provided by or extracted from the PostgreSQL database software (such
as the Decimal C source modules). The APQ license does not cover database
products themselves that APQ binds to.
\section*{APQ Binding License}
The APQ Binding used to be covered under a dual-license arrangement. This
was reflected in the file name COPYING. The following two licenses
were available:
\begin{enumerate}
\item The Ada Community License (ACL).
\item The GNU Public License 2 (GPL2)
\end{enumerate}
This dual-license arrangement was to allow use of the package both with GPL programs
and non GPL programs. This can be achieved by using a single license now, and thus APQ
has changed it's license to GMGPL.
Please see pages \pageref{gmgpl} and \pageref{gpl} for more information.
\section*{Patents}
The author is not aware of any patent infringements made by
the APQ software. However the author makes \emph{absolutely no warrante}
about any possible patent infringements.
You are encouraged to lobby against any kind of software patents, since
software patents today do not serve the public's best interest.
Companies and individuals are using software patents to
legally extort from other companies and individuals. This is not in
the spirit of the original patent legislation and works against
all reasonable public interests.
\chapter{GNAT Modified GPL}
\label{gmgpl}
\begin{quote}
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.
As a special exception, if other files instantiate generics from
this unit, or you link this unit with other files to produce an
executable, this unit does not by itself cause the resulting
executable to be covered by the GNU General Public License. This
exception does not however invalidate any other reasons why the
executable file might be covered by the GNU Public License.
\end{quote}
\chapter{GNU Public License}
\label{gpl}
\section*{GNU GENERAL PUBLIC LICENSE Version 2, June 1991}
\begin{quote}
Copyright (C) 1989, 1991 Free Software Foundation,
Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
\end{quote}
\subsection*{Preamble}
The licenses for most software are designed to take away your freedom
to share and change it. By contrast, the GNU General Public License
is intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation's software
and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have
the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces
of it in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone
to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you
have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.
We protect your rights with two steps:
\begin{enumerate}
\item copyright the software, and
\item offer you this license which gives you legal permission to copy, distribute
and/or modify the software.
\end{enumerate}
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on,
we want its recipients to know that what they have is not the original,
so that any problems introduced by others will not reflect on the
original authors' reputations.
Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program
will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent
must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification
follow.
\section*{GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION}
\paragraph{0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The ``Program'',
below, refers to any such program or work, and a ``work based
on the Program'' means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated
into another language. (Hereinafter, translation is included without
limitation in the term ``modification''.) Each licensee
is addressed as ``you''.}
\paragraph{Activities other than copying, distribution and modification are
not covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.}
\paragraph{1. You may copy and distribute verbatim copies of the Program's source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer
to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.}
\paragraph{You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for
a fee.}
\paragraph{2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and distribute
such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:}
\subparagraph*{a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.}
\subparagraph*{b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.}
\subparagraph{c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such interactive
use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program
itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.) }
\paragraph{These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.}
\paragraph{Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is
to exercise the right to control the distribution of derivative or
collective works based on the Program.}
\paragraph{In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume
of a storage or distribution medium does not bring the other work
under the scope of this License.}
\paragraph*{3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you also do one of the following:}
\subparagraph*{a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange;
or,}
\subparagraph{b) Accompany it with a written offer, valid for at least three years,
to give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange;
or,}
\subparagraph{c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)}
\paragraph{The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies
the executable.}
\paragraph{If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent access
to copy the source code from the same place counts as distribution
of the source code, even though third parties are not compelled to
copy the source along with the object code. ~4. You may not copy,
modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.}
\paragraph*{5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program),
you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program
or works based on it.}
\paragraph{6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject
to these terms and conditions. You may not impose any further restrictions
on the recipients' exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this
License.}
\paragraph{7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this License would
be to refrain entirely from distribution of the Program.}
\paragraph{If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended
to apply and the section as a whole is intended to apply in other
circumstances.}
\paragraph{It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the integrity
of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions
to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor
to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.}
\paragraph{This section is intended to make thoroughly clear what is believed
to be a consequence of the rest of this License. ~8. If the distribution
and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution
is permitted only in or among countries not thus excluded. In such
case, this License incorporates the limitation as if written in the
body of this License.}
\paragraph{9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.}
\paragraph{Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and
``any later version'', you have the option of following
the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not
specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.}
\paragraph{10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the
author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided
by the two goals of preserving the free status of all derivatives
of our free software and of promoting the sharing and reuse of software
generally.}
\subsection*{NO WARRANTY}
\paragraph{11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.}
\paragraph{12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.}
\paragraph{END OF TERMS AND CONDITIONS}
\chapter{Credits}
This appendix documents the contributors to the ``APQ Binding''
that are separate from the PostgreSQL project.
\section*{Authors}
\begin{itemize}
\item Warren W. Gay VE3WWG
\begin{itemize}
\item 29 Glen Park Road, St. Catharines, Ontario
\item Canada L2N 3E3
\item ve3wwg@cogeco.ca
\end{itemize}
\item Marcelo Cora\c ca de Freitas <marcelo@kow.com.br>
\end{itemize}
\section*{Contributions}
\subsection*{Source Code Modifications}
Some people has contributed to the 3.0 release:
\begin{itemize}
\item Alex Abate Biral <abiral@ydeasolutions.com.br>
\begin{itemize}
\item Most notably implemented the ODBC support which is not include in this release yeat
\end{itemize}
\end{itemize}
\subsection*{Bug Reports}
\begin{itemize}
\item There appears to be a problem with win32 releases using PostgreSQL
7.2.1, where specifying the database server by IP \# creates a problem.
The problem is believed to be in libpq.dll. (September 22, 2004: this
problem is believed to be fixed in more current releases of PostgreSQL).
\end{itemize}
\subsection*{Bug Report/Fix Contributions}
\begin{itemize}
\item Charles Darcy <charlie@mullum.com.au>, November 23, 2002
\item Jesse Lang <jesse@solidrockdata.com>, March 2008
\end{itemize}
\chapter{History}
\section*{APQ 1.0}
First released August 3, 2002, under the Ada Community License (ACL).
\section*{APQ 1.1}
Second release August 4, 2002, but under the dual ACL and GPL2%
\footnote{GNU Public License 2%
} license. This license change was suggested by Florian Weimer.
\section*{APQ 1.2}
\begin{itemize}
\item Added function End\_Of\_Blob to streamline sequential processing.
\item Added buffered blob I/O for higher performance.
\item Added procedure Blob\_Flush to force unwritten blob data to the database
server.
\item Blob\_Create has new optional Buf\_Size argument.
\item Blob\_Open has new optional Buf\_Size argument.
\item Fixed Blob\_Create to release the created blob, if the blob cannot
be opened. This most often happens when the caller is attempting to
create a blob, outside of a transaction.
\end{itemize}
\section*{APQ 1.3}
\begin{itemize}
\item Removed some debug Put\_Line statements that should have been removed
in 1.2.
\item Added a few pragma Inline statements to the spec PostgreSQL.Client
\end{itemize}
\section*{APQ 1.4}
\begin{itemize}
\item Added Generic\_Command\_Oid for strong PG\_Oid type use
\item Added Generic\_Blob\_Open for strong PG\_Oid type use
\item Added Generic\_Blob\_Oid function for strong PG\_Oid type use
\item Added Generic\_Blob\_Unlink for strong PG\_Oid type use
\item Added Generic\_Blob\_Import and Generic\_Blob\_Export for strong PG\_Oid
type use
\end{itemize}
\section*{APQ 1.5}
\begin{itemize}
\item Bug fix: Append\_Time, Append\_Date and Append\_Timestamp now emit
the surrounding single quote characters around the value to satisfy
the SQL syntax required by the database server.
\item Troubleshooting help added to this manual for {}``Missing Time Data
(Or Time is 00:00:00)''.
\end{itemize}
\section*{APQ 1.6}
\begin{itemize}
\item Added Set\_Rollback\_On\_Finalize controlling primitive for Connection\_Type.
\item Added Will\_Rollback\_On\_Finalize function for Connection\_Type for
inquiry.
\item Expanded manual and added transaction problem help to the Troubleshooting
chapter.
\end{itemize}
\section*{APQ 1.7}
\begin{itemize}
\item Open\_DB\_Trace and Close\_DB\_Trace procedures added.
\item Set\_Trace procedure added to enable and disable tracing.
\item Is\_Trace function added to query the tracing state.
\end{itemize}
\section*{APQ 1.8}
\begin{itemize}
\item Connection information functions like Host\_Name and Port were added.
\item A connection cloning primitive was added.
\end{itemize}
\section*{APQ 1.9}
\begin{itemize}
\item A compiler work-around was provided. Some versions of GNAT would not
compile the APQ source code, because certain instantiations of Ada.Text\_IO.Integer\_IO
were producing duplicate symbol errors in the assembler phase of the
compile. This problem was absent in gnat 3.13p compiles, but have
shown up in gcc-3.1.1 and probably in gnat 3.14p and later releases.
The instantiation names INTIO were made unique within the source code
to avoid this problem.
\end{itemize}
\section*{APQ 1.91}
\begin{itemize}
\item The PostgreSQL Connect call now performs an automatic {}``SET DATESTYLE
TO ISO'' command prior to returning from a successful connect. This
is necessary to guarantee that ISO date format is returned from the
database engine and recognized from the engine. This guarantees that
APQ correctly handles dates, even when the user has specified a PGDATESTYLE
environment variable value that is different than ISO.
\item Fixed bug in Host\_Name function. It was returning a null string when
a host name was set in the Connection\_Type object.
\item Win32 apq-1.91 source release (subdirectory win32) and apq-1.91-win32-2.7.1
binary release created.
\end{itemize}
\section*{APQ 1.92}
\begin{itemize}
\item Fixed bug for floating point and fixed point types (was rounding the
value to the nearest integer, due to the fact that the Ada.Text\_IO.Float\_IO.Put
call was receiving the argument Aft => 0). Omitting the Aft parameter
causes the value to be formatted as required for the SQL floating/fixed
point type. The bug was reported by Charles Darcy <charlie@mullum.com.au>.
\end{itemize}
\section*{APQ 1.93}
\begin{itemize}
\item Modified the Ada95 package hierarchy to insert a top level package
named APQ. Hence package PostgreSQL now becomes APQ.PostgreSQL. This
is an interim release, which will pave the way to future support of
other database products such as MySQL.
\end{itemize}
\section*{APQ 2.0}
\begin{itemize}
\item MySQL support added. This was made possible by the package restructuring
done in the interim release APQ 1.93.
\item Generic database programming support added. Special generic services
like Engine\_Of, New\_Query etc. were added to make this possible.
A heavy reliance is made upon object inheritance and polymorphism
to make this work.
\item A new example subdirectory eg2 was added. The programs in this subdirectory
show the original example program, but done in a database generic
way. The test program can be compiled and run for both PostgreSQL
and MySQL databases.
\item PG\_Oid is now named APQ\_Row\_ID and is 64 bits unsigned integer.
\item Null\_Oid() function added for generic database support (and much
more).
\item Engine\_Of() function added for generic database support.
\item Exception {}``Failed'' was added to handle some general failures.
\item Fetch\_Mode() and Set\_Fetch\_Mode() were added to accommodate MySQL
limitations.
\item Documentation went through some restructuring to accomodate two databases,
and their differences.
\end{itemize}
\section*{APQ 2.1}
\begin{itemize}
\item This was the win32 port.
\item See win32.pdf for instructions for building APQ on a win32 platform.
\item win32\_test.adb program was added to the distribution to allow testing
of APQ in the windows environment.
\end{itemize}
\section*{APQ 2.2}
\begin{itemize}
\item PostgreSQL now defaults to Set\_Port(C,5432), which is an TCP/IP connection
for port 5432.
\item APQ now uses Ada.Exceptions.Raise\_Exception in many places to provide
more information. For example if a Value() function raises a Constraint\_Error,
it now indicates in the message which column \# the error occurred
for (where Value takes a Column\_Index\_Type argument). The informative
message makes it easier to debug a new APQ application.
\item Documentation added for Set\_Port for UNIX socket connections.
\item The primitives Begin\_Work, Commit\_Work and Rollback\_Work now include
an implicit call to Clear before and after the Query\_Type's object's
use. This is necessary in some cases to clean up results and to put
the object into the right state (Sybase made this necessary). The
fetch mode of the Query\_Type object is preserved, even though it
may be changed to something else while being used.
\item The Set\_DB\_Name now works differently for PostgreSQL, if the connection
has already been established. In the past, APQ (for PostgreSQL) simply
took note of the new database name, but did nothing with it. This
was inconsitent behavior compared to the fact that APQ\-.MySQL\-.Client\-.Set\_DB\_Name()
would make a database switch on the connected connection. Now this
behaviour is harmonized, by having the PostgreSQL version perform
a hidden {}``USE <database>'' SQL query to make it happen.
\item When a APQ\-.MySQL\-.Set\_DB\_Name(C) fails on a connected C, the exception
raised is now APQ.Use\_Error instead of APQ.Failed. This helps to
distinguish the difference between a successful connection and failed
database change.
\item Sybase always connects to the server's configured default database
for the user. To make APQ.Sybase consistent with other supported databases,
any Set\_DB\_Name(C) on connection C prior to the connection, now
queues up a ``USE <database>'' query to be performed, once the
connection is successful (effectively making it appear the same in
APQ). Any call to Set\_DB\_Name(C) while C is connected, will result
in another ``USE <database>'' SQL query being performed behind
the scenes.
\item Fixed bug in APQ\-.MySQL\-.Client\-.Reset so that the Connection\_Type object
was properly reset for re-use.
\item APQ.Sybase.Client support was added
\item Set\_Instance and Instance functions were added to permit specification
of Sybase instances.
\item Fetch modes Cursor\_For\_Update and Cursor\_For\_Read\_Only were added
for Sybase cursor support.
\item Function Cursor\_Name was added for Sybase cursor support.
\item Functions Set\_Case and Case were added to deal with Sybase's case
sensitivity for database agnostic code.
\item Fixed MySQL encoding of APQ\_Boolean types. Now sends 1 or 0, for
True or False respectively (MySQL uses bit or tinyint to represent
boolean values).
\item Fixed MySQL decoding of date/time types (MySQL provides YYYYMMDDHHMMSS
instead of YYYY-MM-DD HH:MM:SS, which APQ expected).
\item APQ.PostgreSQL.Client.Value now trims trailing blanks returned for
string values. This helps the returned values to be consistent across
all database vendor products (MySQL always trims the trailing blanks).
\end{itemize}
\section*{APQ 3.0}
\begin{itemize}
\item New build system.
\item GPR file support
\item APQ was divided into sub projects:
\begin{itemize}
\item \textbf{apq} the core APQ classes
\item \textbf{apq-ct\_lib} ct\_lib backend support (MySQL Server and Sybase)
\item \textbf{apq-mysql} MySQL backend support
\item \textbf{apq-postgresql} PostgreSQL backend support
\item \textbf{apq-sybase} Sybase backend support
\end{itemize}
\item Microsoft SQL Server Support
\item Can be built with FreeTDS and Sybase's ct\_lib
\item New single license in favour of the old dual-license
\item some bug fixes
\end{itemize}
\printindex
\end{document}
|