File: adindex.cxx

package info (click to toggle)
arb 6.0.2-1%2Bdeb8u1
  • links: PTS, VCS
  • area: non-free
  • in suites: jessie
  • size: 65,916 kB
  • ctags: 53,258
  • sloc: ansic: 394,903; cpp: 250,252; makefile: 19,620; sh: 15,878; perl: 10,461; fortran: 6,019; ruby: 683; xml: 503; python: 53; awk: 32
file content (843 lines) | stat: -rw-r--r-- 28,215 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
// =============================================================== //
//                                                                 //
//   File      : adindex.cxx                                       //
//   Purpose   :                                                   //
//                                                                 //
//   Institute of Microbiology (Technical University Munich)       //
//   http://www.arb-home.de/                                       //
//                                                                 //
// =============================================================== //

#include "gb_key.h"
#include "gb_undo.h"
#include "gb_index.h"
#include "gb_hashindex.h"
#include "gb_ts.h"

#include <arb_strbuf.h>

#include <cctype>

#define GB_INDEX_FIND(gbf, ifs, quark)                                  \
    for (ifs = GBCONTAINER_IFS(gbf);                                    \
         ifs;                                                           \
         ifs = GB_INDEX_FILES_NEXT(ifs))                                \
    {                                                                   \
        if (ifs->key == quark) break;                                   \
    }

void GBENTRY::index_check_in() {
    // write field in index table

    GBCONTAINER *gfather = GB_GRANDPA(this);
    if (gfather) {
        GBQUARK quark = GB_KEY_QUARK(this);
        gb_index_files *ifs;
        GB_INDEX_FIND(gfather, ifs, quark);

        if (ifs) { // if key is indexed
            if (is_indexable()) {
                if (flags2.is_indexed) {
                    GB_internal_error("Double checked in");
                }
                else {
                    GB_CSTR       content = GB_read_char_pntr(this);
                    unsigned long idx;
                    GB_CALC_HASH_INDEX(content, idx, ifs->hash_table_size, ifs->case_sens);
                    ifs->nr_of_elements++;

                    {
                        GB_REL_IFES   *entries = GB_INDEX_FILES_ENTRIES(ifs);
                        gb_if_entries *ifes    = (gb_if_entries *)gbm_get_mem(sizeof(gb_if_entries), GB_GBM_INDEX(this));

                        SET_GB_IF_ENTRIES_NEXT(ifes, GB_ENTRIES_ENTRY(entries, idx));
                        SET_GB_IF_ENTRIES_GBD(ifes, this);
                        SET_GB_ENTRIES_ENTRY(entries, idx, ifes);
                    }
                    flags2.should_be_indexed = 1;
                    flags2.is_indexed        = 1;
                }
            }
        }
    }
}

void GBENTRY::index_check_out() {
    // remove entry from index table
    if (flags2.is_indexed) {
        GBCONTAINER *gfather = GB_GRANDPA(this);
        GBQUARK      quark   = GB_KEY_QUARK(this);

        flags2.is_indexed = 0;

        gb_index_files *ifs;
        GB_INDEX_FIND(gfather, ifs, quark);

        GB_ERROR     error;
        if (!ifs) error = "key is not indexed";
        else {
            error = GB_push_transaction(this);
            if (!error) {
                GB_CSTR content = GB_read_char_pntr(this);

                if (!content) {
                    error = GBS_global_string("can't read key value (%s)", GB_await_error());
                }
                else {
                    unsigned long idx;
                    GB_CALC_HASH_INDEX(content, idx, ifs->hash_table_size, ifs->case_sens);

                    gb_if_entries *ifes2   = 0;
                    GB_REL_IFES   *entries = GB_INDEX_FILES_ENTRIES(ifs);
                    gb_if_entries *ifes;

                    for (ifes = GB_ENTRIES_ENTRY(entries, idx); ifes; ifes = GB_IF_ENTRIES_NEXT(ifes)) {
                        if (this == GB_IF_ENTRIES_GBD(ifes)) { // entry found
                            if (ifes2) SET_GB_IF_ENTRIES_NEXT(ifes2, GB_IF_ENTRIES_NEXT(ifes));
                            else SET_GB_ENTRIES_ENTRY(entries, idx, GB_IF_ENTRIES_NEXT(ifes));

                            ifs->nr_of_elements--;
                            gbm_free_mem(ifes, sizeof(gb_if_entries), GB_GBM_INDEX(this));
                            break;
                        }
                        ifes2 = ifes;
                    }
                }
            }
            error = GB_end_transaction(this, error);
        }

        if (error) {
            error = GBS_global_string("GBENTRY::index_check_out failed for key '%s' (%s)\n", GB_KEY(this), error);
            GB_internal_error(error);
        }
    }
}

GB_ERROR GB_create_index(GBDATA *gbd, const char *key, GB_CASE case_sens, long estimated_size) { // goes to header: __ATTR__USERESULT
    /* Create an index for a database.
     * Uses hash tables - collisions are avoided by using linked lists.
     */
    GB_ERROR error = 0;

    if (gbd->is_entry()) {
        error = "GB_create_index used on non CONTAINER Type";
    }
    else if (GB_read_clients(gbd)<0) {
        error = "No index tables in DB clients allowed";
    }
    else {
        GBCONTAINER *gbc       = gbd->as_container();
        GBQUARK      key_quark = GB_find_or_create_quark(gbd, key);

        gb_index_files *ifs;
        GB_INDEX_FIND(gbc, ifs, key_quark);

        if (!ifs) { // if not already have index (e.g. if fast-loaded)
            ifs = (gb_index_files *)gbm_get_mem(sizeof(gb_index_files), GB_GBM_INDEX(gbc));
            SET_GB_INDEX_FILES_NEXT(ifs, GBCONTAINER_IFS(gbc));
            SET_GBCONTAINER_IFS(gbc, ifs);

            ifs->key             = key_quark;
            ifs->hash_table_size = gbs_get_a_prime(estimated_size);
            ifs->nr_of_elements  = 0;
            ifs->case_sens       = case_sens;

            SET_GB_INDEX_FILES_ENTRIES(ifs, (gb_if_entries **)gbm_get_mem(sizeof(void *)*(int)ifs->hash_table_size, GB_GBM_INDEX(gbc)));

            for (GBDATA *gbf = GB_find_sub_by_quark(gbd, -1, 0, 0);
                 gbf;
                 gbf = GB_find_sub_by_quark(gbd, -1, gbf, 0))
            {
                if (gbf->is_container()) {
                    for (GBDATA *gb2 = GB_find_sub_by_quark(gbf, key_quark, 0, 0);
                         gb2;
                         gb2 = GB_find_sub_by_quark(gbf, key_quark, gb2, 0))
                    {
                        if (gb2->is_indexable()) gb2->as_entry()->index_check_in();
                    }
                }
            }
        }
    }
    RETURN_ERROR(error);
}

void gb_destroy_indices(GBCONTAINER *gbc) {
    gb_index_files *ifs = GBCONTAINER_IFS(gbc);

    while (ifs) {
        GB_REL_IFES *if_entries = GB_INDEX_FILES_ENTRIES(ifs);

        for (int index = 0; index<ifs->hash_table_size; index++) {
            gb_if_entries *ifes = GB_ENTRIES_ENTRY(if_entries, index);

            while (ifes) {
                gb_if_entries *ifes_next = GB_IF_ENTRIES_NEXT(ifes);

                gbm_free_mem(ifes, sizeof(*ifes), GB_GBM_INDEX(gbc));
                ifes = ifes_next;
            }
        }
        gbm_free_mem(if_entries, sizeof(void *)*(int)ifs->hash_table_size, GB_GBM_INDEX(gbc));

        gb_index_files *ifs_next = GB_INDEX_FILES_NEXT(ifs);
        gbm_free_mem(ifs, sizeof(gb_index_files), GB_GBM_INDEX(gbc));
        ifs = ifs_next;
    }
}

#if defined(DEBUG)

NOT4PERL void GB_dump_indices(GBDATA *gbd) { // used for debugging
    // dump indices of container

    char *db_path = strdup(GB_get_db_path(gbd));
    if (gbd->is_entry()) {
        fprintf(stderr, "'%s' (%s) is no container.\n", db_path, GB_get_type_name(gbd));
    }
    else {
        gb_index_files *ifs;
        int             index_count = 0;

        GBCONTAINER  *gbc  = gbd->as_container();
        GB_MAIN_TYPE *Main = GBCONTAINER_MAIN(gbc);

        for (ifs = GBCONTAINER_IFS(gbc); ifs; ifs = GB_INDEX_FILES_NEXT(ifs)) {
            index_count++;
        }

        if (index_count == 0) {
            fprintf(stderr, "Container '%s' has no index.\n", db_path);
        }
        else {
            int pass;

            fprintf(stderr, "Indices for '%s':\n", db_path);
            for (pass = 1; pass <= 2; pass++) {
                if (pass == 2) {
                    fprintf(stderr, "\nDetailed index contents:\n\n");
                }
                index_count = 0;
                for (ifs = GBCONTAINER_IFS(gbc); ifs; ifs = GB_INDEX_FILES_NEXT(ifs)) {
                    fprintf(stderr,
                            "* Index %i for key=%s (%i), entries=%li, %s\n",
                            index_count,
                            Main->keys[ifs->key].key,
                            ifs->key,
                            ifs->nr_of_elements,
                            ifs->case_sens == GB_MIND_CASE
                            ? "Case sensitive"
                            : (ifs->case_sens == GB_IGNORE_CASE
                               ? "Case insensitive"
                               : "<Error in case_sens>")
                            );

                    if (pass == 2) {
                        gb_if_entries *ifes;
                        int            index;

                        fprintf(stderr, "\n");
                        for (index = 0; index<ifs->hash_table_size; index++) {
                            for (ifes = GB_ENTRIES_ENTRY(GB_INDEX_FILES_ENTRIES(ifs), index);
                                 ifes;
                                 ifes = GB_IF_ENTRIES_NEXT(ifes))
                            {
                                GBDATA     *igbd = GB_IF_ENTRIES_GBD(ifes);
                                const char *data = GB_read_char_pntr(igbd);

                                fprintf(stderr, "  - '%s' (@idx=%i)\n", data, index);
                            }
                        }
                        fprintf(stderr, "\n");
                    }
                    index_count++;
                }
            }
        }
    }

    free(db_path);
}

#endif // DEBUG


// find an entry in an hash table
GBDATA *gb_index_find(GBCONTAINER *gbf, gb_index_files *ifs, GBQUARK quark, const char *val, GB_CASE case_sens, int after_index) {
    unsigned long  index;
    GB_CSTR        data;
    gb_if_entries *ifes;
    GBDATA        *result = 0;
    long           min_index;

    if (!ifs) {
        GB_INDEX_FIND(gbf, ifs, quark);
        if (!ifs) {
            GB_internal_error("gb_index_find called, but no index table found");
            return 0;
        }
    }

    if (ifs->case_sens != case_sens) {
        GB_internal_error("case mismatch between index and search");
        return 0;
    }

    GB_CALC_HASH_INDEX(val, index, ifs->hash_table_size, ifs->case_sens);
    min_index = gbf->d.nheader;

    for (ifes = GB_ENTRIES_ENTRY(GB_INDEX_FILES_ENTRIES(ifs), index);
            ifes;
            ifes = GB_IF_ENTRIES_NEXT(ifes))
    {
        GBDATA *igbd = GB_IF_ENTRIES_GBD(ifes);
        GBCONTAINER *ifather = GB_FATHER(igbd);

        if (ifather->index < after_index) continue;
        if (ifather->index >= min_index) continue;
        data = GB_read_char_pntr(igbd);
        if (GBS_string_matches(data, val, case_sens)) { // entry found
            result    = igbd;
            min_index = ifather->index;
        }
    }
    return result;
}


/* UNDO functions
 *
 * There are three undo stacks:
 *
 * GB_UNDO_NONE    no undo
 * GB_UNDO_UNDO    normal undo stack
 * GB_UNDO_REDO    redo stack
 */

static char *gb_set_undo_type(GBDATA *gb_main, GB_UNDO_TYPE type) {
    GB_MAIN_TYPE *Main = GB_MAIN(gb_main);
    Main->undo_type = type;
    return 0;
}

static void g_b_add_size_to_undo_entry(g_b_undo_entry *ue, long size) {
    ue->sizeof_this                 += size;        // undo entry
    ue->father->sizeof_this         += size;        // one undo
    ue->father->father->sizeof_this += size;        // all undos
}

static g_b_undo_entry *new_g_b_undo_entry(g_b_undo_list *u) {
    g_b_undo_entry *ue = (g_b_undo_entry *)gbm_get_mem(sizeof(g_b_undo_entry), GBM_UNDO);

    ue->next   = u->entries;
    ue->father = u;
    u->entries = ue;

    g_b_add_size_to_undo_entry(ue, sizeof(g_b_undo_entry));

    return ue;
}



void gb_init_undo_stack(GB_MAIN_TYPE *Main) { // @@@ move into GB_MAIN_TYPE-ctor
    Main->undo = (g_b_undo_mgr *)GB_calloc(sizeof(g_b_undo_mgr), 1);
    Main->undo->max_size_of_all_undos = GB_MAX_UNDO_SIZE;
    Main->undo->u = (g_b_undo_header *) GB_calloc(sizeof(g_b_undo_header), 1);
    Main->undo->r = (g_b_undo_header *) GB_calloc(sizeof(g_b_undo_header), 1);
}

static void delete_g_b_undo_entry(g_b_undo_entry *entry) {
    switch (entry->type) {
        case GB_UNDO_ENTRY_TYPE_MODIFY:
        case GB_UNDO_ENTRY_TYPE_MODIFY_ARRAY:
            {
                if (entry->d.ts) {
                    gb_del_ref_gb_transaction_save(entry->d.ts);
                }
            }
        default:
            break;
    }
    gbm_free_mem(entry, sizeof(g_b_undo_entry), GBM_UNDO);
}

static void delete_g_b_undo_list(g_b_undo_list *u) {
    g_b_undo_entry *a, *next;
    for (a = u->entries; a; a = next) {
        next = a->next;
        delete_g_b_undo_entry(a);
    }
    free(u);
}

static void delete_g_b_undo_header(g_b_undo_header *uh) {
    g_b_undo_list *a, *next=0;
    for (a = uh->stack; a; a = next) {
        next = a->next;
        delete_g_b_undo_list(a);
    }
    free(uh);
}

static char *g_b_check_undo_size2(g_b_undo_header *uhs, long size, long max_cnt) {
    long           csize = 0;
    long           ccnt  = 0;
    g_b_undo_list *us;

    for (us = uhs->stack; us && us->next;  us = us->next) {
        csize += us->sizeof_this;
        ccnt ++;
        if (((csize + us->next->sizeof_this) > size) ||
             (ccnt >= max_cnt)) {  // delete the rest
            g_b_undo_list *a, *next=0;

            for (a = us->next; a; a = next) {
                next = a->next;
                delete_g_b_undo_list(a);
            }
            us->next = 0;
            uhs->sizeof_this = csize;
            break;
        }
    }
    return 0;
}

static char *g_b_check_undo_size(GB_MAIN_TYPE *Main) {
    long  maxsize     = Main->undo->max_size_of_all_undos;
    char *error       = g_b_check_undo_size2(Main->undo->u, maxsize/2, GB_MAX_UNDO_CNT);
    if (!error) error = g_b_check_undo_size2(Main->undo->r, maxsize/2, GB_MAX_REDO_CNT);
    return error;
}


void gb_free_undo_stack(GB_MAIN_TYPE *Main) {
    delete_g_b_undo_header(Main->undo->u);
    delete_g_b_undo_header(Main->undo->r);
    free(Main->undo);
}

// -------------------------
//      real undo (redo)

static GB_ERROR undo_entry(g_b_undo_entry *ue) {
    GB_ERROR error = 0;
    switch (ue->type) {
        case GB_UNDO_ENTRY_TYPE_CREATED:
            error = GB_delete(ue->source);
            break;

        case GB_UNDO_ENTRY_TYPE_DELETED: {
            GBDATA *gbd = ue->d.gs.gbd;
            if (gbd->is_container()) {
                gbd = gb_make_pre_defined_container(ue->source->as_container(), gbd->as_container(), -1, ue->d.gs.key);
            }
            else {
                gbd = gb_make_pre_defined_entry(ue->source->as_container(), gbd, -1, ue->d.gs.key);
            }
            GB_ARRAY_FLAGS(gbd).flags = ue->flag;
            gb_touch_header(GB_FATHER(gbd));
            gb_touch_entry(gbd, GB_CREATED);
            break;
        }
        case GB_UNDO_ENTRY_TYPE_MODIFY_ARRAY:
        case GB_UNDO_ENTRY_TYPE_MODIFY: {
            GBDATA *gbd = ue->source;
            if (gbd->is_entry()) {
                GBENTRY *gbe = gbd->as_entry();
                gb_save_extern_data_in_ts(gbe); // check out and free string

                if (ue->d.ts) { // nothing to undo (e.g. if undoing GB_touch)
                    gbe->flags              = ue->d.ts->flags;
                    gbe->flags2.extern_data = ue->d.ts->flags2.extern_data;

                    memcpy(&gbe->info, &ue->d.ts->info, sizeof(gbe->info)); // restore old information
                    if (gbe->type() >= GB_BITS) {
                        if (gbe->stored_external()) {
                            gbe->info.ex.set_data(ue->d.ts->info.ex.data);
                        }

                        gb_del_ref_and_extern_gb_transaction_save(ue->d.ts);
                        ue->d.ts = 0;

                        gbe->index_re_check_in();
                    }
                }
            }
            {
                gb_header_flags *pflags = &GB_ARRAY_FLAGS(gbd);
                if (pflags->flags != (unsigned)ue->flag) {
                    GBCONTAINER *gb_father = GB_FATHER(gbd);
                    gbd->flags.saved_flags = pflags->flags;
                    pflags->flags = ue->flag;
                    if (GB_FATHER(gb_father)) {
                        gb_touch_header(gb_father); // don't touch father of main
                    }
                }
            }
            gb_touch_entry(gbd, GB_NORMAL_CHANGE);
            break;
        }
        default:
            GB_internal_error("Undo stack corrupt:!!!");
            error = GB_export_error("shit 34345");
            break;
    }

    return error;
}



static GB_ERROR g_b_undo(GBDATA *gb_main, g_b_undo_header *uh) { // goes to header: __ATTR__USERESULT
    GB_ERROR error = NULL;

    if (!uh->stack) {
        error = "Sorry no more undos/redos available";
    }
    else {
        g_b_undo_list  *u = uh->stack;
        g_b_undo_entry *ue, *next;

        error = GB_begin_transaction(gb_main);

        for (ue=u->entries; ue && !error; ue = next) {
            next = ue->next;
            error = undo_entry(ue);
            delete_g_b_undo_entry(ue);
            u->entries = next;
        }
        uh->sizeof_this -= u->sizeof_this;          // remove undo from list
        uh->stack        = u->next;

        delete_g_b_undo_list(u);
        error = GB_end_transaction(gb_main, error);
    }
    return error;
}

static GB_CSTR g_b_read_undo_key_pntr(GB_MAIN_TYPE *Main, g_b_undo_entry *ue) {
    return Main->keys[ue->d.gs.key].key;
}

static char *g_b_undo_info(GB_MAIN_TYPE *Main, g_b_undo_header *uh) {
    GBS_strstruct  *res = GBS_stropen(1024);
    g_b_undo_list  *u;
    g_b_undo_entry *ue;

    u = uh->stack;
    if (!u) return strdup("No more undos available");
    for (ue=u->entries; ue; ue = ue->next) {
        switch (ue->type) {
            case GB_UNDO_ENTRY_TYPE_CREATED:
                GBS_strcat(res, "Delete new entry: ");
                GBS_strcat(res, gb_read_key_pntr(ue->source));
                break;
            case GB_UNDO_ENTRY_TYPE_DELETED:
                GBS_strcat(res, "Rebuild deleted entry: ");
                GBS_strcat(res, g_b_read_undo_key_pntr(Main, ue));
                break;
            case GB_UNDO_ENTRY_TYPE_MODIFY_ARRAY:
            case GB_UNDO_ENTRY_TYPE_MODIFY:
                GBS_strcat(res, "Undo modified entry: ");
                GBS_strcat(res, gb_read_key_pntr(ue->source));
                break;
            default:
                break;
        }
        GBS_chrcat(res, '\n');
    }
    return GBS_strclose(res);
}

static char *gb_free_all_undos(GBDATA *gb_main) {
    // Remove all existing undos/redos
    GB_MAIN_TYPE  *Main = GB_MAIN(gb_main);
    g_b_undo_list *a, *next;
    
    for (a = Main->undo->r->stack; a; a = next) {
        next = a->next;
        delete_g_b_undo_list(a);
    }
    Main->undo->r->stack = 0;
    Main->undo->r->sizeof_this = 0;

    for (a = Main->undo->u->stack; a; a = next) {
        next = a->next;
        delete_g_b_undo_list(a);
    }
    Main->undo->u->stack = 0;
    Main->undo->u->sizeof_this = 0;
    return 0;
}


char *gb_set_undo_sync(GBDATA *gb_main) {
    // start a new undoable transaction
    GB_MAIN_TYPE    *Main  = GB_MAIN(gb_main);
    char            *error = g_b_check_undo_size(Main);
    g_b_undo_header *uhs;

    if (error) return error;
    switch (Main->requested_undo_type) {    // init the target undo stack
        case GB_UNDO_UNDO:      // that will undo but delete all redos
            uhs         = Main->undo->u;
            break;
        case GB_UNDO_UNDO_REDO: uhs = Main->undo->u; break;
        case GB_UNDO_REDO:      uhs = Main->undo->r; break;
        case GB_UNDO_KILL:      gb_free_all_undos(gb_main);
        default:            uhs = 0;
    }
    if (uhs)
    {
        g_b_undo_list *u = (g_b_undo_list *) GB_calloc(sizeof(g_b_undo_list),  1);
        u->next = uhs->stack;
        u->father = uhs;
        uhs->stack = u;
        Main->undo->valid_u = u;
    }

    return gb_set_undo_type(gb_main, Main->requested_undo_type);
}

char *gb_disable_undo(GBDATA *gb_main) {
    // called to finish an undoable section, called at end of gb_commit_transaction
    GB_MAIN_TYPE  *Main = GB_MAIN(gb_main);
    g_b_undo_list *u    = Main->undo->valid_u;

    if (!u) return 0;
    if (!u->entries) {      // nothing to undo, just a read transaction
        u->father->stack = u->next;
        delete_g_b_undo_list(u);
    }
    else {
        if (Main->requested_undo_type == GB_UNDO_UNDO) {    // remove all redos
            g_b_undo_list *a, *next;

            for (a = Main->undo->r->stack; a; a = next) {
                next = a->next;
                delete_g_b_undo_list(a);
            }
            Main->undo->r->stack = 0;
            Main->undo->r->sizeof_this = 0;
        }
    }
    Main->undo->valid_u = 0;
    return gb_set_undo_type(gb_main, GB_UNDO_NONE);
}

void gb_check_in_undo_create(GB_MAIN_TYPE *Main, GBDATA *gbd) {
    if (Main->undo->valid_u) {
        g_b_undo_entry *ue = new_g_b_undo_entry(Main->undo->valid_u);

        ue->type      = GB_UNDO_ENTRY_TYPE_CREATED;
        ue->source    = gbd;
        ue->gbm_index = GB_GBM_INDEX(gbd);
        ue->flag      = 0;
    }
}

void gb_check_in_undo_modify(GB_MAIN_TYPE *Main, GBDATA *gbd) {
    if (!Main->undo->valid_u) {
        GB_FREE_TRANSACTION_SAVE(gbd);
    }
    else {
        gb_transaction_save *old = gbd->get_oldData();
        g_b_undo_entry      *ue  = new_g_b_undo_entry(Main->undo->valid_u);

        ue->source    = gbd;
        ue->gbm_index = GB_GBM_INDEX(gbd);
        ue->type      = GB_UNDO_ENTRY_TYPE_MODIFY;
        ue->flag      = gbd->flags.saved_flags;

        if (gbd->is_entry()) {
            ue->d.ts = old;
            if (old) {
                gb_add_ref_gb_transaction_save(old);
                if (gbd->type() >= GB_BITS && old->stored_external() && old->info.ex.data) {
                    ue->type = GB_UNDO_ENTRY_TYPE_MODIFY_ARRAY;
                    // move external array from ts to undo entry struct
                    g_b_add_size_to_undo_entry(ue, old->info.ex.memsize);
                }
            }
        }
    }
}

void gb_check_in_undo_delete(GB_MAIN_TYPE *Main, GBDATA*& gbd) {
    if (!Main->undo->valid_u) {
        gb_delete_entry(gbd);
        return;
    }

    if (gbd->is_container()) {
        GBCONTAINER *gbc = gbd->as_container();
        for (int index = 0; (index < gbc->d.nheader); index++) {
            GBDATA *gbd2 = GBCONTAINER_ELEM(gbc, index);
            if (gbd2) gb_check_in_undo_delete(Main, gbd2);
        }
    }
    else {
        gbd->as_entry()->index_check_out();
        gbd->flags2.should_be_indexed = 0; // do not re-checkin
    }
    gb_abort_entry(gbd);            // get old version

    g_b_undo_entry *ue = new_g_b_undo_entry(Main->undo->valid_u);

    ue->type      = GB_UNDO_ENTRY_TYPE_DELETED;
    ue->source    = GB_FATHER(gbd);
    ue->gbm_index = GB_GBM_INDEX(gbd);
    ue->flag      = GB_ARRAY_FLAGS(gbd).flags;

    ue->d.gs.gbd = gbd;
    ue->d.gs.key = GB_KEY_QUARK(gbd);

    gb_pre_delete_entry(gbd);       // get the core of the entry

    if (gbd->is_container()) {
        g_b_add_size_to_undo_entry(ue, sizeof(GBCONTAINER));
    }
    else {
        if (gbd->type() >= GB_BITS && gbd->as_entry()->stored_external()) {
            /* we have copied the data structures, now
               mark the old as deleted !!! */
            g_b_add_size_to_undo_entry(ue, gbd->as_entry()->memsize());
        }
        g_b_add_size_to_undo_entry(ue, sizeof(GBENTRY));
    }
}

// ----------------------------------------
//      UNDO functions exported to USER

GB_ERROR GB_request_undo_type(GBDATA *gb_main, GB_UNDO_TYPE type) { // goes to header: __ATTR__USERESULT_TODO
    /*! Define how to undo DB changes.
     *
     * This function should be called just before opening a transaction,
     * otherwise its effect will be delayed.
     *
     * Possible types are:
     *      GB_UNDO_UNDO        enable undo
     *      GB_UNDO_NONE        disable undo
     *      GB_UNDO_KILL        disable undo and remove old undos !!
     *
     * Note: if GB_request_undo_type returns an error, local undo type remains unchanged
     */

    GB_MAIN_TYPE *Main  = GB_MAIN(gb_main);
    GB_ERROR      error = NULL;

    if (Main->is_client()) {
        enum gb_undo_commands cmd = (type == GB_UNDO_NONE || type == GB_UNDO_KILL)
            ? _GBCMC_UNDOCOM_REQUEST_NOUNDO
            : _GBCMC_UNDOCOM_REQUEST_UNDO;
        error = gbcmc_send_undo_commands(gb_main, cmd);
    }
    if (!error) Main->requested_undo_type = type;

    return error;
}

GB_UNDO_TYPE GB_get_requested_undo_type(GBDATA *gb_main) {
    GB_MAIN_TYPE *Main = GB_MAIN(gb_main);
    return Main->requested_undo_type;
}


GB_ERROR GB_undo(GBDATA *gb_main, GB_UNDO_TYPE type) { // goes to header: __ATTR__USERESULT
    // undo/redo the last transaction

    GB_MAIN_TYPE *Main  = GB_MAIN(gb_main);
    GB_ERROR      error = 0;

    if (Main->is_client()) {
        switch (type) {
            case GB_UNDO_UNDO:
                error = gbcmc_send_undo_commands(gb_main, _GBCMC_UNDOCOM_UNDO);
                break;

            case GB_UNDO_REDO:
                error = gbcmc_send_undo_commands(gb_main, _GBCMC_UNDOCOM_REDO);
                break;

            default:
                GB_internal_error("unknown undo type in GB_undo");
                error = "Internal UNDO error";
                break;
        }
    }
    else {
        GB_UNDO_TYPE old_type = GB_get_requested_undo_type(gb_main);
        switch (type) {
            case GB_UNDO_UNDO:
                error = GB_request_undo_type(gb_main, GB_UNDO_REDO);
                if (!error) {
                    error = g_b_undo(gb_main, Main->undo->u);
                    ASSERT_NO_ERROR(GB_request_undo_type(gb_main, old_type));
                }
                break;

            case GB_UNDO_REDO:
                error = GB_request_undo_type(gb_main, GB_UNDO_UNDO_REDO);
                if (!error) {
                    error = g_b_undo(gb_main, Main->undo->r);
                    ASSERT_NO_ERROR(GB_request_undo_type(gb_main, old_type));
                }
                break;

            default:
                error = "GB_undo: unknown undo type specified";
                break;
        }
    }

    return error;
}


char *GB_undo_info(GBDATA *gb_main, GB_UNDO_TYPE type) {
    // get some information about the next undo

    GB_MAIN_TYPE *Main = GB_MAIN(gb_main);
    if (Main->is_client()) {
        switch (type) {
            case GB_UNDO_UNDO:
                return gbcmc_send_undo_info_commands(gb_main, _GBCMC_UNDOCOM_INFO_UNDO);
            case GB_UNDO_REDO:
                return gbcmc_send_undo_info_commands(gb_main, _GBCMC_UNDOCOM_INFO_REDO);
            default:
                GB_internal_error("unknown undo type in GB_undo");
                GB_export_error("Internal UNDO error");
                return 0;
        }
    }
    switch (type) {
        case GB_UNDO_UNDO:
            return g_b_undo_info(Main, Main->undo->u);
        case GB_UNDO_REDO:
            return g_b_undo_info(Main, Main->undo->r);
        default:
            GB_export_error("GB_undo_info: unknown undo type specified");
            return 0;
    }
}

GB_ERROR GB_set_undo_mem(GBDATA *gbd, long memsize) {
    // set the maximum memory used for undoing

    GB_MAIN_TYPE *Main = GB_MAIN(gbd);
    if (memsize < _GBCMC_UNDOCOM_SET_MEM) {
        return GB_export_errorf("Not enough UNDO memory specified: should be more than %i",
                                _GBCMC_UNDOCOM_SET_MEM);
    }
    Main->undo->max_size_of_all_undos = memsize;
    if (Main->is_client()) {
        return gbcmc_send_undo_commands(gbd, (enum gb_undo_commands)memsize);
    }
    g_b_check_undo_size(Main);
    return 0;
}