1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
// Aqsis
// Copyright (C) 1997 - 2001, Paul C. Gregory
//
// Contact: pgregory@aqsis.org
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include <iostream>
#include <sstream>
#include <vector>
#include <cfloat>
#include <aqsis/aqsis.h>
#include <aqsis/math/vector2d.h>
/** Prototype for inverse of bilinear transformation.
*
* Forward bilinear interpolation is extremely staightforward: Given four
* corners of a bilinear patch, A,B,C and D, we define the bilinear surface
* between them at parameter value (u,v) to be
*
* P(u,v) := (1-v) * ((1-u)*A + u*B) + v * ((1-u)*C + u*D)
*
* That is, linear interpolation in the u-direction along opposite edges,
* followed by linear interpolation between the two resulting points with v as
* the parameter.
*
* So, we can get a point P easily from the (u,v) coordinates. The problem
* solved here is the reverse: get (u,v) from the coordinates of P. These
* classes assume that the user wants to do this lookup operation many times
* per micropolygon, so it holds a cache of coefficients for the lookup
* function.
*
* Here's a schematic showing the bilinear patch ABCD, along with two important
* edge vectors E and F used in the calculation.
*
* \verbatim
*
* C-----------------D
* v- ^ | /
* direction | | /
* | | /
* F=C-A | .P /
* | | /
* | | /
* | | /
* | | /
* A--------B
*
* ------->
* E = B-A
*
* u-direction ->
*
* \endverbatim
*/
using Aqsis::CqVector2D;
using Aqsis::max;
using Aqsis::clamp;
#define OUT(x) std::cout << #x << " = " << (x) << "\n";
#define noinline __attribute__((noinline))
inline TqFloat cross(const CqVector2D a, const CqVector2D b)
{
return a.x()*b.y() - a.y()*b.x();
}
inline TqFloat maxNorm(CqVector2D v)
{
return max(std::fabs(v.x()), std::fabs(v.y()));
}
template<typename T>
inline T bilerp(T A, T B, T C, T D, TqFloat u, TqFloat v)
{
return (1-v)*((1-u)*A + u*B) + v*((1-u)*C + u*D);
}
//------------------------------------------------------------------------------
class CqInvBilinearDirect
{
private:
// Cached coefficients for lookup.
CqVector2D m_H;
CqVector2D m_E;
CqVector2D m_F;
CqVector2D m_G;
TqFloat m_inv2GxE;
TqFloat m_ExF;
TqFloat m_invFxE;
TqFloat m_GxE;
CqVector2D m_4GxEF;
bool m_linear;
bool m_linearU;
public:
CqInvBilinearDirect(CqVector2D A, CqVector2D B, CqVector2D C, CqVector2D D)
: m_H(),
m_E(),
m_F(),
m_G(),
m_inv2GxE(0),
m_ExF(0),
m_GxE(0),
m_4GxEF(),
m_linear(false),
m_linearU(false)
{
setVertices(A, B, C, D);
}
void setVertices(CqVector2D A, CqVector2D B, CqVector2D C, CqVector2D D)
{
m_H = 0.25*(A+B+C+D);
m_E = 0.5*(B-A + D-C);
m_F = 0.5*(C-A + D-B);
m_G = A-B-C+D;
m_ExF = cross(m_E, m_F);
m_linear = false;
m_linearU = false;
const TqFloat patchSize = max(maxNorm(m_F), maxNorm(m_E));
const TqFloat irregularity = maxNorm(m_G);
if(irregularity < 1e-2*patchSize)
{
m_ExF = 1/m_ExF;
m_linear = true;
}
else
{
m_GxE = cross(m_G, m_E);
if(std::fabs(m_GxE) < 1e-4*patchSize)
{
m_linearU = true;
}
else
{
m_inv2GxE = 0.5/m_GxE;
m_4GxEF = 4*m_GxE*m_F;
}
}
}
CqVector2D operator()(CqVector2D P) const
{
const CqVector2D PH = P - m_H;
TqFloat u = 0;
TqFloat v = 0;
if(m_linear)
{
// NOTE: m_ExF is actually 1/m_ExF here!
u = -cross(m_F, PH)*m_ExF;
v = cross(m_E, PH)*m_ExF;
}
else
{
if(m_linearU)
{
// Semi-linear case; the equation for u is missing the
// quadratic term, and we can also find a linear equation
// for v. This happens when two adjacent vertices are the
// same.
// u = cross(m_F, PH) / (cross(m_G, PH) + m_ExF);
v = cross(m_E, PH) / m_ExF;
u = cross(m_F, PH) / (v*cross(m_F, m_G) - m_ExF);
}
else
{
const TqFloat t = m_ExF + cross(m_G, PH);
const TqFloat d = sqrt(t*t + cross(m_4GxEF, PH));
u = m_inv2GxE*(t + d);
if(u < -0.5-FLT_EPSILON || u > 0.5+FLT_EPSILON)
u = m_inv2GxE*(t - d);
// Now that we have u, find v. There's several ways to do
// this but the one involving division here is likely the
// most numerically stable since it's resistent to cases
// where GxE is small. However, it can still fail (!) in
// cases where vertices are the same :-(
v = cross(m_E, PH) / (m_ExF - m_GxE*u);
}
}
u += 0.5;
v += 0.5;
// We could clamp u and v here to between 0 and 1 here, but for
// shading interpolation this is probably a waste of effort - it's
// enough that they're 'fairly close' to the correct range.
return CqVector2D(u, v);
}
};
//------------------------------------------------------------------------------
class CqInvBilinearNewton
{
private:
CqVector2D m_A;
CqVector2D m_E;
CqVector2D m_F;
CqVector2D m_G;
bool m_linear;
/// Solve M*x = b with the matrix M = [M1 M2]
template<bool unsafeInvert>
static inline CqVector2D solve(CqVector2D M1, CqVector2D M2, CqVector2D b)
{
TqFloat det = cross(M1, M2);
if(unsafeInvert || det != 0) det = 1/det;
return det * CqVector2D(cross(b, M2), -cross(b, M1));
}
inline CqVector2D bilinEval(CqVector2D uv) const
{
return m_A + m_E*uv.x() + m_F*uv.y() + m_G*uv.x()*uv.y();
}
public:
CqInvBilinearNewton(CqVector2D A, CqVector2D B, CqVector2D C, CqVector2D D)
: m_A(A),
m_E(B-A),
m_F(C-A),
m_G(-m_E-C+D),
m_linear(false)
{
TqFloat patchSize = max(maxNorm(m_F), maxNorm(m_E));
TqFloat irregularity = maxNorm(m_G);
if(irregularity < 1e-2*patchSize)
m_linear = true;
}
CqVector2D operator()(CqVector2D P) const
{
// Start at centre, & do two iterations of Newton's method.
CqVector2D uv(0.5, 0.5);
uv -= solve<true>(m_E + m_G*uv.y(), m_F + m_G*uv.x(), bilinEval(uv)-P);
if(!m_linear)
{
uv -= solve<false>(m_E + m_G*uv.y(), m_F + m_G*uv.x(), bilinEval(uv)-P);
// uv -= solve<false>(m_E + m_G*uv.y(), m_F + m_G*uv.x(), bilinEval(uv)-P);
}
return uv;
}
};
//------------------------------------------------------------------------------
// Unit testing code; link with -lboost_unit_test_framework
#ifndef SPEED_TEST
#define BOOST_TEST_MAIN
#define BOOST_TEST_DYN_LINK
#include <boost/test/auto_unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <fenv.h>
#include <algorithm>
// Custom predicate functor for BOOST_CHECK_PREDICATE.
//
// This is a combined absolute and relative closeness check. It's true when
// the either the absolute difference between left and right is below a given
// threshold, *or* the relative difference is.
class IsCloseRelAbs
{
private:
TqFloat m_relTol;
TqFloat m_absTol;
public:
IsCloseRelAbs(
TqFloat relTol = 2*FLT_EPSILON,
TqFloat absTol = 2*FLT_EPSILON)
: m_relTol(relTol), m_absTol(absTol)
{}
bool operator()(TqFloat f1, TqFloat f2)
{
TqFloat diff = std::fabs(f1-f2);
return diff < m_absTol
|| diff < m_relTol*std::fabs(f1)
|| diff < m_relTol*std::fabs(f2);
}
bool operator()(CqVector2D v1, CqVector2D v2)
{
return (*this)(v1.x(), v2.x()) && (*this)(v1.y(), v2.y());
}
};
static void checkLookup(std::vector<CqVector2D> uvInList,
CqVector2D A, CqVector2D B, CqVector2D C, CqVector2D D,
// The following two tolerances work for the analytical
// version, but are more accurate than we need.
// TqFloat relTol = 10*FLT_EPSILON,
// TqFloat absTol = 10*FLT_EPSILON)
// The following two tolerances are about right for the
// version using Newton's method.
TqFloat relTol = 1e-3,
TqFloat absTol = 1e-3)
{
feenableexcept (FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW);
IsCloseRelAbs close(relTol, absTol);
// typedef CqInvBilinearDirect InvBilin;
typedef CqInvBilinearNewton InvBilin;
InvBilin invBilerp(A,B,C,D);
std::greater_equal<TqFloat> ge;
std::less_equal<TqFloat> le;
for(int i = 0; i < static_cast<TqInt>(uvInList.size()); ++i)
{
// Compute interpolated position on patch
CqVector2D uvIn = uvInList[i];
CqVector2D P = bilerp(A,B,C,D, uvIn.x(), uvIn.y());
// Invert that to get the parameter values back.
CqVector2D uvOut = invBilerp(P);
// Check whether it worked.
BOOST_CHECK_PREDICATE(close, (uvIn) (uvOut));
BOOST_CHECK_PREDICATE(ge, (uvOut.x()) (-absTol));
BOOST_CHECK_PREDICATE(le, (uvOut.x()) (1+absTol));
}
}
struct UVFixture
{
std::vector<CqVector2D> uvIn;
UVFixture(TqFloat uExclude = -1, TqFloat vExclude = -1)
{
const TqFloat e = 1e-6;
const TqFloat uvInInit[] = {
// Some "random" locations inside the patch
0.5, 0.5,
0.12345, 0.67891,
0.42042, 0.42042,
0.3141592, 0.2718281,
// Corners of the patch
0, 0,
1, 0,
0, 1,
1, 1,
// Very close to patch corners
e, e,
1-e, e,
e, 1-e,
1-e, 1-e,
// On patch edges
0.5, 0,
0.5, 1,
0, 0.5,
1, 0.5,
// Very close to patch edges
0.5, e,
0.5, 1-e,
e, 0.5,
1-e, 0.5,
};
// Exclude potentially problematic regions in u and v.
for(int i = 0; i < sizeof(uvInInit)/sizeof(TqFloat); i += 2)
{
TqFloat u = uvInInit[i];
TqFloat v = uvInInit[i+1];
if( (uExclude == -1 || std::fabs(uExclude-u) > 1e-2) &&
(vExclude == -1 || std::fabs(vExclude-v) > 1e-2) )
{
uvIn.push_back(CqVector2D(u,v));
}
}
}
};
BOOST_AUTO_TEST_CASE(InvBilinear_convex_irregular)
{
UVFixture f;
CqVector2D A(0.1, 0.1), B(1.1, 0),
C(-0.1, 1.5), D(1, 1);
checkLookup(f.uvIn, A, B, C, D);
}
BOOST_AUTO_TEST_CASE(InvBilinear_convex_irregular_rot90)
{
UVFixture f;
CqVector2D A(-0.1, 1.5), B(0.1, 0.1),
C(1, 1), D(1.1, 0);
checkLookup(f.uvIn, A, B, C, D);
}
BOOST_AUTO_TEST_CASE(InvBilinear_convex_irregular_rot180)
{
UVFixture f;
CqVector2D A(1, 1), B(-0.1, 1.5),
C(1.1, 0), D(0.1, 0.1);
checkLookup(f.uvIn, A, B, C, D);
}
BOOST_AUTO_TEST_CASE(InvBilinear_convex_irregular_rot270)
{
UVFixture f;
CqVector2D A(1.1, 0), B(1, 1),
C(0.1, 0.1), D(-0.1, 1.5);
checkLookup(f.uvIn, A, B, C, D);
}
BOOST_AUTO_TEST_CASE(InvBilinear_large_offset)
{
UVFixture f;
CqVector2D A(0, 0), B(2, 0), C(0, 1), D(2, 1);
CqVector2D offset(1000, 2000);
A += offset; B += offset; C += offset; D += offset;
// Even for the "exact" analytical solution, we loose about 4 digits of
// precision here due to cancellation errors... so cannot expect better
// than ~2000*eps accuracy for relTol
//
// Similarly, absTol has to be quite large.
// checkLookup(f.uvIn, A, B, C, D, 2000*FLT_EPSILON, 4000*FLT_EPSILON);
checkLookup(f.uvIn, A, B, C, D);
}
BOOST_AUTO_TEST_CASE(InvBilinear_exactly_rectangular)
{
UVFixture f;
CqVector2D A(0, 0), B(2, 0), C(0, 1), D(2, 1);
checkLookup(f.uvIn, A, B, C, D);
}
BOOST_AUTO_TEST_CASE(InvBilinear_almost_rectangular)
{
UVFixture f;
CqVector2D A(0.0001, 0.000005), B(2, 0), C(0, 1), D(2, 1);
// The almost-rectangular case uses the lower-precision but _fast_ method
// of assuming that the system of equations to be solved are exactly
// linear. This means an increase in relTol and absTol.
checkLookup(f.uvIn, A, B, C, D, 2e-4, 1e-4);
}
BOOST_AUTO_TEST_CASE(InvBilinear_degenerate_u_verts)
{
// Exclude all test (u,v) coords along the line v = 0 where the points A
// and B are coincident.
UVFixture f(-1,0);
CqVector2D A(0, 0), B(0, 0), C(0, 1), D(1, 1.5);
checkLookup(f.uvIn, A, B, C, D);
}
BOOST_AUTO_TEST_CASE(InvBilinear_degenerate_u_verts2)
{
// Exclude all test (u,v) coords along the line v = 1 where the points C
// and D are coincident.
UVFixture f(-1,1);
CqVector2D A(0, 0), B(1.1, 0), C(0, 1), D(0, 1);
checkLookup(f.uvIn, A, B, C, D);
}
BOOST_AUTO_TEST_CASE(InvBilinear_degenerate_v_verts)
{
// Exclude all test (u,v) coords along the line u = 0 where the points A
// and C are coincident.
UVFixture f(0,-1);
CqVector2D A(0, 0), B(1, 0), C(0, 0), D(1, 1.5);
checkLookup(f.uvIn, A, B, C, D);
}
BOOST_AUTO_TEST_CASE(InvBilinear_parallel_adjacent_edges)
{
// Adjacent parallel sides. Newton's method is really rather slow to
// converge here, so we can't expect the accuracy of two iterations to be
// any good :-(
{
UVFixture f(1,0);
CqVector2D A(0, 0), B(1, 0), C(1, 1.5), D(2, 0.01);
checkLookup(f.uvIn, A, B, C, D, 0.03, 0.03);
}
{
UVFixture f;
CqVector2D A(0, 0), B(1, 0), C(1, 1.5), D(2, 0.01);
checkLookup(f.uvIn, A, B, C, D, 0.2, 0.2);
}
}
//BOOST_AUTO_TEST_CASE(InvBilinear_nonconvex_irregular)
//{
// CqVector2D A(0.8, 0.8), B(1.1, 0), C(-0.1, 1.5), D(1, 1);
// checkLookup(uvIn, A, B, C, D);
//}
#else // ifndef SPEED_TEST
//------------------------------------------------------------------------------
// The following is speed testing code, designed to be run with the cppbench
// utility.
//
// There's three orthogonal things things to test here:
// 1) Performance of the two methods for almost-rectangular quads
// 2) Performance with & without the initialization step for every inverse lookup
// 3) Performance for general vs almost-rectangular grids.
//
// The tests seem to indicate that generally the symmetrically formulated
// analytical method is about the same speed as two iterations of Newton's
// method. Both methods can be optimized for the case when the micropolygons
// are almost rectangular.
//
// Newton's method is significantly more robust however, with possible divisions
// by zero only occurring near one location which is easy to avoid. Newton's
// method converges slowly when two adjacent sides are parallel.
// testLoop is the speed testing function. It's declared as noinline so as to
// isolate it from the constant known values of A,B,C,D and prevent
// un-representative optimizations.
noinline
CqVector2D testLoop(CqVector2D A, CqVector2D B, CqVector2D C, CqVector2D D,
const int numIters)
{
// typedef CqInvBilinearDirect InvBilin; //##bench direct
// typedef CqInvBilinearNewton InvBilin; //##bench newton
CqVector2D uvSum;
CqVector2D P = bilerp(A,B,C,D, 0.123, 0.456);
InvBilin invBilin(A,B,C,D);
for(int i = 0; i < numIters; ++i)
{
// InvBilin invBilin(A+CqVector2D(i*0.00000000001,0),B,C,D);
// Increment P.x and add to the uvSum to fool the optimizer into
// actually doing the lookup inside the loop.
P.x() += 1e-9;
uvSum += invBilin(P);
}
return uvSum;
}
int main()
{
// irregular patch
CqVector2D A(0.1, 0.1), B(1.1, 0), C(-0.1, 1.5), D(1, 1);
// almost-rectangular patch
// CqVector2D A(0.0001, 0.000005), B(2, 0), C(0, 1), D(2, 1);
testLoop(A,B,C,D, 40000000);
return 0;
}
//##description direct Symmetric analytical scheme for inverse bilinear lookup
//##description newton Two iterations of Newton's method
//##CXXFLAGS -O3 -Wall -DSPEED_TEST -I$AQSIS_INCLUDE
#endif // ifndef SPEED_TEST
|