1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
|
/* Copyright (C) 2013-2016, The Regents of The University of Michigan.
All rights reserved.
This software was developed in the APRIL Robotics Lab under the
direction of Edwin Olson, ebolson@umich.edu. This software may be
available under alternative licensing terms; contact the address above.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the Regents of The University of Michigan.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include "pjpeg.h"
#include "image_u8.h"
#include "image_u8x3.h"
#include "debug_print.h"
// https://www.w3.org/Graphics/JPEG/itu-t81.pdf
void pjpeg_idct_2D_double(int32_t in[64], uint8_t *out, uint32_t outstride);
void pjpeg_idct_2D_u32(int32_t in[64], uint8_t *out, uint32_t outstride);
void pjpeg_idct_2D_nanojpeg(int32_t in[64], uint8_t *out, uint32_t outstride);
struct pjpeg_huffman_code
{
uint8_t nbits; // how many bits should we actually consume?
uint8_t code; // what is the symbol that was encoded? (not actually a DCT coefficient; see encoding)
};
struct pjpeg_decode_state
{
int error;
uint32_t width, height;
uint8_t *in;
uint32_t inlen;
uint32_t flags;
// to decode, we load the next 16 bits of input (generally more
// than we need). We then look up in our code book how many bits
// we have actually consumed. For example, if there was a code
// whose bit sequence was "0", the first 32768 entries would all
// be copies of {.bits=1, .value=XX}; no matter what the following
// 15 bits are, we would get the correct decode.
//
// Can be up to 8 tables; computed as (ACDC * 2 + htidx)
struct pjpeg_huffman_code huff_codes[4][65536];
int huff_codes_present[4];
uint8_t qtab[4][64];
int ncomponents;
pjpeg_component_t *components;
int reset_interval;
int reset_count;
int reset_next; // What reset marker do we expect next? (add 0xd0)
int debug;
};
// from K.3.3.1 (page 158)
static uint8_t mjpeg_dht[] = { // header
0xFF,0xC4,0x01,0xA2,
/////////////////////////////////////////////////////////////
// luminance dc coefficients.
// DC table 0
0x00,
// code lengths
0x00,0x01,0x05,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
// values
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,
/////////////////////////////////////////////////////////////
// chrominance DC coefficients
// DC table 1
0x01,
// code lengths
0x00,0x03,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00,
// values
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,
/////////////////////////////////////////////////////////////
// luminance AC coefficients
// AC table 0
0x10,
// code lengths
0x00,0x02,0x01,0x03,0x03,0x02,0x04,0x03,0x05,0x05,0x04,0x04,0x00,0x00,0x01,0x7D,
// codes
0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,
0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xA1,0x08,0x23,0x42,0xB1,0xC1,0x15,0x52,0xD1,0xF0,0x24,
0x33,0x62,0x72,0x82,0x09,0x0A,0x16,0x17,0x18,0x19,0x1A,0x25,0x26,0x27,0x28,0x29,0x2A,0x34,
0x35,0x36,0x37,0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54,0x55,0x56,
0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x73,0x74,0x75,0x76,0x77,0x78,
0x79,0x7A,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,
0x9A,0xA2,0xA3,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,0xB9,
0xBA,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,0xD9,
0xDA,0xE1,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xF1,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,
0xF8,0xF9,0xFA,
/////////////////////////////////////////////////////////////
// chrominance DC coefficients
// DC table 1
0x11,
// code lengths
0x00,0x02,0x01,0x02,0x04,0x04,0x03,0x04,0x07,0x05,0x04,0x04,0x00,0x01,0x02,0x77,
// values
0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,
0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,0xA1,0xB1,0xC1,0x09,0x23,0x33,0x52,0xF0,0x15,0x62,
0x72,0xD1,0x0A,0x16,0x24,0x34,0xE1,0x25,0xF1,0x17,0x18,0x19,0x1A,0x26,0x27,0x28,0x29,0x2A,
0x35,0x36,0x37,0x38,0x39,0x3A,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4A,0x53,0x54,0x55,0x56,
0x57,0x58,0x59,0x5A,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x73,0x74,0x75,0x76,0x77,0x78,
0x79,0x7A,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8A,0x92,0x93,0x94,0x95,0x96,0x97,0x98,
0x99,0x9A,0xA2,0xA3,0xA4,0xA5,0xA6,0xA7,0xA8,0xA9,0xAA,0xB2,0xB3,0xB4,0xB5,0xB6,0xB7,0xB8,
0xB9,0xBA,0xC2,0xC3,0xC4,0xC5,0xC6,0xC7,0xC8,0xC9,0xCA,0xD2,0xD3,0xD4,0xD5,0xD6,0xD7,0xD8,
0xD9,0xDA,0xE2,0xE3,0xE4,0xE5,0xE6,0xE7,0xE8,0xE9,0xEA,0xF2,0xF3,0xF4,0xF5,0xF6,0xF7,0xF8,
0xF9,0xFA
};
static inline uint8_t max_u8(uint8_t a, uint8_t b)
{
return a > b ? a : b;
}
// order of coefficients in each DC block
static const char ZZ[64] = { 0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63 };
struct bit_decoder
{
uint8_t *in;
uint32_t inpos;
uint32_t inlen;
uint32_t bits; // the low order bits contain the next nbits_avail bits.
int nbits_avail; // how many bits in 'bits' (left aligned) are valid?
int error;
};
// ensure that at least 'nbits' of data is available in the bit decoder.
static inline void bd_ensure(struct bit_decoder *bd, int nbits)
{
while (bd->nbits_avail < nbits) {
if (bd->inpos >= bd->inlen) {
printf("hallucinating 1s!\n");
// we hit end of stream hallucinate an infinite stream of 1s
bd->bits = (bd->bits << 8) | 0xff;
bd->nbits_avail += 8;
continue;
}
uint8_t nextbyte = bd->in[bd->inpos];
bd->inpos++;
if (nextbyte == 0xff && bd->inpos < bd->inlen && bd->in[bd->inpos] == 0x00) {
// a stuffed byte
nextbyte = 0xff;
bd->inpos++;
}
// it's an ordinary byte
bd->bits = (bd->bits << 8) | nextbyte;
bd->nbits_avail += 8;
}
}
static inline uint32_t bd_peek_bits(struct bit_decoder *bd, int nbits)
{
bd_ensure(bd, nbits);
return (bd->bits >> (bd->nbits_avail - nbits)) & ((1 << nbits) - 1);
}
static inline uint32_t bd_consume_bits(struct bit_decoder *bd, int nbits)
{
assert(nbits < 32);
bd_ensure(bd, nbits);
uint32_t v = (bd->bits >> (bd->nbits_avail - nbits)) & ((1 << nbits) - 1);
bd->nbits_avail -= nbits;
return v;
}
// discard without regard for byte stuffing!
static inline void bd_discard_bytes(struct bit_decoder *bd, int nbytes)
{
assert(bd->nbits_avail == 0);
bd->inpos += nbytes;
}
static inline int bd_has_more(struct bit_decoder *bd)
{
return bd->nbits_avail > 0 || bd->inpos < bd->inlen;
}
// throw away up to 7 bits of data so that the next data returned
// began on a byte boundary.
static inline void bd_discard_to_byte_boundary(struct bit_decoder *bd)
{
bd->nbits_avail -= (bd->nbits_avail & 7);
}
static inline uint32_t bd_get_offset(struct bit_decoder *bd)
{
return bd->inpos - bd->nbits_avail / 8;
}
static int pjpeg_decode_buffer(struct pjpeg_decode_state *pjd)
{
// XXX TODO Include sanity check that this is actually a JPG
struct bit_decoder bd;
memset(&bd, 0, sizeof(struct bit_decoder));
bd.in = pjd->in;
bd.inpos = 0;
bd.inlen = pjd->inlen;
int marker_sync_skipped = 0;
int marker_sync_skipped_from_offset = 0;
while (bd_has_more(&bd)) {
uint32_t marker_offset = bd_get_offset(&bd);
// Look for the 0xff that signifies the beginning of a marker
bd_discard_to_byte_boundary(&bd);
while (bd_consume_bits(&bd, 8) != 0xff) {
if (marker_sync_skipped == 0)
marker_sync_skipped_from_offset = marker_offset;
marker_sync_skipped++;
continue;
}
if (marker_sync_skipped) {
printf("%08x: skipped %04x bytes\n", marker_sync_skipped_from_offset, marker_sync_skipped);
marker_sync_skipped = 0;
}
uint8_t marker = bd_consume_bits(&bd, 8);
// printf("marker %08x : %02x\n", marker_offset, marker);
switch (marker) {
case 0xd8: // start of image. Great, continue.
continue;
// below are the markers that A) we don't care about
// that B) encode length as two bytes.
//
// Note: Other unknown fields should not be added since
// we should be able to skip over them by looking for
// the next marker byte.
case 0xe0: // JFIF header.
case 0xe1: // EXIF header (Yuck: Payload may contain 0xff 0xff!)
case 0xe2: // ICC Profile. (Yuck: payload may contain 0xff 0xff!)
case 0xe6: // some other common header
case 0xfe: // Comment
{
uint16_t length = bd_consume_bits(&bd, 16);
bd_discard_bytes(&bd, length - 2);
continue;
}
case 0xdb: { // DQT Define Quantization Table
uint16_t length = bd_consume_bits(&bd, 16);
if (((length-2) % 65) != 0)
return PJPEG_ERR_DQT;
// can contain multiple DQTs
for (int offset = 0; offset < length - 2; offset += 65) {
// pq: quant table element precision. 0=8bit, 1=16bit.
// tq: quant table destination id.
uint8_t pqtq = bd_consume_bits(&bd, 8);
if ((pqtq & 0xf0) != 0 || (pqtq & 0x0f) >= 4)
return PJPEG_ERR_DQT;
uint8_t id = pqtq & 3;
for (int i = 0; i < 64; i++)
pjd->qtab[id][i] = bd_consume_bits(&bd, 8);
}
break;
}
case 0xc0: { // SOF, non-differential, huffman, baseline
uint16_t length = bd_consume_bits(&bd, 16);
(void) length;
uint8_t p = bd_consume_bits(&bd, 8); // precision
if (p != 8)
return PJPEG_ERR_SOF;
pjd->height = bd_consume_bits(&bd, 16);
pjd->width = bd_consume_bits(&bd, 16);
// printf("%d x %d\n", pjd->height, pjd->width);
int nf = bd_consume_bits(&bd, 8); // # image components
if (nf < 1 || nf > 3)
return PJPEG_ERR_SOF;
pjd->ncomponents = nf;
pjd->components = calloc(nf, sizeof(struct pjpeg_component));
for (int i = 0; i < nf; i++) {
// comp. identifier
pjd->components[i].id = bd_consume_bits(&bd, 8);
// horiz/vert sampling
pjd->components[i].hv = bd_consume_bits(&bd, 8);
pjd->components[i].scaley = pjd->components[i].hv & 0x0f;
pjd->components[i].scalex = pjd->components[i].hv >> 4;
// which quant table?
pjd->components[i].tq = bd_consume_bits(&bd, 8);
}
break;
}
case 0xc1: // SOF, non-differential, huffman, extended DCT
case 0xc2: // SOF, non-differential, huffman, progressive DCT
case 0xc3: // SOF, non-differential, huffman, lossless
case 0xc5: // SOF, differential, huffman, baseline DCT
case 0xc6: // SOF, differential, huffman, progressive
case 0xc7: // SOF, differential, huffman, lossless
case 0xc8: // reserved
case 0xc9: // SOF, non-differential, arithmetic, extended
case 0xca: // SOF, non-differential, arithmetic, progressive
case 0xcb: // SOF, non-differential, arithmetic, lossless
case 0xcd: // SOF, differential, arithmetic, sequential
case 0xce: // SOF, differential, arithmetic, progressive
case 0xcf: // SOF, differential, arithmetic, lossless
{
printf("pjepg.c: unsupported JPEG type %02x\n", marker);
return PJEPG_ERR_UNSUPPORTED;
}
case 0xc4: { // DHT Define Huffman Tables
// [ED: the encoding of these tables is really quite
// clever!]
uint16_t length = bd_consume_bits(&bd, 16);
length = length - 2;
while (length > 0) {
uint8_t TcTh = bd_consume_bits(&bd, 8);
length--;
uint8_t Tc = (TcTh >> 4);
int Th = TcTh & 0x0f; // which index are we using?
if (Tc >= 2 || Th >= 2)
// Tc must be either AC=1 or DC=0.
// Th must be less than 2
return PJPEG_ERR_DHT;
int htidx = Tc*2 + Th;
uint8_t L[17]; // how many symbols of each bit length?
L[0] = 0; // no 0 bit codes :)
for (int nbits = 1; nbits <= 16; nbits++) {
L[nbits] = bd_consume_bits(&bd, 8);
length -= L[nbits];
}
length -= 16;
uint32_t code_pos = 0;
for (int nbits = 1; nbits <= 16; nbits++) {
int nvalues = L[nbits];
// how many entries will we fill?
// (a 1 bit code will fill 32768, a 2 bit code 16384, ...)
uint32_t ncodes = (1 << (16 - nbits));
// consume the values...
for (int vi = 0; vi < nvalues; vi++) {
uint8_t code = bd_consume_bits(&bd, 8);
if (code_pos + ncodes > 0xffff)
return PJPEG_ERR_DHT;
for (unsigned int ci = 0; ci < ncodes; ci++) {
pjd->huff_codes[htidx][code_pos].nbits = nbits;
pjd->huff_codes[htidx][code_pos].code = code;
code_pos++;
}
}
}
pjd->huff_codes_present[htidx] = 1;
}
break;
}
// a sequentially-encoded JPG has one SOS segment. A
// progressive JPG will have multiple SOS segments.
case 0xda: { // Start Of Scan (SOS)
// Note that this marker frame (and its encoded
// length) does NOT include the bitstream that
// follows.
uint16_t length = bd_consume_bits(&bd, 16);
(void) length;
// number of components in this scan
uint8_t ns = bd_consume_bits(&bd, 8);
// for each component, what is the index into our pjd->components[] array?
uint8_t *comp_idx = calloc(ns, sizeof(uint8_t));
for (int i = 0; i < ns; i++) {
// component name
uint8_t cs = bd_consume_bits(&bd, 8);
int found = 0;
for (int j = 0; j < pjd->ncomponents; j++) {
if (cs == pjd->components[j].id) {
// which huff tables will we use for
// DC (high 4 bits) and AC (low 4 bits)
pjd->components[j].tda = bd_consume_bits(&bd, 8);
comp_idx[i] = j;
found = 1;
break;
}
}
if (!found)
return PJPEG_ERR_SOS;
}
// start of spectral selection. baseline == 0
uint8_t ss = bd_consume_bits(&bd, 8);
// end of spectral selection. baseline == 0x3f
uint8_t se = bd_consume_bits(&bd, 8);
// successive approximation bits. baseline == 0
uint8_t Ahl = bd_consume_bits(&bd, 8);
if (ss != 0 || se != 0x3f || Ahl != 0x00)
return PJPEG_ERR_SOS;
// compute the dimensions of each MCU in pixels
int maxmcux = 0, maxmcuy = 0;
for (int i = 0; i < ns; i++) {
struct pjpeg_component *comp = &pjd->components[comp_idx[i]];
maxmcux = max_u8(maxmcux, comp->scalex * 8);
maxmcuy = max_u8(maxmcuy, comp->scaley * 8);
}
// how many MCU blocks are required to encode the whole image?
int mcus_x = (pjd->width + maxmcux - 1) / maxmcux;
int mcus_y = (pjd->height + maxmcuy - 1) / maxmcuy;
if (0)
printf("Image has %d x %d MCU blocks, each %d x %d pixels\n",
mcus_x, mcus_y, maxmcux, maxmcuy);
// allocate output storage
for (int i = 0; i < ns; i++) {
struct pjpeg_component *comp = &pjd->components[comp_idx[i]];
comp->width = mcus_x * comp->scalex * 8;
comp->height = mcus_y * comp->scaley * 8;
comp->stride = comp->width;
int alignment = 32;
if ((comp->stride % alignment) != 0)
comp->stride += alignment - (comp->stride % alignment);
comp->data = calloc(comp->height * comp->stride, 1);
}
// each component has its own DC prediction
int32_t *dcpred = calloc(ns, sizeof(int32_t));
pjd->reset_count = 0;
for (int mcu_y = 0; mcu_y < mcus_y; mcu_y++) {
for (int mcu_x = 0; mcu_x < mcus_x; mcu_x++) {
// the next two bytes in the input stream
// should be 0xff 0xdN, where N is the next
// reset counter.
//
// Our bit decoder may have already shifted
// these into the buffer. Consequently, we
// want to use our bit decoding functions to
// check for the marker. But we must first
// discard any fractional bits left.
if (pjd->reset_interval > 0 && pjd->reset_count == pjd->reset_interval) {
// RST markers are byte-aligned, so force
// the bit-decoder to the next byte
// boundary.
bd_discard_to_byte_boundary(&bd);
while (1) {
int32_t value = bd_consume_bits(&bd, 8);
if (bd.inpos > bd.inlen)
return PJPEG_ERR_EOF;
if (value == 0xff)
break;
printf("RST SYNC\n");
}
int32_t marker_32 = bd_consume_bits(&bd, 8);
// printf("%04x: RESET? %02x\n", *bd.inpos, marker_32);
if (marker_32 != (0xd0 + pjd->reset_next))
return PJPEG_ERR_RESET;
pjd->reset_count = 0;
pjd->reset_next = (pjd->reset_next + 1) & 0x7;
memset(dcpred, 0, sizeof(*dcpred));
}
for (int nsidx = 0; nsidx < ns; nsidx++) {
struct pjpeg_component *comp = &pjd->components[comp_idx[nsidx]];
int32_t block[64];
int qtabidx = comp->tq; // which quant table?
for (int sby = 0; sby < comp->scaley; sby++) {
for (int sbx = 0; sbx < comp->scalex; sbx++) {
// decode block for component nsidx
memset(block, 0, sizeof(block));
int dc_huff_table_idx = comp->tda >> 4;
int ac_huff_table_idx = 2 + (comp->tda & 0x0f);
if (!pjd->huff_codes_present[dc_huff_table_idx] ||
!pjd->huff_codes_present[ac_huff_table_idx])
return PJPEG_ERR_MISSING_DHT; // probably an MJPEG.
if (1) {
// do DC coefficient
uint32_t next16 = bd_peek_bits(&bd, 16);
struct pjpeg_huffman_code *huff_code = &pjd->huff_codes[dc_huff_table_idx][next16];
bd_consume_bits(&bd, huff_code->nbits);
int ssss = huff_code->code & 0x0f; // ssss == number of additional bits to read
int32_t value = bd_consume_bits(&bd, ssss);
// if high bit is clear, it's negative
if ((value & (1 << (ssss-1))) == 0)
value += ((-1) << ssss) + 1;
dcpred[nsidx] += value;
block[0] = dcpred[nsidx] * pjd->qtab[qtabidx][0];
}
if (1) {
// do AC coefficients
for (int coeff = 1; coeff < 64; coeff++) {
uint32_t next16 = bd_peek_bits(&bd, 16);
struct pjpeg_huffman_code *huff_code = &pjd->huff_codes[ac_huff_table_idx][next16];
bd_consume_bits(&bd, huff_code->nbits);
if (huff_code->code == 0) {
break; // EOB
}
int rrrr = huff_code->code >> 4; // run length of zeros
int ssss = huff_code->code & 0x0f;
int32_t value = bd_consume_bits(&bd, ssss);
// if high bit is clear, it's negative
if ((value & (1 << (ssss-1))) == 0)
value += ((-1) << ssss) + 1;
coeff += rrrr;
block[(int) ZZ[coeff]] = value * pjd->qtab[qtabidx][coeff];
}
}
// do IDCT
// output block's upper-left
// coordinate (in pixels) is
// (comp_x, comp_y).
uint32_t comp_x = (mcu_x * comp->scalex + sbx) * 8;
uint32_t comp_y = (mcu_y * comp->scaley + sby) * 8;
uint32_t dataidx = comp_y * comp->stride + comp_x;
// pjpeg_idct_2D_u32(block, &comp->data[dataidx], comp->stride);
pjpeg_idct_2D_nanojpeg(block, &comp->data[dataidx], comp->stride);
}
}
}
pjd->reset_count++;
// printf("%04x: reset count %d / %d\n", pjd->inpos, pjd->reset_count, pjd->reset_interval);
}
}
free(dcpred);
free(comp_idx);
break;
}
case 0xd9: { // EOI End of Image
goto got_end_of_image;
}
case 0xdd: { // Define Restart Interval
uint16_t length = bd_consume_bits(&bd, 16);
if (length != 4)
return PJPEG_ERR_DRI;
// reset interval measured in the number of MCUs
pjd->reset_interval = bd_consume_bits(&bd, 16);
break;
}
default: {
printf("pjepg: Unknown marker %02x at offset %04x\n", marker, marker_offset);
// try to skip it.
uint16_t length = bd_consume_bits(&bd, 16);
bd_discard_bytes(&bd, length - 2);
continue;
}
} // switch (marker)
} // while inpos < inlen
got_end_of_image:
return PJPEG_OKAY;
}
void pjpeg_destroy(pjpeg_t *pj)
{
if (!pj)
return;
for (int i = 0; i < pj->ncomponents; i++)
free(pj->components[i].data);
free(pj->components);
free(pj);
}
// just grab the first component.
image_u8_t *pjpeg_to_u8_baseline(pjpeg_t *pj)
{
assert(pj->ncomponents > 0);
pjpeg_component_t *comp = &pj->components[0];
assert(comp->width >= pj->width && comp->height >= pj->height);
image_u8_t *im = image_u8_create(pj->width, pj->height);
for (int y = 0; y < im->height; y++)
memcpy(&im->buf[y*im->stride], &comp->data[y*comp->stride], pj->width);
return im;
}
static inline uint8_t clampd(double v)
{
if (v < 0)
return 0;
if (v > 255)
return 255;
return (uint8_t) v;
}
static inline uint8_t clamp_u8(int32_t v)
{
if (v < 0)
return 0;
if (v > 255)
return 255;
return v;
}
// color conversion formulas taken from JFIF spec v 1.02
image_u8x3_t *pjpeg_to_u8x3_baseline(pjpeg_t *pj)
{
assert(pj->ncomponents == 3);
pjpeg_component_t *Y = &pj->components[0];
pjpeg_component_t *Cb = &pj->components[1];
pjpeg_component_t *Cr = &pj->components[2];
int Cb_factor_y = Y->height / Cb->height;
int Cb_factor_x = Y->width / Cb->width;
int Cr_factor_y = Y->height / Cr->height;
int Cr_factor_x = Y->width / Cr->width;
image_u8x3_t *im = image_u8x3_create(pj->width, pj->height);
if (Cr_factor_y == 1 && Cr_factor_x == 1 && Cb_factor_y == 1 && Cb_factor_x == 1) {
for (uint32_t y = 0; y < pj->height; y++) {
for (uint32_t x = 0; x < pj->width; x++) {
int32_t y_val = Y->data[y*Y->stride + x] * 65536;
int32_t cb_val = Cb->data[y*Cb->stride + x] - 128;
int32_t cr_val = Cr->data[y*Cr->stride + x] - 128;
int32_t r_val = y_val + 91881 * cr_val;
int32_t g_val = y_val + -22554 * cb_val - 46802 * cr_val;
int32_t b_val = y_val + 116130 * cb_val;
im->buf[y*im->stride + 3*x + 0 ] = clamp_u8(r_val >> 16);
im->buf[y*im->stride + 3*x + 1 ] = clamp_u8(g_val >> 16);
im->buf[y*im->stride + 3*x + 2 ] = clamp_u8(b_val >> 16);
}
}
} else if (Cb_factor_y == Cr_factor_y && Cb_factor_x == Cr_factor_x) {
for (uint32_t by = 0; by < pj->height / Cb_factor_y; by++) {
for (uint32_t bx = 0; bx < pj->width / Cb_factor_x; bx++) {
int32_t cb_val = Cb->data[by*Cb->stride + bx] - 128;
int32_t cr_val = Cr->data[by*Cr->stride + bx] - 128;
int32_t r0 = 91881 * cr_val;
int32_t g0 = -22554 * cb_val - 46802 * cr_val;
int32_t b0 = 116130 * cb_val;
for (int dy = 0; dy < Cb_factor_y; dy++) {
int y = by*Cb_factor_y + dy;
for (int dx = 0; dx < Cb_factor_x; dx++) {
int x = bx*Cb_factor_x + dx;
int32_t y_val = Y->data[y*Y->stride + x] * 65536;
int32_t r_val = r0 + y_val;
int32_t g_val = g0 + y_val;
int32_t b_val = b0 + y_val;
im->buf[y*im->stride + 3*x + 0 ] = clamp_u8(r_val >> 16);
im->buf[y*im->stride + 3*x + 1 ] = clamp_u8(g_val >> 16);
im->buf[y*im->stride + 3*x + 2 ] = clamp_u8(b_val >> 16);
}
}
}
}
} else {
for (uint32_t y = 0; y < pj->height; y++) {
for (uint32_t x = 0; x < pj->width; x++) {
int32_t y_val = Y->data[y*Y->stride + x];
int32_t cb_val = Cb->data[(y / Cb_factor_y)*Cb->stride + (x / Cb_factor_x)] - 128;
int32_t cr_val = Cr->data[(y / Cr_factor_y)*Cr->stride + (x / Cr_factor_x)] - 128;
uint8_t r_val = clampd(y_val + 1.402 * cr_val);
uint8_t g_val = clampd(y_val - 0.34414 * cb_val - 0.71414 * cr_val);
uint8_t b_val = clampd(y_val + 1.772 * cb_val);
im->buf[y*im->stride + 3*x + 0 ] = r_val;
im->buf[y*im->stride + 3*x + 1 ] = g_val;
im->buf[y*im->stride + 3*x + 2 ] = b_val;
}
}
}
return im;
}
///////////////////////////////////////////////////////////////////
// returns NULL if file loading fails.
pjpeg_t *pjpeg_create_from_file(const char *path, uint32_t flags, int *error)
{
FILE *f = fopen(path, "rb");
if (f == NULL)
return NULL;
fseek(f, 0, SEEK_END);
long buflen = ftell(f);
uint8_t *buf = malloc(buflen);
fseek(f, 0, SEEK_SET);
int res = fread(buf, 1, buflen, f);
if ( ferror(f) ){
debug_print ("Read failed");
clearerr(f);
}
fclose(f);
if (res != buflen) {
free(buf);
if (error)
*error = PJPEG_ERR_FILE;
return NULL;
}
pjpeg_t *pj = pjpeg_create_from_buffer(buf, buflen, flags, error);
free(buf);
return pj;
}
pjpeg_t *pjpeg_create_from_buffer(uint8_t *buf, int buflen, uint32_t flags, int *error)
{
struct pjpeg_decode_state pjd;
memset(&pjd, 0, sizeof(pjd));
if (flags & PJPEG_MJPEG) {
pjd.in = mjpeg_dht;
pjd.inlen = sizeof(mjpeg_dht);
int result = pjpeg_decode_buffer(&pjd);
assert(result == 0);
(void)result;
}
pjd.in = buf;
pjd.inlen = buflen;
pjd.flags = flags;
int result = pjpeg_decode_buffer(&pjd);
if (error)
*error = result;
if (result) {
for (int i = 0; i < pjd.ncomponents; i++)
free(pjd.components[i].data);
free(pjd.components);
return NULL;
}
pjpeg_t *pj = calloc(1, sizeof(pjpeg_t));
pj->width = pjd.width;
pj->height = pjd.height;
pj->ncomponents = pjd.ncomponents;
pj->components = pjd.components;
return pj;
}
|