File: adhash.cxx

package info (click to toggle)
arb 6.0.2-1%2Bdeb8u1
  • links: PTS, VCS
  • area: non-free
  • in suites: jessie
  • size: 65,916 kB
  • ctags: 53,258
  • sloc: ansic: 394,903; cpp: 250,252; makefile: 19,620; sh: 15,878; perl: 10,461; fortran: 6,019; ruby: 683; xml: 503; python: 53; awk: 32
file content (1317 lines) | stat: -rw-r--r-- 43,526 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
// =============================================================== //
//                                                                 //
//   File      : adhash.cxx                                        //
//   Purpose   :                                                   //
//                                                                 //
//   Institute of Microbiology (Technical University Munich)       //
//   http://www.arb-home.de/                                       //
//                                                                 //
// =============================================================== //

#include "gb_data.h"
#include "gb_tune.h"
#include "gb_hashindex.h"

#include <arb_strbuf.h>
#include <arb_sort.h>

#include <climits>
#include <cfloat>
#include <cctype>


struct gbs_hash_entry {
    char           *key;
    long            val;
    gbs_hash_entry *next;
};
struct GB_HASH {
    size_t           size;                          // size of hashtable
    size_t           nelem;                         // number of elements inserted
    GB_CASE          case_sens;
    gbs_hash_entry **entries;                       // the hash table (has 'size' entries)

    void (*freefun)(long val); // function to free hash values (see GBS_create_dynaval_hash)

};

struct numhash_entry {
    long           key;
    long           val;
    numhash_entry *next;
};

struct GB_NUMHASH {
    long            size;                           // size of hashtable
    size_t          nelem;                          // number of elements inserted
    numhash_entry **entries;
};

// prime numbers

#define KNOWN_PRIMES 279
static size_t sorted_primes[KNOWN_PRIMES] = {
    3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 79, 89, 97, 103, 109, 127, 137, 149, 157, 167, 179, 191, 211, 
    223, 239, 257, 271, 293, 311, 331, 349, 373, 397, 419, 443, 467, 499, 541, 571, 607, 641, 677, 719, 757, 797, 839, 887, 937, 
    991, 1049, 1109, 1171, 1237, 1303, 1373, 1447, 1531, 1613, 1699, 1789, 1889, 1993, 2099, 2213, 2333, 2459, 2591, 2729, 2879, 
    3037, 3203, 3373, 3557, 3761, 3967, 4177, 4397, 4637, 4889, 5147, 5419, 5711, 6029, 6353, 6689, 7043, 7417, 7817, 8231, 8669, 
    9127, 9613, 10133, 10667, 11239, 11831, 12457, 13121, 13829, 14557, 15329, 16139, 16993, 17891, 18839, 19841, 20887, 21991, 23159, 
    24379, 25667, 27031, 28463, 29983, 31567, 33247, 35023, 36871, 38821, 40867, 43019, 45289, 47681, 50207, 52859, 55661, 58601, 
    61687, 64937, 68371, 71971, 75767, 79757, 83969, 88397, 93053, 97961, 103123, 108553, 114269, 120293, 126631, 133303, 140321, 
    147709, 155501, 163697, 172313, 181387, 190979, 201031, 211619, 222773, 234499, 246889, 259907, 273601, 288007, 303187, 319147, 
    335953, 353641, 372263, 391861, 412487, 434201, 457057, 481123, 506449, 533111, 561173, 590713, 621821, 654553, 689021, 725293, 
    763471, 803659, 845969, 890501, 937373, 986717, 1038671, 1093357, 1150909, 1211489, 1275269, 1342403, 1413077, 1487459, 1565747, 
    1648181, 1734937, 1826257, 1922383, 2023577, 2130101, 2242213, 2360243, 2484473, 2615243, 2752889, 2897789, 3050321, 3210871, 
    3379877, 3557773, 3745051, 3942209, 4149703, 4368113, 4598063, 4840103, 5094853, 5363011, 5645279, 5942399, 6255157, 6584377, 
    6930929, 7295719, 7679713, 8083919, 8509433, 8957309, 9428759, 9925021, 10447391, 10997279, 11576087, 12185359, 12826699, 13501819, 
    14212447, 14960471, 15747869, 16576727, 17449207, 18367597, 19334317, 20351927, 21423107, 22550639, 23737523, 24986867, 26301967, 
    27686291, 29143493, 30677363, 32291971, 33991597, 35780639, 37663841, 39646153, 41732809, 43929307, 46241389, 48675167, 51237019, 
    53933713, 56772371, 59760391, 62905681, 66216511, 69701591, 73370107, 77231711, 81296543, 85575313, 90079313, 94820347, 99810899 
};

// define CALC_PRIMES only to expand the above table
#if defined(DEBUG)
// #define CALC_PRIMES
#endif // DEBUG

#ifdef CALC_PRIMES

#define CALC_PRIMES_UP_TO 100000000U
#define PRIME_UNDENSITY   20U   // the higher, the less primes are stored

#warning "please don't define CALC_PRIMES permanently"

static unsigned char bit_val[8] = { 1, 2, 4, 8, 16, 32, 64, 128 };

static int bit_value(const unsigned char *eratosthenes, long num) {
    // 'num' is odd and lowest 'num' is 3
    long bit_num  = ((num-1) >> 1)-1; // 3->0 5->1 7->2 etc.
    long byte_num = bit_num >> 3; // div 8
    char byte     = eratosthenes[byte_num];

    gb_assert(bit_num >= 0);
    gb_assert((num&1) == 1);    // has to odd

    bit_num = bit_num &  7;

    return (byte & bit_val[bit_num]) ? 1 : 0;
}
static void set_bit_value(unsigned char *eratosthenes, long num, int val) {
    // 'num' is odd and lowest 'num' is 3; val is 0 or 1
    long bit_num  = ((num-1) >> 1)-1; // 3->0 5->1 7->2 etc.
    long byte_num = bit_num >> 3; // div 8
    char byte     = eratosthenes[byte_num];

    gb_assert(bit_num >= 0);
    gb_assert((num&1) == 1);    // has to odd

    bit_num = bit_num &  7;

    if (val) {
        byte |= bit_val[bit_num];
    }
    else {
        byte &= (0xff - bit_val[bit_num]);
    }
    eratosthenes[byte_num] = byte;
}

static void calculate_primes_upto() {
    {
        size_t         bits_needed  = CALC_PRIMES_UP_TO/2+1; // only need bits for odd numbers
        size_t         bytes_needed = (bits_needed/8)+1;
        unsigned char *eratosthenes = (unsigned char *)GB_calloc(bytes_needed, 1); // bit = 1 means "is not a prime"
        size_t         prime_count  = 0;
        size_t         num;

        printf("eratosthenes' size = %zu\n", bytes_needed);
        GBK_dump_backtrace(stderr, "calculate_primes_upto");

        if (!eratosthenes) {
            GB_internal_error("out of memory");
            return;
        }

        for (num = 3; num <= CALC_PRIMES_UP_TO; num += 2) {
            if (bit_value(eratosthenes, num) == 0) { // is a prime number
                size_t num2;
                prime_count++;
                for (num2 = num*2; num2 <= CALC_PRIMES_UP_TO; num2 += num) { // with all multiples
                    if ((num2&1) == 1) { // skip even numbers
                        set_bit_value(eratosthenes, num2, 1);
                    }
                }
            }
            // otherwise it is no prime and all multiples are already set to 1
        }

        // thin out prime numbers (we don't need all of them)
        {
            size_t prime_count2 = 0;
            size_t last_prime   = 1;
            size_t printed      = 0;

            for (num = 3; num <= CALC_PRIMES_UP_TO; num += 2) {
                if (bit_value(eratosthenes, num) == 0) { // is a prime number
                    size_t diff = num-last_prime;
                    if ((diff*PRIME_UNDENSITY)<num) {
                        set_bit_value(eratosthenes, num, 1); // delete unneeded prime
                    }
                    else {
                        prime_count2++; // count needed primes
                        last_prime = num;
                    }
                }
            }

            printf("\nUsing %zu prime numbers up to %zu:\n\n", prime_count2, CALC_PRIMES_UP_TO);
            printf("#define KNOWN_PRIMES %zu\n", prime_count2);
            printf("static size_t sorted_primes[KNOWN_PRIMES] = {\n    ");
            printed = 4;

            for (num = 3; num <= CALC_PRIMES_UP_TO; num += 2) {
                if (bit_value(eratosthenes, num) == 0) { // is a prime number
                    if (printed>128) {
                        printf("\n    ");
                        printed = 4;
                    }

                    if (num>INT_MAX) {
                        printed += printf("%zuU, ", num);
                    }
                    else {
                        printed += printf("%zu, ", num);
                    }
                }
            }
            printf("\n};\n\n");
        }

        free(eratosthenes);
    }
    fflush(stdout);
    exit(1);
}

#endif // CALC_PRIMES

size_t gbs_get_a_prime(size_t above_or_equal_this) {
    // return a prime number above_or_equal_this
    // NOTE: it is not necessarily the next prime number, because we don't calculate all prime numbers!

#if defined(CALC_PRIMES)
    calculate_primes_upto();
#endif // CALC_PRIMES

    if (sorted_primes[KNOWN_PRIMES-1] >= above_or_equal_this) {
        int l = 0, h = KNOWN_PRIMES-1;

        while (l < h) {
            int m = (l+h)/2;
#if defined(DEBUG) && 0
            printf("l=%-3i m=%-3i h=%-3i above_or_equal_this=%li sorted_primes[%i]=%li sorted_primes[%i]=%li sorted_primes[%i]=%li\n",
                   l, m, h, above_or_equal_this, l, sorted_primes[l], m, sorted_primes[m], h, sorted_primes[h]);
#endif // DEBUG
            gb_assert(l <= m);
            gb_assert(m <= h);
            if (sorted_primes[m] > above_or_equal_this) {
                h = m-1;
            }
            else {
                if (sorted_primes[m] < above_or_equal_this) {
                    l = m+1;
                }
                else {
                    h = l = m;
                }
            }
        }

        if (sorted_primes[l] < above_or_equal_this) {
            l++;                // take next
            gb_assert(l<KNOWN_PRIMES);
        }

        gb_assert(sorted_primes[l] >= above_or_equal_this);
        gb_assert(l == 0 || sorted_primes[l-1] < above_or_equal_this);

        return sorted_primes[l];
    }

    fprintf(stderr, "Warning: gbs_get_a_prime failed for value %zu (performance bleed)\n", above_or_equal_this);
    gb_assert(0); // add more primes to sorted_primes[]

    return above_or_equal_this; // NEED_NO_COV
}

// -----------------------------------------------
//      Some Hash Procedures for [string,long]

inline size_t hash_size(size_t estimated_elements) {
    size_t min_hash_size = 2*estimated_elements;    // -> fill rate ~ 50% -> collisions unlikely
    size_t next_prime    = gbs_get_a_prime(min_hash_size); // use next prime number

    return next_prime;
}


GB_HASH *GBS_create_hash(long estimated_elements, GB_CASE case_sens) {
    /*! Create a hash
     * @param estimated_elements estimated number of elements added to hash (if you add more elements, hash will still work, but get slow)
     * @param case_sens GB_IGNORE_CASE or GB_MIND_CASE
     * Uses linked lists to avoid collisions.
     */
    GB_HASH *hs;
    long     size = hash_size(estimated_elements);

    hs            = (GB_HASH*)GB_calloc(sizeof(*hs), 1);
    hs->size      = size;
    hs->nelem     = 0;
    hs->case_sens = case_sens;
    hs->entries   = (gbs_hash_entry **)GB_calloc(sizeof(gbs_hash_entry *), size);
    hs->freefun   = NULL;

    return hs;
}

GB_HASH *GBS_create_dynaval_hash(long estimated_elements, GB_CASE case_sens, void (*freefun)(long)) {
    //! like GBS_create_hash, but values stored in hash get freed using 'freefun' when hash gets destroyed
    GB_HASH *hs = GBS_create_hash(estimated_elements, case_sens);
    hs->freefun = freefun;
    return hs;
}

void GBS_dynaval_free(long val) {
    free((void*)val);
}

#if defined(DEBUG)
inline void dump_access(const char *title, const GB_HASH *hs, double mean_access) {
    fprintf(stderr,
            "%s: size=%zu elements=%zu mean_access=%.2f hash-speed=%.1f%%\n",
            title, hs->size, hs->nelem, mean_access, 100.0/mean_access);
}

static double hash_mean_access_costs(const GB_HASH *hs) {
    /* returns the mean access costs of the hash [1.0 .. inf[
     * 1.0 is optimal
     * 2.0 means: hash speed is 50% (1/2.0)
    */
    double mean_access = 1.0;

    if (hs->nelem) {
        int    strcmps_needed = 0;
        size_t pos;

        for (pos = 0; pos<hs->size; pos++) {
            int             strcmps = 1;
            gbs_hash_entry *e;

            for (e = hs->entries[pos]; e; e = e->next) {
                strcmps_needed += strcmps++;
            }
        }

        mean_access = (double)strcmps_needed/hs->nelem;
    }
    return mean_access;
}
#endif // DEBUG


void GBS_optimize_hash(const GB_HASH *hs) {
    if (hs->nelem > hs->size) {                     // hash is overfilled (Note: even 50% fillrate is slow)
        size_t new_size = gbs_get_a_prime(hs->nelem*3);

#if defined(DEBUG)
        dump_access("Optimizing filled hash", hs, hash_mean_access_costs(hs));
#endif // DEBUG

        if (new_size>hs->size) { // avoid overflow
            gbs_hash_entry **new_entries = (gbs_hash_entry**)GB_calloc(sizeof(*new_entries), new_size);
            size_t           pos;

            for (pos = 0; pos<hs->size; ++pos) {
                gbs_hash_entry *e;
                gbs_hash_entry *next;

                for (e = hs->entries[pos]; e; e = next) {
                    long new_idx;
                    next = e->next;

                    GB_CALC_HASH_INDEX(e->key, new_idx, new_size, hs->case_sens);

                    e->next              = new_entries[new_idx];
                    new_entries[new_idx] = e;
                }
            }

            free(hs->entries);

            {
                GB_HASH *hs_mutable = const_cast<GB_HASH*>(hs);
                hs_mutable->size    = new_size;
                hs_mutable->entries = new_entries;
            }
        }
#if defined(DEBUG)
        dump_access("Optimized hash        ", hs, hash_mean_access_costs(hs));
#endif // DEBUG

    }
}

static void gbs_hash_to_strstruct(const char *key, long val, void *cd_out) {
    const char    *p;
    int            c;
    GBS_strstruct *out = (GBS_strstruct*)cd_out;

    for (p = key; (c=*p);  p++) {
        GBS_chrcat(out, c);
        if (c==':') GBS_chrcat(out, c);
    }
    GBS_chrcat(out, ':');
    GBS_intcat(out, val);
    GBS_chrcat(out, ' ');
}

char *GBS_hashtab_2_string(const GB_HASH *hash) {
    GBS_strstruct *out = GBS_stropen(1024);
    GBS_hash_do_const_loop(hash, gbs_hash_to_strstruct, out);
    return GBS_strclose(out);
}


static gbs_hash_entry *find_hash_entry(const GB_HASH *hs, const char *key, size_t *index) {
    gbs_hash_entry *e;
    if (hs->case_sens == GB_IGNORE_CASE) {
        GB_CALC_HASH_INDEX_CASE_IGNORED(key, *index, hs->size);
        for (e=hs->entries[*index]; e; e=e->next) {
            if (!strcasecmp(e->key, key)) return e;
        }
    }
    else {
        GB_CALC_HASH_INDEX_CASE_SENSITIVE(key, *index, hs->size);
        for (e=hs->entries[*index]; e; e=e->next) {
            if (!strcmp(e->key, key)) return e;
        }
    }
    return 0;
}

long GBS_read_hash(const GB_HASH *hs, const char *key) {
    size_t          i;
    gbs_hash_entry *e = find_hash_entry(hs, key, &i);

    return e ? e->val : 0;
}

static void delete_from_list(GB_HASH *hs, size_t i, gbs_hash_entry *e) {
    // delete the hash entry 'e' from list at index 'i'
    hs->nelem--;
    if (hs->entries[i] == e) {
        hs->entries[i] = e->next;
    }
    else {
        gbs_hash_entry *ee;
        for (ee = hs->entries[i]; ee->next != e; ee = ee->next) ;
        if (ee->next == e) {
            ee->next = e->next;
        }
        else {
            GB_internal_error("Database may be corrupt, hash tables error"); // NEED_NO_COV
        }
    }
    free(e->key);
    if (hs->freefun) hs->freefun(e->val);
    gbm_free_mem(e, sizeof(gbs_hash_entry), GBM_HASH_INDEX);
}

static long write_hash(GB_HASH *hs, char *key, bool copyKey, long val) {
    /* returns the old value (or 0 if key had no entry)
     * if 'copyKey' == false, 'key' will be freed (now or later) and may be invalid!
     * if 'copyKey' == true, 'key' will not be touched in any way!
     */

    size_t          i;
    gbs_hash_entry *e      = find_hash_entry(hs, key, &i);
    long            oldval = 0;

    if (e) {
        oldval = e->val;

        if (!val) delete_from_list(hs, i, e); // (val == 0 is not stored, cause 0 is the default value)
        else      e->val = val;

        if (!copyKey) free(key); // already had an entry -> delete unused mem
    }
    else if (val != 0) {        // don't store 0
        // create new hash entry
        e       = (gbs_hash_entry *)gbm_get_mem(sizeof(gbs_hash_entry), GBM_HASH_INDEX);
        e->next = hs->entries[i];
        e->key  = copyKey ? strdup(key) : key;
        e->val  = val;

        hs->entries[i] = e;
        hs->nelem++;
    }
    else {
        if (!copyKey) free(key); // don't need an entry -> delete unused mem
    }
    return oldval;
}

long GBS_write_hash(GB_HASH *hs, const char *key, long val) {
    // returns the old value (or 0 if key had no entry)
    return write_hash(hs, (char*)key, true, val);
}

long GBS_write_hash_no_strdup(GB_HASH *hs, char *key, long val) {
    /* same as GBS_write_hash, but does no strdup. 'key' is freed later in GBS_free_hash,
     * so the user has to 'malloc' the string and give control to the hash.
     * Note: after calling this function 'key' may be invalid!
     */
    return write_hash(hs, key, false, val);
}

long GBS_incr_hash(GB_HASH *hs, const char *key) {
    // returns new value
    size_t          i;
    gbs_hash_entry *e = find_hash_entry(hs, key, &i);
    long            result;

    if (e) {
        result = ++e->val;
        if (!result) delete_from_list(hs, i, e);
    }
    else {
        e       = (gbs_hash_entry *)gbm_get_mem(sizeof(gbs_hash_entry), GBM_HASH_INDEX);
        e->next = hs->entries[i];
        e->key  = strdup(key);
        e->val  = result = 1;

        hs->entries[i] = e;
        hs->nelem++;
    }
    return result;
}

#if defined(DEVEL_RALF)
// #define DUMP_HASH_ENTRIES
#endif // DEVEL_RALF

static void GBS_erase_hash(GB_HASH *hs) {
    size_t hsize = hs->size;

#if defined(DUMP_HASH_ENTRIES)
    for (size_t i = 0; i < hsize; i++) {
        printf("hash[%zu] =", i);
        for (gbs_hash_entry *e = hs->entries[i]; e; e = e->next) {
            printf(" '%s'", e->key);
        }
        printf("\n");
    }
#endif // DUMP_HASH_ENTRIES

    // check hash size
    if (hsize >= 10) { // ignore small hashes
#if defined(DEBUG)
        double mean_access = hash_mean_access_costs(hs);
        if (mean_access > 1.5) { // every 2nd access is a collision - increase hash size?
            dump_access("hash-size-warning", hs, mean_access);
#if defined(DEVEL_RALF) && !defined(UNIT_TESTS)
            gb_assert(mean_access<2.0);             // hash with 50% speed or less
#endif // DEVEL_RALF
        }
#else
        if (hs->nelem >= (2*hsize)) {
            GB_warningf("Performance leak - very slow hash detected (elems=%zu, size=%zu)\n", hs->nelem, hs->size);
            GBK_dump_backtrace(stderr, "detected performance leak");
        }
#endif // DEBUG
    }

    for (size_t i = 0; i < hsize; i++) {
        for (gbs_hash_entry *e = hs->entries[i]; e; ) {
            free(e->key);
            if (hs->freefun) hs->freefun(e->val);

            gbs_hash_entry *next = e->next;
            gbm_free_mem(e, sizeof(gbs_hash_entry), GBM_HASH_INDEX);
            e = next;
        }
        hs->entries[i] = 0;
    }
    hs->nelem = 0;
}

void GBS_free_hash(GB_HASH *hs) {
    gb_assert(hs);
    GBS_erase_hash(hs);
    free(hs->entries);
    free(hs);
}

void GBS_hash_do_loop(GB_HASH *hs, gb_hash_loop_type func, void *client_data) {
    size_t hsize = hs->size;
    for (size_t i=0; i<hsize; i++) {
        for (gbs_hash_entry *e = hs->entries[i]; e; ) {
            gbs_hash_entry *next = e->next;
            if (e->val) {
                e->val = func(e->key, e->val, client_data);
                if (!e->val) delete_from_list(hs, i, e);
            }
            e = next;
        }
    }
}

void GBS_hash_do_const_loop(const GB_HASH *hs, gb_hash_const_loop_type func, void *client_data) {
    size_t hsize = hs->size;
    for (size_t i=0; i<hsize; i++) {
        for (gbs_hash_entry *e = hs->entries[i]; e; ) {
            gbs_hash_entry *next = e->next;
            if (e->val) func(e->key, e->val, client_data);
            e = next;
        }
    }
}

#if defined(WARN_TODO)
#warning rename GBS_hash_count_elems -> GBS_hash_elements
#endif

size_t GBS_hash_count_elems(const GB_HASH *hs) {
#if defined(DEBUG)
    // @@@ old code, just left here to ensure hs->nelem is correct --ralf Mar/2010
    size_t count = 0;
    size_t hsize = hs->size;
    for (size_t i = 0; i<hsize; ++i) {
        gbs_hash_entry *e;
        for (e=hs->entries[i]; e; e=e->next) {
            if (e->val) ++count;
        }
    }

    gb_assert(count == hs->nelem);
#else    
    size_t count = hs->nelem;
#endif // DEBUG

    return count;
}

const char *GBS_hash_next_element_that(const GB_HASH *hs, const char *last_key, bool (*condition)(const char *key, long val, void *cd), void *cd) {
    /* Returns the key of the next element after 'last_key' matching 'condition' (i.e. where condition returns true).
     * If 'last_key' is NULL, the first matching element is returned.
     * Returns NULL if no (more) elements match the 'condition'.
     */

    size_t          size = hs->size;
    size_t          i    = 0;
    gbs_hash_entry *e    = 0;

    if (last_key) {
        e = find_hash_entry(hs, last_key, &i);
        if (!e) return NULL;

        e = e->next;       // use next entry after 'last_key'
        if (!e) i++;
    }

    for (; i<size && !e; ++i) e = hs->entries[i]; // search first/next entry

    while (e) {
        if ((*condition)(e->key, e->val, cd)) break;
        e = e->next;
        if (!e) {
            for (i++; i<size && !e; ++i) e = hs->entries[i];
        }
    }

    return e ? e->key : NULL;
}

static int wrap_hashCompare4gb_sort(const void *v0, const void *v1, void *sorter) {
    const gbs_hash_entry *e0 = (const gbs_hash_entry*)v0;
    const gbs_hash_entry *e1 = (const gbs_hash_entry*)v1;

    return ((gbs_hash_compare_function)sorter)(e0->key, e0->val, e1->key, e1->val);
}

void GBS_hash_do_sorted_loop(GB_HASH *hs, gb_hash_loop_type func, gbs_hash_compare_function sorter, void *client_data) {
    size_t           hsize = hs->size;
    gbs_hash_entry **mtab  = (gbs_hash_entry **)GB_calloc(sizeof(void *), hs->nelem);
    
    size_t j = 0;
    for (size_t i = 0; i < hsize; i++) {
        for (gbs_hash_entry *e = hs->entries[i]; e; e = e->next) {
            if (e->val) {
                mtab[j++] = e;
            }
        }
    }

    GB_sort((void**)mtab, 0, j, wrap_hashCompare4gb_sort, (void*)sorter);
    
    for (size_t i = 0; i < j; i++) {
        long new_val = func(mtab[i]->key, mtab[i]->val, client_data);
        if (new_val != mtab[i]->val) GBS_write_hash(hs, mtab[i]->key, new_val);
    }
    
    free(mtab);
}

int GBS_HCF_sortedByKey(const char *k0, long /*v0*/, const char *k1, long /*v1*/) {
    return strcmp(k0, k1);
}

// ---------------------------------------------
//      Some Hash Procedures for [long,long]

inline long gbs_numhash_index(long key, long size) {
    long x;
    x = (key * (long long)97)%size;     // make one multiplier a (long long) to avoid
    if (x<0) x += size;                 // int overflow and abort if compiled with -ftrapv
    return x;
}


GB_NUMHASH *GBS_create_numhash(size_t estimated_elements) {
    size_t      size = hash_size(estimated_elements);
    GB_NUMHASH *hs   = (GB_NUMHASH *)GB_calloc(sizeof(*hs), 1);

    hs->size    = size;
    hs->nelem   = 0;
    hs->entries = (numhash_entry **)GB_calloc(sizeof(*(hs->entries)), (size_t)size);

    return hs;
}

long GBS_read_numhash(GB_NUMHASH *hs, long key) {
    size_t i = gbs_numhash_index(key, hs->size);
    for (numhash_entry *e = hs->entries[i]; e; e = e->next) {
        if (e->key==key) return e->val;
    }
    return 0;
}

long GBS_write_numhash(GB_NUMHASH *hs, long key, long val) {
    size_t i      = gbs_numhash_index(key, hs->size);
    long   oldval = 0;

    if (val == 0) { // erase
        numhash_entry **nextPtr = &(hs->entries[i]);

        for (numhash_entry *e = hs->entries[i]; e; e = e->next) {
            if (e->key == key) {
                *nextPtr = e->next;                  // unlink entry
                gbm_free_mem(e, sizeof(*e), GBM_HASH_INDEX);
                hs->nelem--;
                return 0;
            }
            nextPtr = &(e->next);
        }
    }
    else {
        for (numhash_entry *e=hs->entries[i]; e; e=e->next) {
            if (e->key==key) {
                oldval = e->val; gb_assert(oldval);
                e->val = val;
                break;
            }
        }

        if (!oldval) {
            numhash_entry *e = (numhash_entry *)gbm_get_mem(sizeof(*e), GBM_HASH_INDEX);

            e->next = hs->entries[i];
            e->key  = key;
            e->val  = val;

            hs->nelem++;
            hs->entries[i] = e;
        }
    }
    return oldval;
}

static void GBS_erase_numhash(GB_NUMHASH *hs) {
    size_t hsize = hs->size;

    for (size_t i=0; i<hsize; i++) {
        for (numhash_entry *e = hs->entries[i]; e; ) {
            numhash_entry *next = e->next;
            
            gbm_free_mem(e, sizeof(*e), GBM_HASH_INDEX);
            e = next;
        }
    }

    hs->nelem = 0;
}

void GBS_free_numhash(GB_NUMHASH *hs) {
    GBS_erase_numhash(hs);
    free(hs->entries);
    free(hs);
}

// --------------------------------------------------------------------------------

#ifdef UNIT_TESTS

#include <test_unit.h>

// determine hash quality

struct gbs_hash_statistic_summary {
    long   count;               // how many stats
    long   min_size, max_size, sum_size;
    long   min_nelem, max_nelem, sum_nelem;
    long   min_collisions, max_collisions, sum_collisions;
    double min_fill_ratio, max_fill_ratio, sum_fill_ratio;
    double min_hash_quality, max_hash_quality, sum_hash_quality;

    void init() {
        count          = 0;
        min_size       = min_nelem = min_collisions = LONG_MAX;
        max_size       = max_nelem = max_collisions = LONG_MIN;
        min_fill_ratio = min_hash_quality = DBL_MAX;
        max_fill_ratio = max_hash_quality = DBL_MIN;

        sum_size       = sum_nelem = sum_collisions = 0;
        sum_fill_ratio = sum_hash_quality = 0.0;
    }
};

class hash_statistic_manager : virtual Noncopyable {
    GB_HASH *stat_hash;
public:
    hash_statistic_manager() : stat_hash(NULL) { }
    ~hash_statistic_manager() {
        if (stat_hash) GBS_free_hash(stat_hash);
    }

    gbs_hash_statistic_summary *get_stat_summary(const char *id) {
        if (!stat_hash) stat_hash = GBS_create_dynaval_hash(10, GB_MIND_CASE, GBS_dynaval_free);

        long found = GBS_read_hash(stat_hash, id);
        if (!found) {
            gbs_hash_statistic_summary *stat = (gbs_hash_statistic_summary*)GB_calloc(1, sizeof(*stat));
            stat->init();
            found = (long)stat;
            GBS_write_hash(stat_hash, id, found);
        }

        return (gbs_hash_statistic_summary*)found;
    }
};

static void addto_hash_statistic_summary(gbs_hash_statistic_summary *stat, long size, long nelem, long collisions, double fill_ratio, double hash_quality) {
    stat->count++;

    if (stat->min_size > size) stat->min_size = size;
    if (stat->max_size < size) stat->max_size = size;

    if (stat->min_nelem > nelem) stat->min_nelem = nelem;
    if (stat->max_nelem < nelem) stat->max_nelem = nelem;

    if (stat->min_collisions > collisions) stat->min_collisions = collisions;
    if (stat->max_collisions < collisions) stat->max_collisions = collisions;

    if (stat->min_fill_ratio > fill_ratio) stat->min_fill_ratio = fill_ratio;
    if (stat->max_fill_ratio < fill_ratio) stat->max_fill_ratio = fill_ratio;

    if (stat->min_hash_quality > hash_quality) stat->min_hash_quality = hash_quality;
    if (stat->max_hash_quality < hash_quality) stat->max_hash_quality = hash_quality;

    stat->sum_size         += size;
    stat->sum_nelem        += nelem;
    stat->sum_collisions   += collisions;
    stat->sum_fill_ratio   += fill_ratio;
    stat->sum_hash_quality += hash_quality;
}

static hash_statistic_manager hash_stat_man;

static void test_clear_hash_statistic_summary(const char *id) {
    hash_stat_man.get_stat_summary(id)->init();
}

static void test_print_hash_statistic_summary(const char *id) {
    gbs_hash_statistic_summary *stat  = hash_stat_man.get_stat_summary(id);
    long                        count = stat->count;
    printf("Statistic summary for %li hashes of type '%s':\n", count, id);
    printf("- size:          min = %6li ; max = %6li ; mean = %6.1f\n", stat->min_size, stat->max_size, (double)stat->sum_size/count);
    printf("- nelem:         min = %6li ; max = %6li ; mean = %6.1f\n", stat->min_nelem, stat->max_nelem, (double)stat->sum_nelem/count);
    printf("- fill_ratio:    min = %5.1f%% ; max = %5.1f%% ; mean = %5.1f%%\n", stat->min_fill_ratio*100.0, stat->max_fill_ratio*100.0, (double)stat->sum_fill_ratio/count*100.0);
    printf("- collisions:    min = %6li ; max = %6li ; mean = %6.1f\n", stat->min_collisions, stat->max_collisions, (double)stat->sum_collisions/count);
    printf("- hash_quality:  min = %5.1f%% ; max = %5.1f%% ; mean = %5.1f%%\n", stat->min_hash_quality*100.0, stat->max_hash_quality*100.0, (double)stat->sum_hash_quality/count*100.0);
}

static void test_calc_hash_statistic(const GB_HASH *hs, const char *id, int print) {
    long   queues     = 0;
    long   collisions;
    double fill_ratio = (double)hs->nelem/hs->size;
    double hash_quality;

    for (size_t i = 0; i < hs->size; i++) {
        if (hs->entries[i]) queues++;
    }
    collisions = hs->nelem - queues;

    hash_quality = (double)queues/hs->nelem; // no collisions means 100% quality

    if (print != 0) {
        printf("Statistic for hash '%s':\n", id);
        printf("- size       = %zu\n", hs->size);
        printf("- elements   = %zu (fill ratio = %4.1f%%)\n", hs->nelem, fill_ratio*100.0);
        printf("- collisions = %li (hash quality = %4.1f%%)\n", collisions, hash_quality*100.0);
    }

    addto_hash_statistic_summary(hash_stat_man.get_stat_summary(id), hs->size, hs->nelem, collisions, fill_ratio, hash_quality);
}

static long test_numhash_count_elems(GB_NUMHASH *hs) {
    return hs->nelem;
}

static long insert_into_hash(const char *key, long val, void *cl_toHash) {
    GB_HASH *toHash = (GB_HASH*)cl_toHash;
    GBS_write_hash(toHash, key, val);
    return val;
}
static long erase_from_hash(const char *key, long val, void *cl_fromHash) {
    GB_HASH *fromHash = (GB_HASH*)cl_fromHash;
    long     val2     = GBS_read_hash(fromHash, key);

    if (val2 == val) {
        GBS_write_hash(fromHash, key, 0);
    }
    else {
        printf("value mismatch in hashes_are_equal(): key='%s' val: %li != %li\n", key, val2, val); // NEED_NO_COV
    }
    return val;
}

static bool hashes_are_equal(GB_HASH *h1, GB_HASH *h2) {
    size_t count1 = GBS_hash_count_elems(h1);
    size_t count2 = GBS_hash_count_elems(h2);

    bool equal = (count1 == count2);
    if (equal) {
        GB_HASH *copy = GBS_create_hash(count1, GB_MIND_CASE);
        
        GBS_hash_do_loop(h1, insert_into_hash, copy);
        GBS_hash_do_loop(h2, erase_from_hash, copy);

        equal = (GBS_hash_count_elems(copy) == 0);
        GBS_free_hash(copy);
    }
    return equal;
}

struct TestData : virtual Noncopyable {
    GB_HASH    *mind;
    GB_HASH    *ignore;
    GB_NUMHASH *num;

    TestData() {
        mind   = GBS_create_hash(100, GB_MIND_CASE);
        ignore = GBS_create_hash(100, GB_IGNORE_CASE);
        num    = GBS_create_numhash(100);
    }
    ~TestData() {
        GBS_free_numhash(num);
        GBS_free_hash(ignore);
        GBS_free_hash(mind);
    }

    void reset() {
        GBS_erase_hash(mind);
        GBS_erase_hash(ignore);
        GBS_erase_numhash(num);
    }

    GB_HASH *get_hash(bool case_sens) {
        return case_sens ? mind : ignore;
    }
};

static TestData TEST;

static size_t test_hash_count_value(GB_HASH *hs, long val) {
    size_t hsize    = hs->size;
    size_t count = 0;

    gb_assert(val != 0); // counting zero values makes no sense (cause these are not stored in the hash)

    for (size_t i = 0; i<hsize; ++i) {
        for (gbs_hash_entry *e=hs->entries[i]; e; e=e->next) {
            if (e->val == val) {
                ++count;
            }
        }
    }

    return count;
}

void TEST_GBS_write_hash() {
    TEST.reset();

    for (int case_sens = 0; case_sens <= 1; ++case_sens) {
        GB_HASH *hash = TEST.get_hash(case_sens);

        GBS_write_hash(hash, "foo", 1);
        TEST_EXPECT_EQUAL(GBS_hash_count_elems(hash), 1);
        TEST_EXPECT_EQUAL(GBS_read_hash(hash, "foo"), 1);

        GBS_write_hash(hash, "foo", 2);
        TEST_EXPECT_EQUAL(GBS_hash_count_elems(hash), 1);
        TEST_EXPECT_EQUAL(GBS_read_hash(hash, "foo"), 2);
        
        GBS_write_hash(hash, "foo", 0);
        TEST_EXPECT_ZERO(GBS_hash_count_elems(hash));
        TEST_EXPECT_ZERO(GBS_read_hash(hash, "foo"));

        GBS_write_hash(hash, "foo", 1);
        GBS_write_hash(hash, "FOO", 2);
        GBS_write_hash(hash, "BAR", 1);
        GBS_write_hash(hash, "bar", 2);

        if (case_sens) {
            TEST_EXPECT_EQUAL(GBS_hash_count_elems(hash), 4);

            TEST_EXPECT_EQUAL(GBS_read_hash(hash, "foo"), 1);
            TEST_EXPECT_EQUAL(GBS_read_hash(hash, "FOO"), 2);
            TEST_EXPECT_ZERO(GBS_read_hash(hash, "Foo"));
            
            TEST_EXPECT_EQUAL(test_hash_count_value(hash, 1), 2);
            TEST_EXPECT_EQUAL(test_hash_count_value(hash, 2), 2);
        }
        else {
            TEST_EXPECT_EQUAL(GBS_hash_count_elems(hash), 2);

            TEST_EXPECT_EQUAL(GBS_read_hash(hash, "foo"), 2);
            TEST_EXPECT_EQUAL(GBS_read_hash(hash, "FOO"), 2);
            TEST_EXPECT_EQUAL(GBS_read_hash(hash, "Foo"), 2);

            TEST_EXPECT_ZERO(test_hash_count_value(hash, 1));
            TEST_EXPECT_EQUAL(test_hash_count_value(hash, 2), 2);
        }

        if (case_sens) {
            TEST_EXPECT_ZERO(GBS_read_hash(hash, "foobar"));
            GBS_write_hash_no_strdup(hash, strdup("foobar"), 0);
            TEST_EXPECT_ZERO(GBS_read_hash(hash, "foobar"));
            GBS_write_hash_no_strdup(hash, strdup("foobar"), 3);
            TEST_EXPECT_EQUAL(GBS_read_hash(hash, "foobar"), 3);
            GBS_write_hash_no_strdup(hash, strdup("foobar"), 0);
            TEST_EXPECT_ZERO(GBS_read_hash(hash, "foobar"));
        }
    }
}

void TEST_GBS_incr_hash() {
    TEST.reset();

    for (int case_sens = 0; case_sens <= 1; ++case_sens) {
        GB_HASH *hash = TEST.get_hash(case_sens);

        GBS_incr_hash(hash, "foo");
        TEST_EXPECT_EQUAL(GBS_read_hash(hash, "foo"), 1);

        GBS_incr_hash(hash, "foo");
        TEST_EXPECT_EQUAL(GBS_read_hash(hash, "foo"), 2);

        GBS_incr_hash(hash, "FOO");
        TEST_EXPECT_EQUAL(GBS_read_hash(hash, "foo"), case_sens ? 2 : 3);
        TEST_EXPECT_EQUAL(GBS_read_hash(hash, "FOO"), case_sens ? 1 : 3);
    }
}

static void test_string_2_hashtab(GB_HASH *hash, char *data) {
    // modifies data
    char *p, *d, *dp;
    int   c;
    char *nextp;
    char *str;
    int   strlen;
    long  val;

    for (p = data; p;   p = nextp) {
        strlen = 0;
        for (dp = p; (c = *dp); dp++) {
            if (c==':') {
                if (dp[1] == ':') dp++;
                else break;
            }
            strlen++;
        }
        if (*dp) {
            nextp = strchr(dp, ' ');
            if (nextp) nextp++;
        }
        else break;

        str = (char *)GB_calloc(sizeof(char), strlen+1);
        for (dp = p, d = str; (c = *dp);  dp++) {
            if (c==':') {
                if (dp[1] == ':') {
                    *(d++) = c;
                    dp++;
                }
                else break;
            }
            else {
                *(d++) = c;
            }
        }
        val = atoi(dp+1);
        GBS_write_hash_no_strdup(hash, str, val);
    }
}

void TEST_GBS_hashtab_2_string() {
    TEST.reset();

    for (int case_sens = 0; case_sens <= 1; ++case_sens) {
        GB_HASH *hash = TEST.get_hash(case_sens);

        GBS_write_hash(hash, "foo", 1);
        GBS_write_hash(hash, "bar", 2);
        GBS_write_hash(hash, "FOO", 3);
        GBS_write_hash(hash, "BAR", 4);
        GBS_write_hash(hash, "foo:bar", 3);
        GBS_write_hash(hash, "FOO:bar", 4);
    }
    for (int case_sens = 0; case_sens <= 1; ++case_sens) {
        GB_HASH *hash = TEST.get_hash(case_sens);
        
        char *as_string = GBS_hashtab_2_string(hash);
        TEST_REJECT_NULL(as_string);

        GB_HASH *hash2 = GBS_create_hash(1000, case_sens ? GB_MIND_CASE : GB_IGNORE_CASE);
        test_string_2_hashtab(hash2, as_string);
        TEST_EXPECT(hashes_are_equal(hash, hash2));
        TEST_EXPECT(hashes_are_equal(hash, hash2));

        free(as_string);
        GBS_free_hash(hash2);
    }

    {
        GB_HASH *hash      = TEST.get_hash(true);
        char    *as_string = GBS_hashtab_2_string(hash);

        GB_HASH *hash2 = GBS_create_hash(21, GB_MIND_CASE);
        GBS_hash_do_sorted_loop(hash, insert_into_hash, GBS_HCF_sortedByKey, hash2);
        
        GB_HASH *hash3 = GBS_create_hash(100, GB_MIND_CASE);
        GBS_hash_do_sorted_loop(hash, insert_into_hash, GBS_HCF_sortedByKey, hash3);

        char *as_string2 = GBS_hashtab_2_string(hash2); 
        char *as_string3 = GBS_hashtab_2_string(hash3); 

        TEST_EXPECT_EQUAL__BROKEN(as_string, as_string2, "FOO::bar:4 BAR:4 bar:2 foo:1 FOO:3 foo::bar:3 ");
        TEST_EXPECT_EQUAL        (as_string, as_string3);

        GBS_free_hash(hash3);
        GBS_free_hash(hash2);

        free(as_string3);
        free(as_string2);
        free(as_string);
    }
}

inline long key2val(long key, int pass) {
    long val;
    switch (pass) {
        case 1:
            val = key/3;
            break;
        case 2:
            val = key*17461;
            break;
        default :
            val = LONG_MIN;
            TEST_EXPECT(0); // NEED_NO_COV
            break;
    }
    return val;
}

void TEST_numhash() {
    GB_NUMHASH *numhash  = GBS_create_numhash(10);
    GB_NUMHASH *numhash2 = GBS_create_numhash(10);

    const long LOW  = -200;
    const long HIGH = 200;
    const long STEP = 17;

    long added = 0;
    for (int pass = 1; pass <= 2; ++pass) {
        added = 0;
        for (long key = LOW; key <= HIGH; key += STEP) {
            long val = key2val(key, pass);
            GBS_write_numhash(numhash, key, val);
            added++;
        }

        TEST_EXPECT_EQUAL(test_numhash_count_elems(numhash), added);

        for (long key = LOW; key <= HIGH; key += STEP) {
            TEST_EXPECT_EQUAL(key2val(key, pass), GBS_read_numhash(numhash, key));
        }
    }

    TEST_EXPECT_ZERO(GBS_read_numhash(numhash, -4711)); // not-existing entry

    // erase by overwrite:
    for (long key = LOW; key <= HIGH; key += STEP) {
        GBS_write_numhash(numhash2, key, GBS_read_numhash(numhash, key)); // copy numhash->numhash2
        GBS_write_numhash(numhash, key, (long)NULL);
    }
    TEST_EXPECT_EQUAL(test_numhash_count_elems(numhash2), added);
    TEST_EXPECT_ZERO(test_numhash_count_elems(numhash));

    GBS_free_numhash(numhash2);                     // free filled hash
    GBS_free_numhash(numhash);                      // free empty hash
}


static int freeCounter;
static void freeDynamicHashElem(long cl_ptr) {
    GBS_dynaval_free(cl_ptr);
    freeCounter++;
}

void TEST_GBS_dynaval_hash() {
    const int SIZE  = 10;
    const int ELEMS = 30;

    GB_HASH *dynahash = GBS_create_dynaval_hash(SIZE, GB_MIND_CASE, freeDynamicHashElem);

    for (int pass = 1; pass <= 2; ++pass) {
        freeCounter = 0;

        for (int i = 0; i<ELEMS; ++i) {
            char *val    = GBS_global_string_copy("value %i", i);
            char *oldval = (char*)GBS_write_hash(dynahash, GBS_global_string("key %i", i), (long)val);
            free(oldval);
        }

        TEST_EXPECT_ZERO(freeCounter); // overwriting values shall not automatically free them
    }

    freeCounter = 0;
    GBS_free_hash(dynahash);
    TEST_EXPECT_EQUAL(freeCounter, ELEMS);
}

void TEST_GBS_optimize_hash_and_stats() {
    const int SIZE = 10;
    const int FILL = 70;

    test_clear_hash_statistic_summary("test");
    for (int pass = 1; pass <= 3; ++pass) {
        GB_HASH *hash = GBS_create_hash(SIZE, GB_MIND_CASE);

        for (int i = 1; i <= FILL; ++i) {
            const char *key =  GBS_global_string("%i", i);
            GBS_write_hash(hash, key, i);
        }
        TEST_EXPECT(hash->nelem > hash->size); // ensure hash is overfilled!

        switch (pass) {
            case 1:                                 // nothing, only free overfilled hash below
                break;
            case 2:                                 // test overwrite overfilled hash
                for (int i = 1; i <= FILL; ++i) {
                    const char *key = GBS_global_string("%i", i);
                    
                    TEST_EXPECT_EQUAL(GBS_read_hash(hash, key), i);
                    GBS_write_hash(hash, key, 0);
                    TEST_EXPECT_ZERO(GBS_read_hash(hash, key));
                }
                break;
            case 3:                                 // test optimize
                GBS_optimize_hash(hash);
                TEST_EXPECT_LESS_EQUAL(hash->nelem, hash->size);
                break;
            default :
                TEST_EXPECT(0);                     // NEED_NO_COV
                break;
        }

        test_calc_hash_statistic(hash, "test", 1);
        GBS_free_hash(hash);
    }

    test_print_hash_statistic_summary("test");
}

static bool has_value(const char *, long val, void *cd) { return val == (long)cd; }
static bool has_value_greater(const char *, long val, void *cd) { return val > (long)cd; }

void TEST_GBS_hash_next_element_that() {
    TEST.reset();

    for (int case_sens = 0; case_sens <= 1; ++case_sens) {
        GB_HASH *hash = TEST.get_hash(case_sens);

        GBS_write_hash(hash, "foo", 0);
        GBS_write_hash(hash, "bar", 1);
        GBS_write_hash(hash, "foobar", 2);
        GBS_write_hash(hash, "barfoo", 3);

#define READ_REVERSE(value) GBS_hash_next_element_that(hash, NULL, has_value, (void*)value)
#define ASSERT_READ_REVERSE_RETURNS(value, expected) TEST_EXPECT_EQUAL((const char *)expected, READ_REVERSE(value));

        ASSERT_READ_REVERSE_RETURNS(0, NULL);
        ASSERT_READ_REVERSE_RETURNS(1, "bar");
        ASSERT_READ_REVERSE_RETURNS(2, "foobar");
        ASSERT_READ_REVERSE_RETURNS(3, "barfoo");
        ASSERT_READ_REVERSE_RETURNS(4, NULL);

        const char *key = NULL;
        long        sum = 0;

        for (int iter = 1; iter <= 3; ++iter) {
            key = GBS_hash_next_element_that(hash, key, has_value_greater, (void*)1);
            if (iter == 3) TEST_REJECT(key);
            else {
                TEST_REJECT_NULL(key);
                sum += GBS_read_hash(hash, key);
            }
        }
        TEST_EXPECT_EQUAL(sum, 5); // sum of all values > 1
    }
}

const size_t MAX_PRIME  = sorted_primes[KNOWN_PRIMES-1];

static size_t get_overflown_prime() { return gbs_get_a_prime(MAX_PRIME+1); }
#if defined(ASSERTION_USED)
static void detect_prime_overflow() { get_overflown_prime(); }
#endif // ASSERTION_USED

void TEST_hash_specials() {
    const size_t SOME_PRIME = 434201;
    TEST_EXPECT_EQUAL(gbs_get_a_prime(SOME_PRIME), SOME_PRIME);
    TEST_EXPECT_EQUAL(gbs_get_a_prime(MAX_PRIME), MAX_PRIME);

#if defined(ASSERTION_USED)
    TEST_EXPECT_CODE_ASSERTION_FAILS(detect_prime_overflow);
#else
    TEST_EXPECT_EQUAL(get_overflown_prime(), MAX_PRIME+1);
#endif // ASSERTION_USED
}

#endif // UNIT_TESTS