1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
// ============================================================= //
// //
// File : arb_read_tree.cxx //
// Purpose : //
// //
// Institute of Microbiology (Technical University Munich) //
// http://www.arb-home.de/ //
// //
// ============================================================= //
#include <TreeRead.h>
#include <arb_strbuf.h>
#include <arb_defs.h>
#include <ctime>
static void add_bootstrap(GBT_TREE *node, double hundred) {
// add_bootstrap interprets the length of the branches as bootstrap value
// (this is needed by Phylip DNAPARS/PROTPARS with bootstrapping)
//
// 'hundred' specifies which value represents 100%
if (node->is_leaf) {
node->remove_remark();
return;
}
node->leftlen /= hundred;
node->rightlen /= hundred;
double left_bs = node->leftlen * 100.0;
double right_bs = node->rightlen * 100.0;
#if defined(DEBUG) && 0
fprintf(stderr, "node->leftlen = %f left_bs = %f\n", node->leftlen, left_bs);
fprintf(stderr, "node->rightlen = %f right_bs = %f\n", node->rightlen, right_bs);
#endif // DEBUG
node->leftson ->set_bootstrap(left_bs);
node->rightson->set_bootstrap(right_bs);
node->leftlen = DEFAULT_BRANCH_LENGTH; // reset branchlengths
node->rightlen = DEFAULT_BRANCH_LENGTH;
add_bootstrap(node->leftson, hundred);
add_bootstrap(node->rightson, hundred);
}
static void show_message(GBDATA *gb_main, const char *msg) {
if (gb_main) {
GBT_message(gb_main, msg);
}
else {
fflush(stdout);
printf("arb_read_tree: %s\n", msg);
}
}
static void show_error(GBDATA *gb_main, GB_ERROR error) {
if (error) show_message(gb_main, GBS_global_string("Error running arb_read_tree (%s)", error));
}
static void error_with_usage(GBDATA *gb_main, GB_ERROR error) {
fputs("Usage: arb_read_tree [options] tree_name treefile [comment]\n"
"Available options:\n"
" -db database savename specify database and savename (default is 'running ARB')\n"
" -scale factor scale branchlengths by 'factor'\n"
" -consense numberOfTrees reinterpret branchlengths as consense values\n"
" -commentFromFile file read tree comment from 'file'\n"
, stdout);
show_error(gb_main, error);
}
struct parameters {
const char *dbname;
const char *dbsavename;
const char *tree_name;
const char *treefilename;
const char *comment;
const char *commentFile;
bool scale;
double scale_factor;
bool consense;
int calculated_trees;
parameters()
: dbname(":"),
dbsavename(NULL),
tree_name(NULL),
treefilename(NULL),
comment(NULL),
commentFile(NULL),
scale(false),
scale_factor(0.0),
consense(false),
calculated_trees(0)
{
}
#define SHIFT_ARGS(off) do { argc -= off; argv += off; } while (0)
#define SHIFT_NONSWITCHES(off) do { nonSwitches -= off; nonSwitch += off; } while (0)
GB_ERROR scan(int argc, char **argv) {
GB_ERROR error = NULL;
const char *nonSwitch_buf[20];
const char **nonSwitch = nonSwitch_buf;
int nonSwitches = 0;
SHIFT_ARGS(1); // position onto first argument
while (argc>0 && !error) {
if (strcmp("-scale", argv[0]) == 0) {
scale = true;
if (argc<2) error = "-scale expects a 2nd argument (scale factor)";
else {
scale_factor = atof(argv[1]);
SHIFT_ARGS(2);
}
}
else if (strcmp("-consense", argv[0]) == 0) {
consense = true;
if (argc<2) error = "-consense expects a 2nd argument (number of trees)";
else {
calculated_trees = atoi(argv[1]);
if (calculated_trees < 1) {
error = GBS_global_string("Illegal # of trees (%i) for -consense (minimum is 1)", calculated_trees);
}
else SHIFT_ARGS(2);
}
}
else if (strcmp("-commentFromFile", argv[0]) == 0) {
if (argc<2) error = "-commentFromFile expects a 2nd argument (file containing comment)";
else {
commentFile = argv[1];
SHIFT_ARGS(2);
}
}
else if (strcmp("-db", argv[0]) == 0) {
if (argc<3) error = "-db expects two arguments (database and savename)";
else {
dbname = argv[1];
dbsavename = argv[2];
SHIFT_ARGS(3);
}
}
else {
nonSwitch[nonSwitches++] = argv[0];
SHIFT_ARGS(1);
}
}
if (!error) {
if (!nonSwitches) error = "Missing argument 'tree_name'";
else {
tree_name = nonSwitch[0];
SHIFT_NONSWITCHES(1);
}
}
if (!error) {
if (!nonSwitches) error = "Missing argument 'treefile'";
else {
treefilename = nonSwitch[0];
SHIFT_NONSWITCHES(1);
}
}
if (!error && nonSwitches>0) {
comment = nonSwitch[0];
SHIFT_NONSWITCHES(1);
}
if (!error && nonSwitches>0) {
error = GBS_global_string("unexpected argument(s): %s ..", nonSwitch[0]);
}
return error;
}
};
int main(int argc, char **argv) {
parameters param;
GB_ERROR error = param.scan(argc, argv);
GBDATA *gb_main = NULL;
GBDATA *gb_msg_main = NULL;
bool connectToArb = strcmp(param.dbname, ":") == 0;
GB_shell shell;
if (!error || connectToArb) {
gb_main = GB_open(param.dbname, connectToArb ? "r" : "rw");
if (connectToArb) gb_msg_main = gb_main;
}
if (error) error_with_usage(gb_main, error);
else {
if (!gb_main) {
if (connectToArb) error = "you have to start an arbdb server first";
else error = GBS_global_string("can't open db (Reason: %s)", GB_await_error());
}
char *comment_from_file = 0;
char *comment_from_treefile = 0;
GBT_TREE *tree = 0;
if (!error) {
if (param.commentFile) {
comment_from_file = GB_read_file(param.commentFile);
if (!comment_from_file) {
comment_from_file = GBS_global_string_copy("Error reading from comment-file '%s':\n%s", param.commentFile, GB_await_error());
}
}
show_message(gb_msg_main, GBS_global_string("Reading tree from '%s' ..", param.treefilename));
{
char *warnings = 0;
bool allow_length_scaling = !param.consense && !param.scale;
tree = TREE_load(param.treefilename, GBT_TREE_NodeFactory(), &comment_from_treefile, allow_length_scaling, &warnings);
if (!tree) {
error = GB_await_error();
}
else if (warnings) {
show_message(gb_msg_main, warnings);
free(warnings);
}
}
}
if (!error) {
if (param.scale) {
show_message(gb_msg_main, GBS_global_string("Scaling branch lengths by factor %f", param.scale_factor));
TREE_scale(tree, param.scale_factor, 1.0);
}
if (param.consense) {
if (param.calculated_trees < 1) {
error = "Minimum for -consense is 1";
}
else {
show_message(gb_msg_main, GBS_global_string("Reinterpreting branch lengths as consense values (%i trees)", param.calculated_trees));
add_bootstrap(tree, param.calculated_trees);
}
}
}
if (!error) {
error = GB_begin_transaction(gb_main);
if (!error && tree->is_leaf) error = "Cannot load tree (need at least 2 leafs)";
if (!error) error = GBT_write_tree(gb_main, param.tree_name, tree);
if (!error) {
// write tree comment
const char *comments[] = {
param.comment,
comment_from_file,
comment_from_treefile,
};
GBS_strstruct *buf = GBS_stropen(5000);
bool empty = true;
for (size_t c = 0; c<ARRAY_ELEMS(comments); c++) {
if (comments[c]) {
if (!empty) GBS_chrcat(buf, '\n');
GBS_strcat(buf, comments[c]);
empty = false;
}
}
char *cmt = GBS_strclose(buf);
error = GBT_write_tree_remark(gb_main, param.tree_name, cmt);
free(cmt);
}
error = GB_end_transaction(gb_main, error);
}
if (error) show_error(gb_main, error);
else show_message(gb_msg_main, GBS_global_string("Tree %s read into the database", param.tree_name));
delete tree;
free(comment_from_file);
free(comment_from_treefile);
}
if (gb_main) {
if (!error && !connectToArb) {
error = GB_save_as(gb_main, param.dbsavename, "a");
if (error) show_error(gb_main, error);
}
GB_close(gb_main);
}
return error ? EXIT_FAILURE : EXIT_SUCCESS;
}
|