File: fast_aligner.cxx

package info (click to toggle)
arb 6.0.6-4
  • links: PTS, VCS
  • area: non-free
  • in suites: bullseye, buster
  • size: 66,032 kB
  • sloc: ansic: 394,907; cpp: 250,290; makefile: 19,639; sh: 15,879; perl: 10,473; fortran: 6,019; ruby: 683; xml: 503; python: 53; awk: 32
file content (3431 lines) | stat: -rw-r--r-- 137,845 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
// =============================================================== //
//                                                                 //
//   File      : fast_aligner.cxx                                  //
//   Purpose   : A fast aligner (not a multiple aligner!)          //
//                                                                 //
//   Coded by Ralf Westram (coder@reallysoft.de) in 1998           //
//   Institute of Microbiology (Technical University Munich)       //
//   http://www.arb-home.de/                                       //
//                                                                 //
// =============================================================== //


#include "fast_aligner.hxx"
#include "ClustalV.hxx"
#include "seq_search.hxx"

#include <island_hopping.h>

#include <awtc_next_neighbours.hxx>
#include <awt_sel_boxes.hxx>

#include <aw_awars.hxx>
#include <aw_root.hxx>
#include <aw_question.hxx>

#include <arbdbt.h>
#include <ad_cb.h>

#include <arb_defs.h>
#include <arb_progress.h>
#include <RangeList.h>

#include <cctype>
#include <cmath>
#include <climits>

#include <list>

// --------------------------------------------------------------------------------

#if defined(DEBUG)
// #define TRACE_CLUSTAL_DATA
// #define TRACE_ISLANDHOPPER_DATA
// #define TRACE_COMPRESSED_ALIGNMENT
// #define TRACE_RELATIVES
#endif // DEBUG

// --------------------------------------------------------------------------------

enum FA_report {
    FA_NO_REPORT,               // no report
    FA_TEMP_REPORT,             // report to temporary entries
    FA_REPORT,                  // report to resident entries
};

enum FA_range {
    FA_WHOLE_SEQUENCE,          // align whole sequence
    FA_AROUND_CURSOR,           // align xxx positions around current cursor position
    FA_SELECTED_RANGE,          // align selected range
    FA_SAI_MULTI_RANGE,         // align versus multi range define by SAI
};

enum FA_turn {
    FA_TURN_NEVER,              // never try to turn sequence
    FA_TURN_INTERACTIVE,        // try to turn, but query user
    FA_TURN_ALWAYS,             // turn if score is better
};

enum FA_reference {
    FA_REF_EXPLICIT,            // reference sequence explicitly specified
    FA_REF_CONSENSUS,           // use group consensus as reference
    FA_REF_RELATIVES,           // search next relatives by PT server
};

enum FA_alignTarget {
    FA_CURRENT,                 // align current species
    FA_MARKED,                  // align all marked species
    FA_SELECTED,                // align selected species (= range)
};

enum FA_errorAction {
    FA_NO_ACTION,                // do nothing
    FA_MARK_FAILED,              // mark failed species (unmark rest)
    FA_MARK_ALIGNED,             // mark aligned species (unmark rest)
};

struct AlignParams {
    FA_report report;
    bool      showGapsMessages; // display messages about missing gaps in master?
    PosRange  range;            // range to be aligned
};

struct SearchRelativeParams : virtual Noncopyable {
    FamilyFinder *ff;
    char         *pt_server_alignment; // alignment used in pt_server (may differ from 'alignment')
    int           maxRelatives;        // max # of relatives to use

    SearchRelativeParams(FamilyFinder *ff_, const char *pt_server_alignment_, int maxRelatives_)
        : ff(ff_),
          pt_server_alignment(strdup(pt_server_alignment_)),
          maxRelatives(maxRelatives_)
    {}
    
    ~SearchRelativeParams() {
        free(pt_server_alignment);
        delete(ff);
    }

    FamilyFinder *getFamilyFinder() { return ff; }
};

// --------------------------------------------------------------------------------

#define GAP_CHAR     '-'
#define QUALITY_NAME "ASC_ALIGNER_CLIENT_SCORE"
#define INSERTS_NAME "AMI_ALIGNER_MASTER_INSERTS"

#define FA_AWAR_ROOT                "faligner/"
#define FA_AWAR_TO_ALIGN            FA_AWAR_ROOT "what"
#define FA_AWAR_REFERENCE           FA_AWAR_ROOT "against"
#define FA_AWAR_REFERENCE_NAME      FA_AWAR_ROOT "sagainst"
#define FA_AWAR_RANGE               FA_AWAR_ROOT "range"
#define FA_AWAR_PROTECTION          FA_AWAR_ROOT "protection"
#define FA_AWAR_AROUND              FA_AWAR_ROOT "around"
#define FA_AWAR_MIRROR              FA_AWAR_ROOT "mirror"
#define FA_AWAR_REPORT              FA_AWAR_ROOT "report"
#define FA_AWAR_SHOW_GAPS_MESSAGES  FA_AWAR_ROOT "show_gaps"
#define FA_AWAR_CONTINUE_ON_ERROR   FA_AWAR_ROOT "continue_on_error"
#define FA_AWAR_ACTION_ON_ERROR     FA_AWAR_ROOT "action_on_error"
#define FA_AWAR_USE_SECONDARY       FA_AWAR_ROOT "use_secondary"
#define FA_AWAR_NEXT_RELATIVES      FA_AWAR_ROOT "next_relatives"
#define FA_AWAR_RELATIVE_RANGE      FA_AWAR_ROOT "relrange"
#define FA_AWAR_PT_SERVER_ALIGNMENT "tmp/" FA_AWAR_ROOT "relative_ali"
#define FA_AWAR_SAI_RANGE_NAME      FA_AWAR_ROOT "sai/sainame"
#define FA_AWAR_SAI_RANGE_CHARS     FA_AWAR_ROOT "sai/chars"

#define FA_AWAR_ISLAND_HOPPING_ROOT  "island_hopping/"
#define FA_AWAR_USE_ISLAND_HOPPING   FA_AWAR_ISLAND_HOPPING_ROOT "use"
#define FA_AWAR_ESTIMATE_BASE_FREQ   FA_AWAR_ISLAND_HOPPING_ROOT "estimate_base_freq"
#define FA_AWAR_BASE_FREQ_A          FA_AWAR_ISLAND_HOPPING_ROOT "base_freq_a"
#define FA_AWAR_BASE_FREQ_C          FA_AWAR_ISLAND_HOPPING_ROOT "base_freq_c"
#define FA_AWAR_BASE_FREQ_G          FA_AWAR_ISLAND_HOPPING_ROOT "base_freq_g"
#define FA_AWAR_BASE_FREQ_T          FA_AWAR_ISLAND_HOPPING_ROOT "base_freq_t"
#define FA_AWAR_SUBST_PARA_AC        FA_AWAR_ISLAND_HOPPING_ROOT "subst_para_ac"
#define FA_AWAR_SUBST_PARA_AG        FA_AWAR_ISLAND_HOPPING_ROOT "subst_para_ag"
#define FA_AWAR_SUBST_PARA_AT        FA_AWAR_ISLAND_HOPPING_ROOT "subst_para_at"
#define FA_AWAR_SUBST_PARA_CG        FA_AWAR_ISLAND_HOPPING_ROOT "subst_para_cg"
#define FA_AWAR_SUBST_PARA_CT        FA_AWAR_ISLAND_HOPPING_ROOT "subst_para_ct"
#define FA_AWAR_SUBST_PARA_GT        FA_AWAR_ISLAND_HOPPING_ROOT "subst_para_gt"
#define FA_AWAR_EXPECTED_DISTANCE    FA_AWAR_ISLAND_HOPPING_ROOT "expected_dist"
#define FA_AWAR_STRUCTURE_SUPPLEMENT FA_AWAR_ISLAND_HOPPING_ROOT "struct_suppl"
#define FA_AWAR_THRESHOLD            FA_AWAR_ISLAND_HOPPING_ROOT "threshold"
#define FA_AWAR_GAP_A                FA_AWAR_ISLAND_HOPPING_ROOT "gapa"
#define FA_AWAR_GAP_B                FA_AWAR_ISLAND_HOPPING_ROOT "gapb"
#define FA_AWAR_GAP_C                FA_AWAR_ISLAND_HOPPING_ROOT "gapc"

// --------------------------------------------------------------------------------

static IslandHopping *island_hopper = NULL; // NULL -> use fast aligner; else use island hopper

static GB_alignment_type global_alignmentType = GB_AT_UNKNOWN;  // type of actually aligned sequence

static int currentSequenceNumber;    // used for counter
static int overallSequenceNumber;

// --------------------------------------------------------------------------------

inline ARB_ERROR species_not_found(GB_CSTR species_name) {
    return GBS_global_string("No species '%s' found!", species_name);
}

static ARB_ERROR reverseComplement(GBDATA *gb_species, GB_CSTR ali, int max_protection) {
    GBDATA    *gbd   = GBT_read_sequence(gb_species, ali);
    ARB_ERROR  error = 0;

    if (!gbd) {
        error = GBS_global_string("No 'data' found for species '%s'", GBT_read_name(gb_species));
    }
    else {
        int my_protection = GB_read_security_write(gbd);

        if (my_protection<=max_protection) { // ok
            char              *seq      = GB_read_string(gbd);
            int                length   = GB_read_string_count(gbd);
            GBDATA            *gb_main  = GB_get_root(gb_species);
            GB_alignment_type  ali_type = GBT_get_alignment_type(gb_main, ali);

            char T_or_U;
            error = GBT_determine_T_or_U(ali_type, &T_or_U, "reverse-complement");
            if (!error) {
                GBT_reverseComplementNucSequence(seq, length, T_or_U);
                error = GB_write_string(gbd, seq);
            }
        }
        else { // protection error
            error = GBS_global_string("Cannot reverse-complement species '%s' because of protection level", GBT_read_name(gb_species));
        }

    }

    return error;
}

static void build_reverse_complement(AW_window *aw, AW_CL cl_AlignDataAccess) {
    const AlignDataAccess *data_access = (const AlignDataAccess *)cl_AlignDataAccess;
    GBDATA                *gb_main     = data_access->gb_main;

    GB_push_transaction(gb_main);

    AW_root        *root              = aw->get_root();
    FA_alignTarget  revComplWhat      = static_cast<FA_alignTarget>(root->awar(FA_AWAR_TO_ALIGN)->read_int());
    char           *default_alignment = GBT_get_default_alignment(gb_main);
    GB_CSTR         alignment         = root->awar_string(AWAR_EDITOR_ALIGNMENT, default_alignment)->read_string();
    ARB_ERROR       error             = 0;
    int             max_protection    = root->awar(FA_AWAR_PROTECTION)->read_int();

    switch (revComplWhat) {
        case FA_CURRENT: { // current species
            GB_CSTR species_name = root->awar(AWAR_SPECIES_NAME)->read_string();
            GBDATA *gb_species = GBT_find_species(gb_main, species_name);
            if (!gb_species) error = species_not_found(species_name);
            if (!error) error = reverseComplement(gb_species, alignment, max_protection);
            break;
        }
        case FA_MARKED: { // marked species
            GBDATA *gb_species = GBT_first_marked_species(gb_main);

            if (!gb_species) {
                error = "There is no marked species";
            }
            while (gb_species) {
                error = reverseComplement(gb_species, alignment, max_protection);
                if (error) break;
                gb_species = GBT_next_marked_species(gb_species);
            }
            break;
        }
        case FA_SELECTED: { // selected species (editor selection!)
            
            Aligner_get_first_selected_species get_first_selected_species = data_access->get_first_selected_species;
            Aligner_get_next_selected_species  get_next_selected_species  = data_access->get_next_selected_species;

            int     count      = 0;
            GBDATA *gb_species = get_first_selected_species(&count);
            
            if (!gb_species) {
                error = "There is no selected species!";
            }
            while (gb_species) {
                error = reverseComplement(gb_species, alignment, max_protection);
                if (error) break;
                gb_species = get_next_selected_species();
            }
            break;
        }
        default: {
            fa_assert(0);
            break;
        }
    }

    GB_end_transaction_show_error(gb_main, error, aw_message);
}

// --------------------------------------------------------------------------------

class AliChange { // describes a local alignment change
    const CompactedSubSequence& Old;
    const CompactedSubSequence& New;

public:
    AliChange(const CompactedSubSequence& old_, const CompactedSubSequence& new_)
        : Old(old_), New(new_)
    {
        fa_assert(Old.may_refer_to_same_part_as(New));
    }

    int follow(ExplicitRange& range) const {
        ExplicitRange compressed(Old.compPosition(range.start()),
                                 Old.compPosition(range.end()));

        int exp_start = New.expdPosition(compressed.start());
        int exp_end   = New.expdPosition(compressed.end());

        int gaps_before = New.no_of_gaps_before(compressed.start());
        int gaps_after = New.no_of_gaps_after(compressed.end());

        fa_assert(gaps_before >= 0);
        fa_assert(gaps_after >= 0);

        range = ExplicitRange(exp_start-gaps_before, exp_end+gaps_after);

        return compressed.size(); // number of bases
    }
};

class LooseBases {
    typedef std::list<ExplicitRange> Ranges;

    Ranges ranges;
    
public:

    bool is_empty() const { return ranges.empty(); }
    void clear() { ranges.clear(); }

    void memorize(ExplicitRange range) {
        ranges.push_front(range);
    }
    ExplicitRange recall() {
        ExplicitRange range = ranges.front();
        ranges.pop_front();
        return range;
    }
    int follow_ali_change(const AliChange& change) {
        // transform positions according to changed alignment (oldSequence -> newSequence) 
        // returns the number of bases contained in 'this'
        int basecount = 0;
        if (!is_empty()) {
            for (Ranges::iterator r = ranges.begin(); r != ranges.end(); ++r) {
                basecount += change.follow(*r);
            }
        }
        return basecount;
    }
    void append(LooseBases& loose) { ranges.splice(ranges.end(), loose.ranges); }
    int follow_ali_change_and_append(LooseBases& loose, const AliChange& change) {
        // returns the number of loose bases (added from 'loose')
        int basecount = loose.follow_ali_change(change);
        append(loose);
        return basecount;
    }
};

static LooseBases unaligned_bases; // if fast_align cannot align (no master bases) -> stores positions here


static const char *read_name(GBDATA *gbd) {
    return gbd ? GBT_read_name(gbd) : "GROUP-CONSENSUS";
}

inline int relatedBases(char base1, char base2) {
    return baseMatch(base1, base2)==1;
}

inline char alignQuality(char slave, char master) {
    fa_assert(slave);
    fa_assert(master);
    char result = '#';
    if (slave==master)              result = '-';   // equal
    else if (slave==GAP_CHAR)           result = '+';   // inserted gap
    else if (master==GAP_CHAR)          result = '+';   // no gap in master
    else if (relatedBases(slave, master))   result = '~';   // mutation (related bases)
    return result;                          // mutation (non-related bases)
}

// -------------------------
//      Debugging stuff

#ifdef DEBUG
static char *lstr(const char *s, int len) {
    static int alloc;
    static char *buffer;

    if (alloc<(len+1)) {
        if (alloc) free(buffer);
        buffer = (char*)malloc(alloc=len+100);
    }

    memcpy(buffer, s, len);
    buffer[len] = 0;

    return buffer;
}

#define BUFLEN 120

inline char compareChar(char base1, char base2) {
    return base1==base2 ? '=' : (relatedBases(base1, base2) ? 'x' : 'X');
}

#if defined(TRACE_COMPRESSED_ALIGNMENT)
    
static void dump_n_compare_one(const char *seq1, const char *seq2, long len, long offset) {
    fa_assert(len<=BUFLEN);
    char compare[BUFLEN+1];

    for (long l=0; l<len; l++) {
        compare[l] = (is_ali_gap(seq1[l]) && is_ali_gap(seq2[l])) ? ' ' : compareChar(seq1[l], seq2[l]);
    }

    compare[len] = 0;

    printf(" %li '%s'\n", offset, lstr(seq1, len));
    printf(" %li '%s'\n", offset, lstr(seq2, len));
    printf(" %li '%s'\n", offset, compare);
}

inline void dump_rest(const char *seq, long len, int idx, long offset) {
    printf(" Rest von Sequenz %i:\n", idx);
    while (len>BUFLEN) {
        printf(" %li '%s'\n", offset, lstr(seq, BUFLEN));
        seq += BUFLEN;
        len -= BUFLEN;
        offset += BUFLEN;
    }

    fa_assert(len>0);
    printf(" '%s'\n", lstr(seq, len));
}

static void dump_n_compare(const char *text, const char *seq1, long len1, const char *seq2, long len2) {
    long offset = 0;

    printf(" Comparing %s:\n", text);

    while (len1>0 && len2>0) {
        long done = 0;

        if (len1>=BUFLEN && len2>=BUFLEN) {
            dump_n_compare_one(seq1, seq2, done=BUFLEN, offset);
        }
        else {
            long min = len1<len2 ? len1 : len2;
            dump_n_compare_one(seq1, seq2, done=min, offset);
        }

        seq1 += done;
        seq2 += done;
        len1 -= done;
        len2 -= done;
        offset += done;
    }

    if (len1>0) dump_rest(seq1, len1, 1, offset);
    if (len2>0) dump_rest(seq2, len2, 2, offset);
    printf(" -------------------\n");
}

static void dump_n_compare(const char *text, const CompactedSubSequence& seq1, const CompactedSubSequence& seq2) {
    dump_n_compare(text, seq1.text(), seq1.length(), seq2.text(), seq2.length());
}
#endif // TRACE_COMPRESSED_ALIGNMENT

#undef BUFLEN

inline void dumpSeq(const char *seq, long len, long pos) {
    printf("'%s' ", lstr(seq, len));
    printf("(Pos=%li,Len=%li)", pos, len);
}

#define dump()                                                          \
    do {                                                                \
        double sig = partSignificance(sequence().length(), slaveSequence.length(), bestLength); \
                                                                        \
        printf(" Score = %li (Significance=%f)\n"                       \
               " Master = ", bestScore, sig);                           \
        dumpSeq(bestMasterLeft.text(), bestLength, bestMasterLeft.leftOf()); \
        printf("\n"                                                     \
               " Slave  = ");                                           \
        dumpSeq(bestSlaveLeft.text(), bestLength, bestSlaveLeft.leftOf()); \
        printf("\n");                                                   \
    } while (0)

#endif //DEBUG


// ------------------------------------------------
//      INLINE-functions used in fast_align():

inline double log3(double d) {
    return log(d)/log(3.0);
}
inline double partSignificance(long seq1len, long seq2len, long partlen) {
    // returns log3 of significance of the part
    // usage: partSignificance(...) < log3(maxAllowedSignificance)
    return log3((seq1len-partlen)*(seq2len-partlen)) - partlen;
}

inline ARB_ERROR bufferTooSmall() {
    return "Cannot align - reserved buffer is to small";
}

inline long insertsToNextBase(AlignBuffer *alignBuffer, const SequencePosition& master) {
    int inserts;
    int nextBase;

    if (master.rightOf()>0) {
        nextBase = master.expdPosition();
    }
    else {
        nextBase = master.sequence().expdPosition(master.sequence().length());
    }
    inserts = nextBase-alignBuffer->offset();

    return inserts;
}

inline void insertBase(AlignBuffer *alignBuffer,
                              SequencePosition& master, SequencePosition& slave,
                              FastAlignReport *report)
{
    char slaveBase = *slave.text();
    char masterBase = *master.text();

    alignBuffer->set(slaveBase, alignQuality(slaveBase, masterBase));
    report->count_aligned_base(slaveBase!=masterBase);
    ++slave;
    ++master;
}

inline void insertSlaveBases(AlignBuffer *alignBuffer,
                                    SequencePosition& slave,
                                    int length,
                                    FastAlignReport *report)
{
    alignBuffer->copy(slave.text(), alignQuality(*slave.text(), GAP_CHAR), length);
    report->count_unaligned_base(length);
    slave += length;
}

inline void insertGap(AlignBuffer *alignBuffer,
                             SequencePosition& master,
                             FastAlignReport *report)
{
    char masterBase = *master.text();

    alignBuffer->set(GAP_CHAR, alignQuality(GAP_CHAR, masterBase));
    report->count_aligned_base(masterBase!=GAP_CHAR);
    ++master;
}

static ARB_ERROR insertClustalValigned(AlignBuffer *alignBuffer,
                                       SequencePosition& master,
                                       SequencePosition& slave,
                                       const char *masterAlignment, const char *slaveAlignment, long alignmentLength,
                                       FastAlignReport *report)
{
    // inserts bases of 'slave' to 'alignBuffer' according to alignment in 'masterAlignment' and 'slaveAlignment'
#define ACID '*'    // contents of 'masterAlignment' and 'slaveAlignment'
#define GAP  '-'

    int pos;
    int baseAtLeft = 0;     // TRUE -> last position in alignBuffer contains a base

    for (pos=0; pos<alignmentLength; pos++) {
        long insert = insertsToNextBase(alignBuffer, master); // in expanded seq

        if (masterAlignment[pos]==ACID) {
            if (insert>0) {
                if (insert>alignBuffer->free()) return bufferTooSmall();
                alignBuffer->set(GAP_CHAR, alignQuality(GAP_CHAR, GAP_CHAR), insert);
                fa_assert(insertsToNextBase(alignBuffer, master)==0);
                insert = 0;
            }

            if (!alignBuffer->free()) return bufferTooSmall();
            if (slaveAlignment[pos]==ACID) {
                insertBase(alignBuffer, master, slave, report);
                baseAtLeft = 1;
            }
            else {
                insertGap(alignBuffer, master, report);
                baseAtLeft = 0;
            }
        }
        else {
            int slave_bases;

            fa_assert(masterAlignment[pos]==GAP);
            for (slave_bases=1; pos+slave_bases<alignmentLength && masterAlignment[pos+slave_bases]==GAP; slave_bases++) {
                ; // count gaps in master (= # of slave bases to insert)
            }
            if (!baseAtLeft && insert>slave_bases) {
                int ins_gaps = insert-slave_bases;

                fa_assert(alignBuffer->free()>=ins_gaps);
                alignBuffer->set(GAP_CHAR, alignQuality(GAP_CHAR, GAP_CHAR), ins_gaps);
                insert -= ins_gaps;
            }

            if (insert<slave_bases) { // master has less gaps than slave bases to insert
                report->memorize_insertion(master.expdPosition(), slave_bases-insert);
            }
            else if (insert>slave_bases) { // master has more gaps than slave bases to insert
                fa_assert(baseAtLeft);
            }

            unaligned_bases.memorize(ExplicitRange(slave.expdPosition(), // memorize base positions without counterpart in master
                                                   slave.expdPosition(slave_bases-1)));

            if (slave_bases>alignBuffer->free()) return bufferTooSmall();
            insertSlaveBases(alignBuffer, slave, slave_bases, report);
            pos += slave_bases-1; // -1 compensates for()-increment
            baseAtLeft = 1;
        }
    }

    return 0;

#undef GAP
#undef ACID
}

static ARB_ERROR insertAligned(AlignBuffer *alignBuffer,
                               SequencePosition& master, SequencePosition& slave, long partLength,
                               FastAlignReport *report)
{
    // insert bases of 'slave' to 'alignBuffer' according to 'master'
    if (partLength) {
        long insert = insertsToNextBase(alignBuffer, master);

        fa_assert(partLength>=0);

        if (insert<0) { // insert gaps into master
            long min_insert = insert;

            report->memorize_insertion(master.expdPosition(), -insert);

            while (insert<0 && partLength) {
                if (insert<min_insert) min_insert = insert;
                if (!alignBuffer->free()) {
                    return bufferTooSmall();
                }
                insertBase(alignBuffer, master, slave, report);
                partLength--;
                insert = insertsToNextBase(alignBuffer, master);
            }

            fa_assert(partLength>=0);
            if (partLength==0) { // all inserted
                return NULL;
            }
        }

        fa_assert(insert>=0);

        if (insert>0) { // insert gaps into slave
            if (insert>alignBuffer->free()) return bufferTooSmall();
            alignBuffer->set(GAP_CHAR, alignQuality(GAP_CHAR, GAP_CHAR), insert);
            fa_assert(insertsToNextBase(alignBuffer, master)==0);
        }

        fa_assert(partLength>=0);

        while (partLength--) {
            insert = insertsToNextBase(alignBuffer, master);

            fa_assert(insert>=0);
            if (insert>0) {
                if (insert>=alignBuffer->free()) return bufferTooSmall();
                alignBuffer->set(GAP_CHAR, alignQuality(GAP_CHAR, GAP_CHAR), insert);
            }
            else {
                if (!alignBuffer->free()) {
                    return bufferTooSmall();
                }
            }

            insertBase(alignBuffer, master, slave, report);
        }
    }

    return NULL;
}

static ARB_ERROR cannot_fast_align(const CompactedSubSequence& master, long moffset, long mlength,
                                   const CompactedSubSequence& slaveSequence, long soffset, long slength,
                                   int max_seq_length,
                                   AlignBuffer *alignBuffer,
                                   FastAlignReport *report)
{
    const char *mtext = master.text(moffset);
    const char *stext = slaveSequence.text(soffset);
    ARB_ERROR   error = 0;

    if (slength) {
        if (mlength) { // if slave- and master-sequences contain bases, we call the slow aligner
#ifdef TRACE_CLUSTAL_DATA
            printf("ClustalV-Align:\n");
            printf(" mseq = '%s'\n", lstr(mtext, mlength));
            printf(" sseq = '%s'\n", lstr(stext, slength));
#endif // TRACE_CLUSTAL_DATA

            int is_dna = -1;

            switch (global_alignmentType) {
                case GB_AT_RNA:
                case GB_AT_DNA: is_dna = 1; break;
                case GB_AT_AA:  is_dna = 0; break;
                default: error = "Unknown alignment type - aligner aborted"; break;
            }

            const char *maligned, *saligned;
            int         len;
            if (!error) {
                int score; // unused
                error = ClustalV_align(is_dna,
                                       1,
                                       mtext, mlength, stext, slength,
                                       master.gapsBefore(moffset), 
                                       max_seq_length,
                                       maligned, saligned, len, score);
            }

            if (!error) {
#ifdef TRACE_CLUSTAL_DATA
                printf("ClustalV returns:\n");
                printf(" maligned = '%s'\n", lstr(maligned, len));
                printf(" saligned = '%s'\n", lstr(saligned, len));
#endif // TRACE_CLUSTAL_DATA

                SequencePosition masterPos(master, moffset);
                SequencePosition slavePos(slaveSequence, soffset);

                error = insertClustalValigned(alignBuffer, masterPos, slavePos, maligned, saligned, len, report);

#if (defined(DEBUG) && 0)

                SequencePosition master2(master->sequence(), moffset);
                SequencePosition slave2(slaveSequence, soffset);
                char *cmp = new char[len];

                for (int l=0; l<len; l++) {
                    int gaps = 0;

                    if (maligned[l]=='*') {
                        maligned[l] = *master2.text();
                        ++master2;
                    }
                    else {
                        gaps++;
                    }

                    if (saligned[l]=='*') {
                        saligned[l] = *slave2.text();
                        ++slave2;
                    }
                    else {
                        gaps++;
                    }

                    cmp[l] = gaps || maligned[l]==saligned[l] ? '=' : 'X';
                }

                printf(" master = '%s'\n", lstr(maligned, len));
                printf(" slave  = '%s'\n", lstr(saligned, len));
                printf("          '%s'\n", lstr(cmp, len));

                delete [] cmp;
#endif
            }
        }
        else { // master is empty here, so we just copy in the slave bases
            if (slength<=alignBuffer->free()) {
                unaligned_bases.memorize(ExplicitRange(slaveSequence.expdPosition(soffset),
                                                       slaveSequence.expdPosition(soffset+slength-1)));
                
                alignBuffer->copy(slaveSequence.text(soffset), '?', slength);   // '?' means not aligned (just inserted)
                // corrected by at alignBuffer->correctUnalignedPositions()
                report->count_unaligned_base(slength);
            }
            else {
                error = bufferTooSmall();
            }
        }
    }

    return error;
}

// ------------------------------------
//      #define's for fast_align()

#define TEST_BETTER_SCORE()                                             \
    do {                                                                \
        if (score>bestScore) {                                          \
            bestScore = score;                                          \
            bestLength = masterRight.text() - masterLeft.text();        \
            bestMasterLeft = masterLeft;                                \
            bestSlaveLeft = slaveLeft;                                  \
        }                                                               \
    } while (0)

#define CAN_SCORE_LEFT()    (masterLeft.leftOf() && slaveLeft.leftOf())
#define CAN_SCORE_RIGHT()   (masterRight.rightOf() && slaveRight.rightOf())

#define SCORE_LEFT()                                                    \
    do {                                                                \
        score += *(--masterLeft).text()==*(--slaveLeft).text() ? match : mismatch; \
        TEST_BETTER_SCORE();                                            \
    } while (0)

#define SCORE_RIGHT()                                                   \
    do {                                                                \
        score += *(++masterRight).text()==*(++slaveRight).text() ? match : mismatch; \
        TEST_BETTER_SCORE();                                            \
    } while (0)


ARB_ERROR FastSearchSequence::fast_align(const CompactedSubSequence& slaveSequence,
                                              AlignBuffer *alignBuffer,
                                              int max_seq_length,
                                         int match, int mismatch,
                                         FastAlignReport *report) const
{
    // aligns 'slaveSequence' to 'this'
    //
    // returns
    // == NULL -> all ok -> 'alignBuffer' contains aligned sequence
    // != NULL -> failure -> no results

    ARB_ERROR error   = NULL;
    int       aligned = 0;

    // set the following #if to zero to test ClustalV-Aligner (not fast_aligner)
#if 1

    static double lowSignificance;
    static int lowSignificanceInitialized;

    if (!lowSignificanceInitialized) {
        lowSignificance = log3(0.01);
        lowSignificanceInitialized = 1;
    }

    SequencePosition slave(slaveSequence);
    long bestScore=0;
    SequencePosition bestMasterLeft(sequence());
    SequencePosition bestSlaveLeft(slaveSequence);
    long bestLength=0;

    while (slave.rightOf()>=3) { // with all triples of slaveSequence
        FastSearchOccurrence occurrence(*this, slave.text()); // "search" first
        SequencePosition rightmostSlave = slave;

        while (occurrence.found()) { // with all occurrences of the triple
            long score = match*3;
            SequencePosition masterLeft(occurrence.sequence(), occurrence.offset());
            SequencePosition masterRight(occurrence.sequence(), occurrence.offset()+3);
            SequencePosition slaveLeft(slave);
            SequencePosition slaveRight(slave, 3);

            while (score>0) {
                if (CAN_SCORE_LEFT()) {
                    SCORE_LEFT();
                }
                else {
                    while (score>0 && CAN_SCORE_RIGHT()) {
                        SCORE_RIGHT();
                    }
                    break;
                }

                if (CAN_SCORE_RIGHT()) {
                    SCORE_RIGHT();
                }
                else {
                    while (score>0 && CAN_SCORE_LEFT()) {
                        SCORE_LEFT();
                    }
                    break;
                }
            }

            occurrence.gotoNext(); // "search" next

            if (rightmostSlave<slaveRight) {
                rightmostSlave = slaveRight;
                rightmostSlave -= 3;
            }
        }

        if (rightmostSlave>slave)   slave = rightmostSlave;
        else                ++slave;
    }

    if (bestLength) {
        double sig = partSignificance(sequence().length(), slaveSequence.length(), bestLength);

        if (sig<lowSignificance) {
            long masterLeftOf = bestMasterLeft.leftOf();
            long masterRightStart = masterLeftOf+bestLength;
            long masterRightOf = bestMasterLeft.rightOf()-bestLength;
            long slaveLeftOf = bestSlaveLeft.leftOf();
            long slaveRightStart = slaveLeftOf+bestLength;
            long slaveRightOf = bestSlaveLeft.rightOf()-bestLength;

#define MIN_ALIGNMENT_RANGE 4

            if (!error) {
                if (masterLeftOf >= MIN_ALIGNMENT_RANGE && slaveLeftOf >= MIN_ALIGNMENT_RANGE) {
                    CompactedSubSequence   leftCompactedMaster(sequence(), 0, masterLeftOf);
                    FastSearchSequence     leftMaster(leftCompactedMaster);

                    error = leftMaster.fast_align(CompactedSubSequence(slaveSequence, 0, slaveLeftOf),
                                                  alignBuffer, max_seq_length, match, mismatch, report);
                }
                else if (slaveLeftOf>0) {
                    error = cannot_fast_align(sequence(), 0, masterLeftOf,
                                              slaveSequence, 0, slaveLeftOf,
                                              max_seq_length, alignBuffer, report);
                }

                aligned = 1;
            }

            // align part of slave sequence according to master sequence:

            if (!error) {
#if (defined(DEBUG) && 0)
                long offset = alignBuffer->offset();
                long used;
#endif
                error = insertAligned(alignBuffer, bestMasterLeft, bestSlaveLeft, bestLength, report);
#if (defined(DEBUG) && 0)
                used = alignBuffer->offset()-offset;
                printf("aligned '%s' (len=%li, address=%li)\n", lstr(alignBuffer->text()+offset, used), used, long(alignBuffer));
#endif
                aligned = 1;
            }

            if (!error) {
                if (masterRightOf >= MIN_ALIGNMENT_RANGE && slaveRightOf >= MIN_ALIGNMENT_RANGE) {
                    CompactedSubSequence rightCompactedMaster(sequence(), masterRightStart, masterRightOf);
                    FastSearchSequence rightMaster(rightCompactedMaster);

                    error = rightMaster.fast_align(CompactedSubSequence(slaveSequence, slaveRightStart, slaveRightOf),
                                                   alignBuffer,
                                                   max_seq_length, match, mismatch, report);
                }
                else if (slaveRightOf>0) {
                    error = cannot_fast_align(sequence(), masterRightStart, masterRightOf,
                                              slaveSequence, slaveRightStart, slaveRightOf,
                                              max_seq_length, alignBuffer, report);
                }

                aligned = 1;
            }

        }
    }

#endif

    if (!aligned && !error) {
        error = cannot_fast_align(sequence(), 0, sequence().length(),
                                  slaveSequence, 0, slaveSequence.length(),
                                  max_seq_length, alignBuffer, report);
    }

    return error;
}

#undef dump
#undef TEST_BETTER_SCORE
#undef CAN_SCORE_LEFT
#undef CAN_SCORE_RIGHT
#undef SCORE_LEFT
#undef SCORE_RIGHT

inline long calcSequenceChecksum(const char *data, long length) {
    return GB_checksum(data, length, 1, GAP_CHARS);
}

#if defined(WARN_TODO)
#warning firstColumn + lastColumn -> PosRange
#endif

static CompactedSubSequence *readCompactedSequence(GBDATA      *gb_species,
                                                   const char  *ali,
                                                   ARB_ERROR   *errorPtr,
                                                   char       **dataPtr,     // if dataPtr != NULL it will be set to the WHOLE uncompacted sequence
                                                   long        *seqChksum,   // may be NULL (of part of sequence)
                                                   PosRange     range)       // if !range.is_whole() -> return only part of the sequence
{
    ARB_ERROR                  error = 0;
    GBDATA                    *gbd;
    CompactedSubSequence *seq   = 0;


    
    gbd = GBT_read_sequence(gb_species, ali);       // get sequence

    if (gbd) {
        long length = GB_read_string_count(gbd);
        char *data = GB_read_string(gbd);
        long partLength;
        char *partData;

        if (dataPtr) {                  // make a copy of the whole uncompacted sequence (returned to caller)
            *dataPtr = data;
        }

        int firstColumn = range.start();
        if (range.is_part()) {     // take only part of sequence
            int lastColumn = range.end();

            fa_assert(firstColumn>=0);
            fa_assert(firstColumn<=lastColumn);

            // include all surrounding gaps (@@@ this might cause problems with partial alignment)
            while (firstColumn>0 && is_ali_gap(data[firstColumn-1])) {
                firstColumn--;
            }
            if (lastColumn!=-1) {
                while (lastColumn<(length-1) && is_ali_gap(data[lastColumn+1])) lastColumn++;
                fa_assert(lastColumn<length);
            }

            partData = data+firstColumn;
            int slen = length-firstColumn;

            fa_assert(slen>=0);
            fa_assert((size_t)slen==strlen(partData));

            if (lastColumn==-1) { // take all till end of sequence
                partLength = slen;
            }
            else {
                partLength = lastColumn-firstColumn+1;
                if (partLength>slen) partLength = slen;     // cut rest, if we have any
            }
        }
        else {
            partLength = length;
            partData = data;
        }

        if (!error) {
            if (seqChksum) {
                *seqChksum = calcSequenceChecksum(partData, partLength);
            }

            seq = new CompactedSubSequence(partData, partLength, GBT_read_name(gb_species), firstColumn);
        }

        if (!dataPtr) {     // free sequence only if user has not requested to get it
            free(data);
        }
    }
    else {
        error = GBS_global_string("No 'data' found for species '%s'", GBT_read_name(gb_species));
        if (dataPtr) *dataPtr = NULL; // (user must not care to free data if we fail)
    }

    fa_assert(errorPtr);
    *errorPtr = error;

    return seq;
}

static ARB_ERROR writeStringToAlignment(GBDATA *gb_species, GB_CSTR alignment, GB_CSTR data_name, GB_CSTR str, bool temporary) {
    GBDATA    *gb_ali  = GB_search(gb_species, alignment, GB_DB);
    ARB_ERROR  error   = NULL;
    GBDATA    *gb_name = GB_search(gb_ali, data_name, GB_STRING);

    if (gb_name) {
        fa_assert(GB_check_father(gb_name, gb_ali));
        error = GB_write_string(gb_name, str);
        if (temporary && !error) error = GB_set_temporary(gb_name);
    }
    else {
        error = GBS_global_string("Cannot create entry '%s' for '%s'", data_name, GBT_read_name(gb_species));
    }

    return error;
}

// --------------------------------------------------------------------------------

static ARB_ERROR alignCompactedTo(CompactedSubSequence     *toAlignSequence,
                                  const FastSearchSequence *alignTo,
                                  int                       max_seq_length,
                                  GB_CSTR                   alignment,
                                  long                      toAlignChksum,
                                  GBDATA                   *gb_toAlign,
                                  GBDATA                   *gb_alignTo, // may be NULL
                                  const AlignParams&        ali_params)
{
    // if only part of the sequence should be aligned, then this functions already gets only the part
    // (i.o.w.: toAlignSequence, alignTo and toAlignChksum refer to the partial sequence)
    AlignBuffer alignBuffer(max_seq_length);
    if (ali_params.range.start()>0) {
        alignBuffer.set(GAP_CHAR, alignQuality(GAP_CHAR, GAP_CHAR), ali_params.range.start());
    }

    const char *master_name = read_name(gb_alignTo);

    FastAlignReport report(master_name, ali_params.showGapsMessages);

    {
        static GBDATA *last_gb_toAlign = 0;
        if (gb_toAlign!=last_gb_toAlign) {
            last_gb_toAlign = gb_toAlign;
            currentSequenceNumber++;
        }
    }

#ifdef TRACE_COMPRESSED_ALIGNMENT
    printf("alignCompactedTo(): master='%s' ", master_name);
    printf("slave='%s'\n", toAlignSequence->name());
#endif // TRACE_COMPRESSED_ALIGNMENT

    ARB_ERROR error = GB_pop_transaction(gb_toAlign);
    if (!error) {
        if (island_hopper) {
            error = island_hopper->do_align();
            if (!error) {
                fa_assert(island_hopper->was_aligned());

#ifdef TRACE_ISLANDHOPPER_DATA
                printf("Island-Hopper returns:\n");
                printf("maligned = '%s'\n", lstr(island_hopper->get_result_ref(), island_hopper->get_result_length()));
                printf("saligned = '%s'\n", lstr(island_hopper->get_result(), island_hopper->get_result_length()));
#endif // TRACE_ISLANDHOPPER_DATA

                SequencePosition masterPos(alignTo->sequence(), 0);
                SequencePosition slavePos(*toAlignSequence, 0);

                error = insertClustalValigned(&alignBuffer, masterPos, slavePos, island_hopper->get_result_ref(), island_hopper->get_result(), island_hopper->get_result_length(), &report);
            }
        }
        else {
            error = alignTo->fast_align(*toAlignSequence, &alignBuffer, max_seq_length, 2, -10, &report); // <- here we align
        }
    }

    if (!error) {
        alignBuffer.correctUnalignedPositions();
        if (alignBuffer.free()) {
            alignBuffer.set('-', alignQuality(GAP_CHAR, GAP_CHAR), alignBuffer.free()); // rest of alignBuffer is set to '-'
        }
        alignBuffer.restoreDots(*toAlignSequence);
    }

#ifdef TRACE_COMPRESSED_ALIGNMENT
    if (!error) {
        CompactedSubSequence alignedSlave(alignBuffer.text(), alignBuffer.length(), toAlignSequence->name());
        dump_n_compare("reference vs. aligned:", alignTo->sequence(), alignedSlave);
    }
#endif // TRACE_COMPRESSED_ALIGNMENT

    {
        GB_ERROR err = GB_push_transaction(gb_toAlign);
        if (!error) error = err;
    }

    if (!error) {
        if (calcSequenceChecksum(alignBuffer.text(), alignBuffer.length())!=toAlignChksum) { // sequence-chksum changed
            error = "Internal aligner error (sequence checksum changed) -- aborted";

#ifdef TRACE_COMPRESSED_ALIGNMENT
            CompactedSubSequence alignedSlave(alignBuffer.text(), alignBuffer.length(), toAlignSequence->name());
            dump_n_compare("Old Slave vs. new Slave", *toAlignSequence, alignedSlave);
#endif // TRACE_COMPRESSED_ALIGNMENT
        }
        else {
            GB_push_my_security(gb_toAlign);
            {
                GBDATA *gbd = GBT_add_data(gb_toAlign, alignment, "data", GB_STRING);

                if (!gbd) {
                    error = "Can't find/create sequence data";
                }
                else {
                    if (ali_params.range.is_part()) { // we aligned just a part of the sequence
                        char *buffer       = GB_read_string(gbd); // so we read old sequence data
                        long  len          = GB_read_string_count(gbd);
                        if (!buffer) error = GB_await_error();
                        else {
                            int  lenToCopy   = ali_params.range.size();
                            long wholeChksum = calcSequenceChecksum(buffer, len);

                            memcpy(buffer+ali_params.range.start(), alignBuffer.text()+ali_params.range.start(), lenToCopy); // copy in the aligned part 
                            // @@@ genau um 1 position zu niedrig
                            
                            if (calcSequenceChecksum(buffer, len) != wholeChksum) {
                                error            = "Internal aligner error (sequence checksum changed) -- aborted";
# ifdef TRACE_COMPRESSED_ALIGNMENT
                                char *buffer_org = GB_read_string(gbd);
                                dump_n_compare("Old seq vs. new seq (slave)", buffer_org, len, buffer, len);
                                free(buffer_org);
# endif // TRACE_COMPRESSED_ALIGNMENT
                            }
                            else {
                                GB_write_string(gbd, "");
                                error = GB_write_string(gbd, buffer);
                            }
                        }

                        free(buffer);
                    }
                    else {
                        alignBuffer.setDotsAtEOSequence();
                        error = GBT_write_sequence(gbd, alignment, max_seq_length, alignBuffer.text()); // aligned all -> write all
                    }
                }
            }
            GB_pop_my_security(gb_toAlign);

            if (!error && ali_params.report != FA_NO_REPORT) {
                // create temp-entry for slave containing alignment quality:

                error = writeStringToAlignment(gb_toAlign, alignment, QUALITY_NAME, alignBuffer.quality(), ali_params.report==FA_TEMP_REPORT);
                if (!error) {
                    // create temp-entry for master containing insert dots:

                    int   buflen    = max_seq_length*2;
                    char *buffer    = (char*)malloc(buflen+1);
                    char *afterLast = buffer;

                    if (!buffer) {
                        error = "out of memory";
                    }
                    else {
                        memset(buffer, '-', buflen);
                        buffer[buflen] = 0;

                        const FastAlignInsertion *inserts = report.insertion();
                        while (inserts) {
                            memset(buffer+inserts->offset(), '>', inserts->gaps());
                            afterLast = buffer+inserts->offset()+inserts->gaps();
                            inserts = inserts->next();
                        }

                        *afterLast = 0;
                        if (gb_alignTo) {
                            error = writeStringToAlignment(gb_alignTo, alignment, INSERTS_NAME, buffer, ali_params.report==FA_TEMP_REPORT);
                        }
                    }
                }
            }
        }
    }
    return error;
}

ARB_ERROR FastAligner_delete_temp_entries(GBDATA *gb_species, const char *alignment) {
    fa_assert(gb_species);
    fa_assert(alignment);

    GBDATA    *gb_ali = GB_search(gb_species, alignment, GB_FIND);
    ARB_ERROR  error  = NULL;

    if (gb_ali) {
        GBDATA *gb_name = GB_search(gb_ali, QUALITY_NAME, GB_FIND);
        if (gb_name) {
            error = GB_delete(gb_name);
#if defined(DEBUG)
            printf("deleted '%s' of '%s' (gb_name=%p)\n", QUALITY_NAME, GBT_read_name(gb_species), gb_name);
#endif
        }

        if (!error) {
            gb_name = GB_search(gb_ali, INSERTS_NAME, GB_FIND);
            if (gb_name) {
                error = GB_delete(gb_name);
#if defined(DEBUG)
                printf("deleted '%s' of '%s' (gb_name=%p)\n", INSERTS_NAME, GBT_read_name(gb_species), gb_name);
#endif
            }
        }
    }

    return error;
}

static ARB_ERROR align_error(ARB_ERROR olderr, GBDATA *gb_toAlign, GBDATA *gb_alignTo) {
    // used by alignTo() and alignToNextRelative() to transform errors coming from subroutines
    // can be used by higher functions

    const char *name_toAlign = read_name(gb_toAlign);
    const char *name_alignTo = read_name(gb_alignTo);

    fa_assert(olderr);

    return GBS_global_string("Error while aligning '%s' to '%s':\n%s",
                             name_toAlign, name_alignTo, olderr.deliver());
}

static ARB_ERROR alignTo(GBDATA                   *gb_toAlign,
                         GB_CSTR                   alignment,
                         const FastSearchSequence *alignTo,
                         GBDATA                   *gb_alignTo, // may be NULL
                         int                       max_seq_length,
                         const AlignParams&        ali_params)
{
    ARB_ERROR error = NULL;
    long      chksum;

    CompactedSubSequence *toAlignSequence = readCompactedSequence(gb_toAlign, alignment, &error, NULL, &chksum, ali_params.range);

    if (island_hopper) {
        GBDATA *gb_seq = GBT_read_sequence(gb_toAlign, alignment);      // get sequence
        if (gb_seq) {
            long        length = GB_read_string_count(gb_seq);
            const char *data   = GB_read_char_pntr(gb_seq);

            island_hopper->set_toAlign_sequence(data);
            island_hopper->set_alignment_length(length);
        }
    }



    if (!error) {
        error = alignCompactedTo(toAlignSequence, alignTo, max_seq_length, alignment, chksum, gb_toAlign, gb_alignTo, ali_params);
        if (error) error = align_error(error, gb_toAlign, gb_alignTo);
        delete toAlignSequence;
    }

    return error;
}

static ARB_ERROR alignToGroupConsensus(GBDATA                     *gb_toAlign,
                                       GB_CSTR                     alignment,
                                       Aligner_get_consensus_func  get_consensus,
                                       int                         max_seq_length,
                                       const AlignParams&          ali_params)
{
    ARB_ERROR  error     = 0;
    char      *consensus = get_consensus(read_name(gb_toAlign), ali_params.range);
    size_t     cons_len  = strlen(consensus);

    fa_assert(cons_len);

    for (size_t i = 0; i<cons_len; ++i) { // translate consensus to be accepted by aligner
        switch (consensus[i]) {
            case '=': consensus[i] = '-'; break;
            default: break;
        }
    }

    CompactedSubSequence compacted(consensus, cons_len, "group consensus", ali_params.range.start());

    {
        FastSearchSequence fast(compacted);
        error = alignTo(gb_toAlign, alignment, &fast, NULL, max_seq_length, ali_params);
    }

    free(consensus);

    return error;
}

static void appendNameAndUsedBasePositions(char **toString, GBDATA *gb_species, int usedBasePositions) {
    // if usedBasePositions == -1 -> unknown;

    char *currInfo;
    if (usedBasePositions<0) {
        currInfo = strdup(GBT_read_name(gb_species));
    }
    else {
        fa_assert(usedBasePositions>0); // otherwise it should NOT be announced here!
        currInfo = GBS_global_string_copy("%s:%i", GBT_read_name(gb_species), usedBasePositions);
    }

    char *newString = 0;
    if (*toString) {
        newString = GBS_global_string_copy("%s, %s", *toString, currInfo);
    }
    else {
        newString = currInfo;
        currInfo  = 0; // don't free
    }

    freeset(*toString, newString);
    free(currInfo);
}

inline int min(int i, int j) { return i<j ? i : j; }

static ARB_ERROR alignToNextRelative(SearchRelativeParams&  relSearch,
                                     int                    max_seq_length,
                                     FA_turn                turnAllowed,
                                     GB_CSTR                alignment,
                                     GBDATA                *gb_toAlign,
                                     const AlignParams&     ali_params)
{
    CompactedSubSequence *toAlignSequence = NULL;
    bool use_different_pt_server_alignment = 0 != strcmp(relSearch.pt_server_alignment, alignment);

    ARB_ERROR   error;
    long        chksum;
    int         relativesToTest = relSearch.maxRelatives*2; // get more relatives from pt-server (needed when use_different_pt_server_alignment == true)
    char      **nearestRelative = new char*[relativesToTest+1];
    int         next_relatives;
    int         i;
    GBDATA     *gb_main         = GB_get_root(gb_toAlign);

    if (use_different_pt_server_alignment) {
        turnAllowed = FA_TURN_NEVER; // makes no sense if we're using a different alignment for the pt_server
    }

    for (next_relatives=0; next_relatives<relativesToTest; next_relatives++) {
        nearestRelative[next_relatives] = 0;
    }
    next_relatives = 0;

    bool restart = true;
    while (restart) {
        restart = false;

        char *findRelsBySeq = 0;
        if (use_different_pt_server_alignment) {
            toAlignSequence = readCompactedSequence(gb_toAlign, alignment, &error, 0, &chksum, ali_params.range);

            GBDATA *gbd = GBT_read_sequence(gb_toAlign, relSearch.pt_server_alignment); // use a different alignment for next relative search
            if (!gbd) {
                error = GBS_global_string("Species '%s' has no data in alignment '%s'", GBT_read_name(gb_toAlign), relSearch.pt_server_alignment);
            }
            else {
                findRelsBySeq = GB_read_string(gbd);
            }
        }
        else {
            toAlignSequence = readCompactedSequence(gb_toAlign, alignment, &error, &findRelsBySeq, &chksum, ali_params.range);
        }

        if (error) {
            delete toAlignSequence;
            return error; // @@@ leaks ?
        }

        while (next_relatives) {
            next_relatives--;
            freenull(nearestRelative[next_relatives]);
        }

        {
            // find relatives
            FamilyFinder    *familyFinder = relSearch.getFamilyFinder();
            const PosRange&  range        = familyFinder->get_TargetRange();

            if (range.is_part()) {
                range.copy_corresponding_part(findRelsBySeq, findRelsBySeq, strlen(findRelsBySeq));
                turnAllowed = FA_TURN_NEVER; // makes no sense if we're using partial relative search
            }

            error = familyFinder->searchFamily(findRelsBySeq, FF_FORWARD, relativesToTest+1, 0); // @@@ make min_score configurable

            // @@@ case where no relative found (due to min score) handle how ? abort ? warn ?
            
            double bestScore = 0;
            if (!error) {
#if defined(DEBUG)
                double lastScore = -1;
#if defined(TRACE_RELATIVES)
                fprintf(stderr, "List of relatives used for '%s':\n", GBT_read_name(gb_toAlign));
#endif // TRACE_RELATIVES
#endif // DEBUG
                for (const FamilyList *fl = familyFinder->getFamilyList(); fl; fl=fl->next) {
                    if (strcmp(toAlignSequence->name(), fl->name)!=0) {
                        if (GBT_find_species(gb_main, fl->name)) { // @@@
                            double thisScore = familyFinder->uses_rel_matches() ? fl->rel_matches : fl->matches;
#if defined(DEBUG)
                            // check whether family list is sorted correctly
                            fa_assert(lastScore < 0 || lastScore >= thisScore);
                            lastScore        = thisScore;
#if defined(TRACE_RELATIVES)
                            fprintf(stderr, "- %s (%5.2f)\n", fl->name, thisScore);
#endif // TRACE_RELATIVES
#endif // DEBUG
                            if (thisScore>=bestScore) bestScore = thisScore;
                            if (next_relatives<(relativesToTest+1)) {
                                nearestRelative[next_relatives] = strdup(fl->name);
                                next_relatives++;
                            }
                        }
                    }
                }
            }

            if (!error && turnAllowed != FA_TURN_NEVER) { // test if mirrored sequence has better relatives
                char   *mirroredSequence  = strdup(findRelsBySeq);
                long    length            = strlen(mirroredSequence);
                double  bestMirroredScore = 0;

                char T_or_U;
                error = GBT_determine_T_or_U(global_alignmentType, &T_or_U, "reverse-complement");
                if (!error) {
                    GBT_reverseComplementNucSequence(mirroredSequence, length, T_or_U);
                    error = familyFinder->searchFamily(mirroredSequence, FF_FORWARD, relativesToTest+1, 0); // @@@ make min_score configurable
                }
                if (!error) {
#if defined(DEBUG)
                    double lastScore = -1;
#if defined(TRACE_RELATIVES)
                    fprintf(stderr, "List of relatives used for '%s' (turned seq):\n", GBT_read_name(gb_toAlign));
#endif // TRACE_RELATIVES
#endif // DEBUG
                    for (const FamilyList *fl = familyFinder->getFamilyList(); fl; fl = fl->next) {
                        double thisScore = familyFinder->uses_rel_matches() ? fl->rel_matches : fl->matches;
#if defined(DEBUG)
                        // check whether family list is sorted correctly
                        fa_assert(lastScore < 0 || lastScore >= thisScore);
                        lastScore = thisScore;
#if defined(TRACE_RELATIVES)
                        fprintf(stderr, "- %s (%5.2f)\n", fl->name, thisScore);
#endif // TRACE_RELATIVES
#endif // DEBUG
                        if (thisScore >= bestMirroredScore) {
                            if (strcmp(toAlignSequence->name(), fl->name)!=0) {
                                if (GBT_find_species(gb_main, fl->name)) bestMirroredScore = thisScore; // @@@
                            }
                        }
                    }
                }

                int turnIt = 0;
                if (bestMirroredScore>bestScore) {
                    if (turnAllowed==FA_TURN_INTERACTIVE) {
                        const char *message;
                        if (familyFinder->uses_rel_matches()) {
                            message = GBS_global_string("'%s' seems to be the other way round (score: %.1f%%, score if turned: %.1f%%)",
                                                        toAlignSequence->name(), bestScore*100, bestMirroredScore*100);
                        }
                        else {
                            message = GBS_global_string("'%s' seems to be the other way round (score: %li, score if turned: %li)",
                                                        toAlignSequence->name(), long(bestScore+.5), long(bestMirroredScore+.5));
                        }
                        turnIt = aw_question("fastali_turn_sequence", message, "Turn sequence,Leave sequence alone")==0;
                    }
                    else {
                        fa_assert(turnAllowed == FA_TURN_ALWAYS);
                        turnIt = 1;
#if defined(TRACE_RELATIVES)
                        fprintf(stderr, "Using turned sequence!\n");
#endif // TRACE_RELATIVES
                    }
                }

                if (turnIt) { // write mirrored sequence
                    GBDATA *gbd = GBT_read_sequence(gb_toAlign, alignment);
                    GB_push_my_security(gbd);
                    error = GB_write_string(gbd, mirroredSequence);
                    GB_pop_my_security(gbd);
                    if (!error) {
                        delete toAlignSequence;
                        restart = true; // continue while loop
                    }
                }

                free(mirroredSequence);
            }
        }
        free(findRelsBySeq);
    }

    if (!error) {
        if (!next_relatives) {
            char warning[200];
            sprintf(warning, "No relative found for '%s'", toAlignSequence->name());
            aw_message(warning);
        }
        else {
            // assuming relatives are sorted! (nearest to farthest)

            // get data pointers
            typedef GBDATA *GBDATAP;
            GBDATAP *gb_reference = new GBDATAP[relSearch.maxRelatives];

            {
                for (i=0; i<relSearch.maxRelatives && i<next_relatives; i++) {
                    GBDATA *gb_species = GBT_find_species(gb_main, nearestRelative[i]);
                    if (!gb_species) { // pt-server seems not up to date!
                        error = species_not_found(nearestRelative[i]);
                        break;
                    }

                    GBDATA *gb_sequence = GBT_read_sequence(gb_species, alignment);
                    if (gb_sequence) { // if relative has sequence data in the current alignment ..
                        gb_reference[i] = gb_species;
                    }
                    else { // remove this relative
                        free(nearestRelative[i]);
                        for (int j = i+1; j<next_relatives; ++j) {
                            nearestRelative[j-1] = nearestRelative[j];
                        }
                        next_relatives--;
                        nearestRelative[next_relatives] = 0;
                        i--; // redo same index
                    }
                }

                // delete superfluous relatives
                for (; i<next_relatives; ++i) freenull(nearestRelative[i]);

                if (next_relatives>relSearch.maxRelatives) {
                    next_relatives = relSearch.maxRelatives;
                }
            }

            // align

            if (!error) {
                CompactedSubSequence *alignToSequence = readCompactedSequence(gb_reference[0], alignment, &error, NULL, NULL, ali_params.range);
                fa_assert(alignToSequence != 0);

                if (island_hopper) {
                    GBDATA *gb_ref   = GBT_read_sequence(gb_reference[0], alignment); // get reference sequence
                    GBDATA *gb_align = GBT_read_sequence(gb_toAlign, alignment);      // get sequence to align

                    if (gb_ref && gb_align) {
                        long        length_ref   = GB_read_string_count(gb_ref);
                        const char *data;

                        data = GB_read_char_pntr(gb_ref);
                        island_hopper->set_ref_sequence(data);

                        data = GB_read_char_pntr(gb_align);
                        island_hopper->set_toAlign_sequence(data);

                        island_hopper->set_alignment_length(length_ref);
                    }
                }

                {
                    FastSearchSequence referenceFastSeq(*alignToSequence);

                    error = alignCompactedTo(toAlignSequence, &referenceFastSeq,
                                             max_seq_length, alignment, chksum,
                                             gb_toAlign, gb_reference[0], ali_params);
                }

                if (error) {
                    error = align_error(error, gb_toAlign, gb_reference[0]);
                }
                else {
                    char *used_relatives = 0;

                    if (unaligned_bases.is_empty()) {
                        appendNameAndUsedBasePositions(&used_relatives, gb_reference[0], -1);
                    }
                    else {
                        if (island_hopper) {
                            appendNameAndUsedBasePositions(&used_relatives, gb_reference[0], -1);
                            if (next_relatives>1) error = "Island hopping uses only one relative";
                        }
                        else {
                            LooseBases loose;
                            LooseBases loose_for_next_relative;

                            int unaligned_positions;
                            {
                                CompactedSubSequence *alignedSequence = readCompactedSequence(gb_toAlign, alignment, &error, 0, 0, ali_params.range);

                                unaligned_positions = loose.follow_ali_change_and_append(unaligned_bases, AliChange(*toAlignSequence, *alignedSequence));
                                // now loose holds the unaligned (and recalculated) parts from last relative
                                delete alignedSequence;
                            }

                            if (!error) {
                                int toalign_positions = toAlignSequence->length();
                                if (unaligned_positions<toalign_positions) {
                                    appendNameAndUsedBasePositions(&used_relatives, gb_reference[0], toalign_positions-unaligned_positions);
                                }
                            }

                            for (i=1; i<next_relatives && !error; i++) {
                                loose.append(loose_for_next_relative);
                                int unaligned_positions_for_next = 0;

                                while (!loose.is_empty() && !error) {
                                    ExplicitRange         partRange(intersection(loose.recall(), ali_params.range));
                                    CompactedSubSequence *alignToPart = readCompactedSequence(gb_reference[i], alignment, &error, 0, 0, partRange);

                                    if (!error) {
                                        long                  part_chksum;
                                        CompactedSubSequence *toAlignPart = readCompactedSequence(gb_toAlign, alignment, &error, 0, &part_chksum, partRange);

                                        fa_assert(contradicted(error, toAlignPart));

                                        if (!error) {
                                            AlignParams loose_ali_params = { ali_params.report, ali_params.showGapsMessages, partRange };

                                            FastSearchSequence referenceFastSeq(*alignToPart);
                                            error = alignCompactedTo(toAlignPart, &referenceFastSeq,
                                                                     max_seq_length, alignment, part_chksum,
                                                                     gb_toAlign, gb_reference[i], loose_ali_params);
                                            if (!error) {
                                                CompactedSubSequence *alignedPart = readCompactedSequence(gb_toAlign, alignment, &error, 0, 0, partRange);
                                                if (!error) {
                                                    unaligned_positions_for_next += loose_for_next_relative.follow_ali_change_and_append(unaligned_bases, AliChange(*toAlignPart, *alignedPart));
                                                }
                                                delete alignedPart;
                                            }
                                        }
                                        delete toAlignPart;
                                    }
                                    delete alignToPart;
                                }

                                if (!error) {
                                    fa_assert(unaligned_positions_for_next <= unaligned_positions); // means: number of unaligned positions has increased by use of relative
                                    if (unaligned_positions_for_next<unaligned_positions) {
                                        appendNameAndUsedBasePositions(&used_relatives, gb_reference[i], unaligned_positions-unaligned_positions_for_next);
                                        unaligned_positions = unaligned_positions_for_next;
                                    }
                                }
                            }
                        }
                    }

                    if (!error) { // write used relatives to db-field
                        error = GBT_write_string(gb_toAlign, "used_rels", used_relatives);
                    }
                    free(used_relatives);
                }

                delete alignToSequence;
            }

            delete [] gb_reference;
        }
    }

    delete toAlignSequence;

    for (i=0; i<next_relatives; i++) freenull(nearestRelative[i]);
    delete [] nearestRelative;

    return error;
}

// ------------------------
//      AlignmentReference

class AlignmentReference : virtual Noncopyable {
    GB_CSTR            alignment;
    int                max_seq_length;
    const AlignParams& ali_params;

public:
    AlignmentReference(GB_CSTR            alignment_,
                       int                max_seq_length_,
                       const AlignParams& ali_params_)
        : alignment(alignment_),
          max_seq_length(max_seq_length_),
          ali_params(ali_params_)
    {}
    virtual ~AlignmentReference() {}

    virtual ARB_ERROR align_to(GBDATA *gb_toalign) const = 0;

    GB_CSTR get_alignment() const { return alignment; }
    int get_max_seq_length() const { return max_seq_length; }
    const AlignParams& get_ali_params() const { return ali_params; }
};


#if defined(WARN_TODO)
#warning make alignTo a member of ExplicitReference (or of AlignmentReference)
#warning let alignToGroupConsensus and alignToNextRelative use ExplicitReference
#endif

class ExplicitReference: public AlignmentReference { // derived from a Noncopyable
    const FastSearchSequence *targetSequence;
    GBDATA                   *gb_alignTo;

public:
    ExplicitReference(GB_CSTR                   alignment_,
                      const FastSearchSequence *targetSequence_,
                      GBDATA                   *gb_alignTo_, 
                      int                       max_seq_length_,
                      const AlignParams&        ali_params_)
        : AlignmentReference(alignment_, max_seq_length_, ali_params_), 
          targetSequence(targetSequence_), 
          gb_alignTo(gb_alignTo_) 
    {}

    ARB_ERROR align_to(GBDATA *gb_toalign) const OVERRIDE {
        return alignTo(gb_toalign, get_alignment(), targetSequence, gb_alignTo, get_max_seq_length(), get_ali_params());
    }
};

#if defined(WARN_TODO)
#warning make alignToGroupConsensus a member of ConsensusReference
#endif

class ConsensusReference: public AlignmentReference {
    Aligner_get_consensus_func  get_consensus;

public:
    ConsensusReference(GB_CSTR                     alignment_, 
                       Aligner_get_consensus_func  get_consensus_, 
                       int                         max_seq_length_, 
                       const AlignParams&          ali_params_)
        : AlignmentReference(alignment_, max_seq_length_, ali_params_),
          get_consensus(get_consensus_) 
    {}
    
    ARB_ERROR align_to(GBDATA *gb_toalign) const OVERRIDE {
        return alignToGroupConsensus(gb_toalign, get_alignment(), get_consensus, get_max_seq_length(), get_ali_params());
    }
};

#if defined(WARN_TODO)
#warning make alignToNextRelative a member of SearchRelativesReference
#endif

class SearchRelativesReference: public AlignmentReference {
    SearchRelativeParams&  relSearch;
    FA_turn                turnAllowed;

public:
    SearchRelativesReference(SearchRelativeParams&  relSearch_,
                             int                    max_seq_length_,
                             FA_turn                turnAllowed_,
                             GB_CSTR                alignment_,
                             const AlignParams&     ali_params_)
        : AlignmentReference(alignment_, max_seq_length_, ali_params_),
          relSearch(relSearch_),
          turnAllowed(turnAllowed_) 
    {}

    ARB_ERROR align_to(GBDATA *gb_toalign) const OVERRIDE {
        return alignToNextRelative(relSearch, get_max_seq_length(), turnAllowed, get_alignment(), gb_toalign, get_ali_params());
    }
};


// ----------------
//      Aligner

class Aligner : virtual Noncopyable {
    GBDATA *gb_main;

    // define alignment target(s):
    FA_alignTarget                     alignWhat;
    GB_CSTR                            alignment;                  // name of alignment to use (==NULL -> use default)
    GB_CSTR                            toalign;                    // name of species to align (used if alignWhat == FA_CURRENT)
    Aligner_get_first_selected_species get_first_selected_species; // used if alignWhat == FA_SELECTED
    Aligner_get_next_selected_species  get_next_selected_species;  // --- "" ---

    // define reference sequence(s):
    GB_CSTR                    reference;     // name of reference species
    Aligner_get_consensus_func get_consensus; // function to get consensus seq
    SearchRelativeParams&      relSearch;     // params to search for relatives

    // general params:
    FA_turn            turnAllowed;
    const AlignParams& ali_params;
    int                maxProtection;         // protection level

    // -------------------- new members
    int                wasNotAllowedToAlign;  // number of failures caused by wrong protection
    int                err_count;             // count errors
    bool               continue_on_error;         /* true -> run single alignments in separate transactions.
                                               *         If one target fails, continue with rest.
                                               * false -> run all in one transaction
                                               *          One fails -> all fail!
                                               */
    FA_errorAction     error_action;

    typedef std::list<GBDATA*> GBDATAlist;
    GBDATAlist species_to_mark;       // species that will be marked after aligning

    ARB_ERROR alignToReference(GBDATA *gb_toalign, const AlignmentReference& ref);
    ARB_ERROR alignTargetsToReference(const AlignmentReference& ref, GBDATA *gb_species_data);

    ARB_ERROR alignToExplicitReference(GBDATA *gb_species_data, int max_seq_length);
    ARB_ERROR alignToConsensus(GBDATA *gb_species_data, int max_seq_length);
    ARB_ERROR alignToRelatives(GBDATA *gb_species_data, int max_seq_length);

    void triggerAction(GBDATA *gb_species, bool has_been_aligned) {
        bool mark = false;
        switch (error_action) {
            case FA_MARK_FAILED:  mark = !has_been_aligned; break;
            case FA_MARK_ALIGNED: mark = has_been_aligned; break;
            case FA_NO_ACTION:    mark = false; break;
        }
        if (mark) species_to_mark.push_back(gb_species);
    }

public:

#if defined(WARN_TODO)
#warning pass AlignmentReference from caller (replacing reference parameters)
#endif

    Aligner(GBDATA *gb_main_,

            // define alignment target(s):
            FA_alignTarget                     alignWhat_,
            GB_CSTR                            alignment_,                   // name of alignment to use (==NULL -> use default)
            GB_CSTR                            toalign_,                     // name of species to align (used if alignWhat == FA_CURRENT)
            Aligner_get_first_selected_species get_first_selected_species_,  // used if alignWhat == FA_SELECTED
            Aligner_get_next_selected_species  get_next_selected_species_,   // --- "" ---

            // define reference sequence(s):
            GB_CSTR                    reference_,     // name of reference species
            Aligner_get_consensus_func get_consensus_, // function to get consensus seq
            SearchRelativeParams&      relSearch_,     // params to search for relatives

            // general params:
            FA_turn            turnAllowed_,
            const AlignParams& ali_params_,
            int                maxProtection_,      // protection level
            bool               continue_on_error_,
            FA_errorAction     error_action_)
        : gb_main(gb_main_),
          alignWhat(alignWhat_),
          alignment(alignment_),
          toalign(toalign_),
          get_first_selected_species(get_first_selected_species_),
          get_next_selected_species(get_next_selected_species_),
          reference(reference_),
          get_consensus(get_consensus_),
          relSearch(relSearch_),
          turnAllowed(turnAllowed_),
          ali_params(ali_params_),
          maxProtection(maxProtection_),
          wasNotAllowedToAlign(0),
          err_count(0),
          continue_on_error(continue_on_error_),
          error_action(continue_on_error ? error_action_ : FA_NO_ACTION)
    {}

    ARB_ERROR run();
};

ARB_ERROR Aligner::alignToReference(GBDATA *gb_toalign, const AlignmentReference& ref) {
    int       myProtection = GB_read_security_write(GBT_read_sequence(gb_toalign, alignment));
    ARB_ERROR error;

    if (myProtection<=maxProtection) {
        // Depending on 'continue_on_error' we either
        // * stop aligning if an error occurs or
        // * run the alignment of each species in its own transaction, ignore but report errors and
        //   optionally mark aligned or failed species.
        
        if (continue_on_error) {
            fa_assert(GB_get_transaction_level(gb_main) == 1);
            error = GB_end_transaction(gb_main, error); // end global transaction
        }

        if (!error) {
            error             = GB_push_transaction(gb_main);
            if (!error) error = ref.align_to(gb_toalign);
            error             = GB_end_transaction(gb_main, error);

            if (error) err_count++;
            triggerAction(gb_toalign, !error);
        }

        if (continue_on_error) {
            if (error) {
                GB_warning(error.deliver());
                error = NULL;
            }
            error = GB_begin_transaction(gb_main); // re-open global transaction
        }
    }
    else {
        wasNotAllowedToAlign++;
        triggerAction(gb_toalign, false);
    }

    return error;
}

ARB_ERROR Aligner::alignTargetsToReference(const AlignmentReference& ref, GBDATA *gb_species_data) {
    ARB_ERROR error;

    fa_assert(GB_get_transaction_level(gb_main) == 1);
    
    switch (alignWhat) {
        case FA_CURRENT: { // align one sequence
            fa_assert(toalign);

            GBDATA *gb_toalign = GBT_find_species_rel_species_data(gb_species_data, toalign);
            if (!gb_toalign) {
                error = species_not_found(toalign);
            }
            else {
                currentSequenceNumber = overallSequenceNumber = 1;
                error = alignToReference(gb_toalign, ref);
            }
            break;
        }
        case FA_MARKED: { // align all marked sequences
            int     count      = GBT_count_marked_species(gb_main);
            GBDATA *gb_species = GBT_first_marked_species_rel_species_data(gb_species_data);

            arb_progress progress("Aligning marked species", count);
            progress.auto_subtitles("Species");

            currentSequenceNumber = 1;
            overallSequenceNumber = count;

            while (gb_species && !error) {
                error      = alignToReference(gb_species, ref);
                progress.inc_and_check_user_abort(error);
                gb_species = GBT_next_marked_species(gb_species);
            }
            break;
        }
        case FA_SELECTED: { // align all selected species
            int     count;
            GBDATA *gb_species = get_first_selected_species(&count);

            
            currentSequenceNumber = 1;
            overallSequenceNumber = count;

            if (!gb_species) {
                aw_message("There is no selected species!");
            }
            else {
                arb_progress progress("Aligning selected species", count);
                progress.auto_subtitles("Species");

                while (gb_species && !error) {
                    error      = alignToReference(gb_species, ref);
                    progress.inc_and_check_user_abort(error);
                    gb_species = get_next_selected_species();
                }
            }
            break;
        }
    }
    
    fa_assert(GB_get_transaction_level(gb_main) == 1);
    return error;
}

ARB_ERROR Aligner::alignToExplicitReference(GBDATA *gb_species_data, int max_seq_length) {
    ARB_ERROR  error;
    GBDATA    *gb_reference = GBT_find_species_rel_species_data(gb_species_data, reference);

    if (!gb_reference) {
        error = species_not_found(reference);
    }
    else {
        long                  referenceChksum;
        CompactedSubSequence *referenceSeq = readCompactedSequence(gb_reference, alignment, &error, NULL, &referenceChksum, ali_params.range);

        if (island_hopper) {
#if defined(WARN_TODO)
#warning setting island_hopper reference has to be done in called function (seems that it is NOT done for alignToConsensus and alignToRelatives). First get tests in place!
#endif
            GBDATA *gb_seq = GBT_read_sequence(gb_reference, alignment);        // get sequence
            if (gb_seq) {
                long        length = GB_read_string_count(gb_seq);
                const char *data   = GB_read_char_pntr(gb_seq);

                island_hopper->set_ref_sequence(data);
                island_hopper->set_alignment_length(length);
            }
        }


        if (!error) {
#if defined(WARN_TODO)
#warning do not pass FastSearchSequence to ExplicitReference, instead pass sequence and length (ExplicitReference shall create it itself)
#endif

            FastSearchSequence referenceFastSeq(*referenceSeq);
            ExplicitReference  target(alignment, &referenceFastSeq, gb_reference, max_seq_length, ali_params);

            error = alignTargetsToReference(target, gb_species_data);
        }
        delete referenceSeq;
    }
    return error;
}

ARB_ERROR Aligner::alignToConsensus(GBDATA *gb_species_data, int max_seq_length) {
    return alignTargetsToReference(ConsensusReference(alignment, get_consensus, max_seq_length, ali_params),
                                   gb_species_data);
}

ARB_ERROR Aligner::alignToRelatives(GBDATA *gb_species_data, int max_seq_length) {
    
    return alignTargetsToReference(SearchRelativesReference(relSearch, max_seq_length, turnAllowed, alignment, ali_params),
                                   gb_species_data);
}

ARB_ERROR Aligner::run() {
    // (reference == NULL && get_consensus==NULL -> use next relative for (each) sequence)

    fa_assert(GB_get_transaction_level(gb_main) == 0); // no open transaction allowed here!
    ARB_ERROR error = GB_push_transaction(gb_main);
    bool search_by_pt_server = reference==NULL && get_consensus==NULL;

    err_count            = 0;
    wasNotAllowedToAlign = 0;                       // incremented for every sequence which has higher protection level (and was not aligned)
    species_to_mark.clear();

    fa_assert(reference==NULL || get_consensus==NULL);    // can't do both modes

    if (turnAllowed != FA_TURN_NEVER) {
        if ((ali_params.range.is_part()) || !search_by_pt_server) {
            // if not selected 'Range/Whole sequence' or not selected 'Reference/Auto search..'
            turnAllowed = FA_TURN_NEVER; // then disable mirroring for the current call
        }
    }

    if (!error && !alignment) {
        alignment = (GB_CSTR)GBT_get_default_alignment(gb_main); // get default alignment
        if (!alignment) error = "No default alignment";
    }

    if (!error && alignment) {
        global_alignmentType = GBT_get_alignment_type(gb_main, alignment);
        if (search_by_pt_server) {
            GB_alignment_type pt_server_alignmentType = GBT_get_alignment_type(gb_main, relSearch.pt_server_alignment);

            if (pt_server_alignmentType != GB_AT_RNA &&
                pt_server_alignmentType != GB_AT_DNA) {
                error = "pt_servers only support RNA/DNA sequences.\n"
                    "In the aligner window you may specify a RNA/DNA alignment \n"
                    "and use a pt_server build on that alignment.";
            }
        }
    }

    if (!error) {
        GBDATA *gb_species_data = GBT_get_species_data(gb_main);
        int max_seq_length = GBT_get_alignment_len(gb_main, alignment);

        if (reference) error          = alignToExplicitReference(gb_species_data, max_seq_length);
        else if (get_consensus) error = alignToConsensus(gb_species_data, max_seq_length);
        else error                    = alignToRelatives(gb_species_data, max_seq_length);
    }

    ClustalV_exit();
    unaligned_bases.clear();

    error = GB_end_transaction(gb_main, error); // close global transaction

    if (wasNotAllowedToAlign>0) {
        const char *mess = GBS_global_string("%i species were not aligned (because of protection level)", wasNotAllowedToAlign);
        aw_message(mess);
    }

    if (err_count) {
        aw_message_if(error);
        error = GBS_global_string("Aligner produced %i error%c", err_count, err_count==1 ? '\0' : 's');
    }

    if (error_action != FA_NO_ACTION) {
        fa_assert(continue_on_error);

        GB_transaction ta(gb_main);
        GBT_mark_all(gb_main, 0);
        for (GBDATAlist::iterator sp = species_to_mark.begin(); sp != species_to_mark.end(); ++sp) {
            GB_write_flag(*sp, 1);
        }

        const char *whatsMarked = (error_action == FA_MARK_ALIGNED) ? "aligned" : "failed";
        size_t      markCount   = species_to_mark.size();
        if (markCount>0) {
            const char *msg = GBS_global_string("%zu %s species %s been marked",
                                                markCount,
                                                whatsMarked,
                                                (markCount == 1) ? "has" : "have");
            aw_message(msg);
        }
    }

    return error;
}

void FastAligner_start(AW_window *aw, AW_CL cl_AlignDataAccess) {
    AW_root               *root          = aw->get_root();
    char                  *reference     = NULL;    // align against next relatives
    char                  *toalign       = NULL;    // align marked species
    ARB_ERROR              error         = NULL;
    const AlignDataAccess *data_access   = (const AlignDataAccess *)cl_AlignDataAccess;
    int                    get_consensus = 0;
    int                    pt_server_id  = -1;

    Aligner_get_first_selected_species get_first_selected_species = 0;
    Aligner_get_next_selected_species  get_next_selected_species  = 0;

    fa_assert(island_hopper == 0);
    if (root->awar(FA_AWAR_USE_ISLAND_HOPPING)->read_int()) {
        island_hopper = new IslandHopping;
        if (root->awar(FA_AWAR_USE_SECONDARY)->read_int()) {
            if (data_access->helix_string) island_hopper->set_helix(data_access->helix_string);
            else error = "Warning: No HELIX found. Can't use secondary structure";
        }

        if (!error) {
            island_hopper->set_parameters(root->awar(FA_AWAR_ESTIMATE_BASE_FREQ)->read_int(),
                                          root->awar(FA_AWAR_BASE_FREQ_T)->read_float(),
                                          root->awar(FA_AWAR_BASE_FREQ_C)->read_float(),
                                          root->awar(FA_AWAR_BASE_FREQ_A)->read_float(),
                                          root->awar(FA_AWAR_BASE_FREQ_C)->read_float(),
                                          root->awar(FA_AWAR_SUBST_PARA_CT)->read_float(),
                                          root->awar(FA_AWAR_SUBST_PARA_AT)->read_float(),
                                          root->awar(FA_AWAR_SUBST_PARA_GT)->read_float(),
                                          root->awar(FA_AWAR_SUBST_PARA_AC)->read_float(),
                                          root->awar(FA_AWAR_SUBST_PARA_CG)->read_float(),
                                          root->awar(FA_AWAR_SUBST_PARA_AG)->read_float(),
                                          root->awar(FA_AWAR_EXPECTED_DISTANCE)->read_float(),
                                          root->awar(FA_AWAR_STRUCTURE_SUPPLEMENT)->read_float(),
                                          root->awar(FA_AWAR_GAP_A)->read_float(),
                                          root->awar(FA_AWAR_GAP_B)->read_float(),
                                          root->awar(FA_AWAR_GAP_C)->read_float(),
                                          root->awar(FA_AWAR_THRESHOLD)->read_float()
                                          );
        }
    }

    FA_alignTarget alignWhat = static_cast<FA_alignTarget>(root->awar(FA_AWAR_TO_ALIGN)->read_int());
    if (!error) {
        switch (alignWhat) {
            case FA_CURRENT: { // align current species
                toalign = root->awar(AWAR_SPECIES_NAME)->read_string();
                break;
            }
            case FA_MARKED: { // align marked species
                break;
            }
            case FA_SELECTED: { // align selected species
                get_first_selected_species = data_access->get_first_selected_species;
                get_next_selected_species  = data_access->get_next_selected_species;
                break;
            }
            default: {
                fa_assert(0);
                break;
            }
        }

        switch (static_cast<FA_reference>(root->awar(FA_AWAR_REFERENCE)->read_int())) {
            case FA_REF_EXPLICIT: // align against specified species
                reference = root->awar(FA_AWAR_REFERENCE_NAME)->read_string();
                break;

            case FA_REF_CONSENSUS: // align against group consensus
                if (data_access->get_group_consensus) {
                    get_consensus = 1;
                }
                else {
                    error = "Can't get group consensus here.";
                }
                break;

            case FA_REF_RELATIVES: // align against species searched via pt_server
                pt_server_id = root->awar(AWAR_PT_SERVER)->read_int();
                if (pt_server_id<0) {
                    error = "No pt_server selected";
                }
                break;

            default: fa_assert(0);
                break;
        }
    }

    RangeList ranges;
    bool      autoRestrictRange4nextRelSearch = true;

    if (!error) {
        switch (static_cast<FA_range>(root->awar(FA_AWAR_RANGE)->read_int())) {
            case FA_WHOLE_SEQUENCE:
                autoRestrictRange4nextRelSearch = false;
                ranges.add(PosRange::whole());
                break;

            case FA_AROUND_CURSOR: {
                int curpos = root->awar(AWAR_CURSOR_POSITION_LOCAL)->read_int();
                int size = root->awar(FA_AWAR_AROUND)->read_int();

                ranges.add(PosRange(curpos-size, curpos+size));
                break;
            }
            case FA_SELECTED_RANGE: {
                PosRange range;
                if (!data_access->get_selected_range(range)) {
                    error = "There is no selected species!";
                }
                else {
                    ranges.add(range);
                }
                break;
            }

            case FA_SAI_MULTI_RANGE: {
                GB_transaction ta(data_access->gb_main);

                char *sai_name = root->awar(FA_AWAR_SAI_RANGE_NAME)->read_string();
                char *aliuse   = GBT_get_default_alignment(data_access->gb_main);

                GBDATA *gb_sai     = GBT_expect_SAI(data_access->gb_main, sai_name);
                if (!gb_sai) error = GB_await_error();
                else {
                    GBDATA *gb_data = GBT_read_sequence(gb_sai, aliuse);
                    if (!gb_data) {
                        error = GB_have_error()
                            ? GB_await_error()
                            : GBS_global_string("SAI '%s' has no data in alignment '%s'", sai_name, aliuse);
                    }
                    else {
                        char *sai_data = GB_read_string(gb_data);
                        char *set_bits = root->awar(FA_AWAR_SAI_RANGE_CHARS)->read_string();

                        ranges = build_RangeList_from_string(sai_data, set_bits, false);

                        free(set_bits);
                        free(sai_data);
                    }
                }
                free(aliuse);
                free(sai_name);
                break;
            }
        }
    }

    if (!error) {
        for (RangeList::iterator r = ranges.begin(); r != ranges.end() && !error; ++r) {
            PosRange range = *r;

            GBDATA *gb_main          = data_access->gb_main;
            char   *editor_alignment = 0;
            {
                GB_transaction  ta(gb_main);
                char           *default_alignment = GBT_get_default_alignment(gb_main);

                editor_alignment = root->awar_string(AWAR_EDITOR_ALIGNMENT, default_alignment)->read_string();
                free(default_alignment);
            }

            char     *pt_server_alignment = root->awar(FA_AWAR_PT_SERVER_ALIGNMENT)->read_string();
            PosRange  relRange            = PosRange::whole(); // unrestricted!

            if (autoRestrictRange4nextRelSearch) {
                AW_awar    *awar_relrange = root->awar(FA_AWAR_RELATIVE_RANGE);
                const char *relrange      = awar_relrange->read_char_pntr();
                if (relrange[0]) {
                    int region_plus = atoi(relrange);

                    fa_assert(range.is_part());

                    relRange = PosRange(range.start()-region_plus, range.end()+region_plus); // restricted
                    awar_relrange->write_as_string(GBS_global_string("%i", region_plus)); // set awar to detected value (avoid misbehavior when it contains ' ' or similar)
                }
            }

            if (island_hopper) {
                island_hopper->set_range(range);
                range = PosRange::whole();
            }

            SearchRelativeParams relSearch(new PT_FamilyFinder(gb_main,
                                                               pt_server_id,
                                                               root->awar(AWAR_NN_OLIGO_LEN)->read_int(),
                                                               root->awar(AWAR_NN_MISMATCHES)->read_int(),
                                                               root->awar(AWAR_NN_FAST_MODE)->read_int(),
                                                               root->awar(AWAR_NN_REL_MATCHES)->read_int(),
                                                               RSS_BOTH_MIN), // old scaling as b4 [8520] @@@ make configurable
                                           pt_server_alignment,
                                           root->awar(FA_AWAR_NEXT_RELATIVES)->read_int());

            relSearch.getFamilyFinder()->restrict_2_region(relRange);

            struct AlignParams ali_params = {
                static_cast<FA_report>(root->awar(FA_AWAR_REPORT)->read_int()),
                bool(root->awar(FA_AWAR_SHOW_GAPS_MESSAGES)->read_int()),
                range
            };

            {
                arb_progress progress("FastAligner");
                progress.allow_title_reuse();

                int cont_on_error = root->awar(FA_AWAR_CONTINUE_ON_ERROR)->read_int();

                Aligner aligner(gb_main,
                                alignWhat,
                                editor_alignment,
                                toalign,
                                get_first_selected_species,
                                get_next_selected_species,

                                reference,
                                get_consensus ? data_access->get_group_consensus : NULL,
                                relSearch,

                                static_cast<FA_turn>(root->awar(FA_AWAR_MIRROR)->read_int()),
                                ali_params,
                                root->awar(FA_AWAR_PROTECTION)->read_int(),
                                cont_on_error,
                                (FA_errorAction)root->awar(FA_AWAR_ACTION_ON_ERROR)->read_int());
                error = aligner.run();

                if (error && cont_on_error) {
                    aw_message_if(error);
                    error = NULL;
                }
            }

            free(pt_server_alignment);
            free(editor_alignment);
        }
    }

    if (island_hopper) {
        delete island_hopper;
        island_hopper = 0;
    }

    if (toalign) free(toalign);
    aw_message_if(error);
    if (data_access->do_refresh) data_access->refresh_display();
}



void FastAligner_create_variables(AW_root *root, AW_default db1) {
    root->awar_string(FA_AWAR_REFERENCE_NAME, "", db1);

    root->awar_int(FA_AWAR_TO_ALIGN,  FA_CURRENT,        db1);
    root->awar_int(FA_AWAR_REFERENCE, FA_REF_EXPLICIT,   db1);
    root->awar_int(FA_AWAR_RANGE,     FA_WHOLE_SEQUENCE, db1);

    AW_awar *ali_protect = root->awar_int(FA_AWAR_PROTECTION, 0, db1);
    if (ARB_in_novice_mode(root)) {
        ali_protect->write_int(0); // reset protection for noobs
    }

    root->awar_int(FA_AWAR_AROUND,             25,                  db1);
    root->awar_int(FA_AWAR_MIRROR,             FA_TURN_INTERACTIVE, db1);
    root->awar_int(FA_AWAR_REPORT,             FA_NO_REPORT,        db1);
    root->awar_int(FA_AWAR_SHOW_GAPS_MESSAGES, 1,                   db1);
    root->awar_int(FA_AWAR_CONTINUE_ON_ERROR,  1,                   db1);
    root->awar_int(FA_AWAR_ACTION_ON_ERROR,    FA_NO_ACTION,        db1);
    root->awar_int(FA_AWAR_USE_SECONDARY,      0,                   db1);
    root->awar_int(AWAR_PT_SERVER,             0,                   db1);
    root->awar_int(FA_AWAR_NEXT_RELATIVES,     1,                   db1)->set_minmax(1, 100);

    root->awar_string(FA_AWAR_RELATIVE_RANGE, "", db1);
    root->awar_string(FA_AWAR_PT_SERVER_ALIGNMENT, root->awar(AWAR_DEFAULT_ALIGNMENT)->read_char_pntr(), db1);

    root->awar_string(FA_AWAR_SAI_RANGE_NAME,  "",   db1);
    root->awar_string(FA_AWAR_SAI_RANGE_CHARS, "x1", db1);

    // island hopping:

    root->awar_int(FA_AWAR_USE_ISLAND_HOPPING, 0, db1);

    root->awar_int(FA_AWAR_ESTIMATE_BASE_FREQ, 1, db1);

    root->awar_float(FA_AWAR_BASE_FREQ_A, 0.25, db1);
    root->awar_float(FA_AWAR_BASE_FREQ_C, 0.25, db1);
    root->awar_float(FA_AWAR_BASE_FREQ_G, 0.25, db1);
    root->awar_float(FA_AWAR_BASE_FREQ_T, 0.25, db1);

    root->awar_float(FA_AWAR_SUBST_PARA_AC, 1.0, db1);
    root->awar_float(FA_AWAR_SUBST_PARA_AG, 4.0, db1);
    root->awar_float(FA_AWAR_SUBST_PARA_AT, 1.0, db1);
    root->awar_float(FA_AWAR_SUBST_PARA_CG, 1.0, db1);
    root->awar_float(FA_AWAR_SUBST_PARA_CT, 4.0, db1);
    root->awar_float(FA_AWAR_SUBST_PARA_GT, 1.0, db1);

    root->awar_float(FA_AWAR_EXPECTED_DISTANCE,    0.3,   db1);
    root->awar_float(FA_AWAR_STRUCTURE_SUPPLEMENT, 0.5,   db1);
    root->awar_float(FA_AWAR_THRESHOLD,            0.005, db1);

    root->awar_float(FA_AWAR_GAP_A, 8.0, db1);
    root->awar_float(FA_AWAR_GAP_B, 4.0, db1);
    root->awar_float(FA_AWAR_GAP_C, 7.0, db1);

    AWTC_create_common_next_neighbour_vars(root);
}

void FastAligner_set_align_current(AW_root *root, AW_default db1) {
    root->awar_int(FA_AWAR_TO_ALIGN, FA_CURRENT, db1);
}

void FastAligner_set_reference_species(AW_window * /* aww */, AW_CL cl_AW_root) {
    // sets the aligner reference species to current species
    AW_root *root     = (AW_root*)cl_AW_root;
    char    *specName = root->awar(AWAR_SPECIES_NAME)->read_string();

    root->awar(FA_AWAR_REFERENCE_NAME)->write_string(specName);
    free(specName);
}

static AW_window *create_island_hopping_window(AW_root *root, AW_CL) {
    AW_window_simple *aws = new AW_window_simple;

    aws->init(root, "ISLAND_HOPPING_PARA", "Parameters for Island Hopping");
    aws->load_xfig("faligner/islandhopping.fig");

    aws->at("close");
    aws->callback     ((AW_CB0)AW_POPDOWN);
    aws->create_button("CLOSE", "CLOSE", "O");

    aws->at("help");
    aws->callback(makeHelpCallback("islandhopping.hlp"));
    aws->create_button("HELP", "HELP");

    aws->at("use_secondary");
    aws->label("Use secondary structure (only for re-align)");
    aws->create_toggle(FA_AWAR_USE_SECONDARY);

    aws->at("freq");
    aws->create_toggle_field(FA_AWAR_ESTIMATE_BASE_FREQ, "Base freq.", "B");
    aws->insert_default_toggle("Estimate", "E", 1);
    aws->insert_toggle("Define here: ", "D", 0);
    aws->update_toggle_field();

    aws->at("freq_a"); aws->label("A:"); aws->create_input_field(FA_AWAR_BASE_FREQ_A, 4);
    aws->at("freq_c"); aws->label("C:"); aws->create_input_field(FA_AWAR_BASE_FREQ_C, 4);
    aws->at("freq_g"); aws->label("G:"); aws->create_input_field(FA_AWAR_BASE_FREQ_G, 4);
    aws->at("freq_t"); aws->label("T:"); aws->create_input_field(FA_AWAR_BASE_FREQ_T, 4);

    int xpos[4], ypos[4];
    {
        aws->button_length(1);

        int dummy;
        aws->at("h_a"); aws->get_at_position(&xpos[0], &dummy); aws->create_button(NULL, "A");
        aws->at("h_c"); aws->get_at_position(&xpos[1], &dummy); aws->create_button(NULL, "C");
        aws->at("h_g"); aws->get_at_position(&xpos[2], &dummy); aws->create_button(NULL, "G");
        aws->at("h_t"); aws->get_at_position(&xpos[3], &dummy); aws->create_button(NULL, "T");

        aws->at("v_a"); aws->get_at_position(&dummy, &ypos[0]); aws->create_button(NULL, "A");
        aws->at("v_c"); aws->get_at_position(&dummy, &ypos[1]); aws->create_button(NULL, "C");
        aws->at("v_g"); aws->get_at_position(&dummy, &ypos[2]); aws->create_button(NULL, "G");
        aws->at("v_t"); aws->get_at_position(&dummy, &ypos[3]); aws->create_button(NULL, "T");
    }

    aws->at("subst"); aws->create_button(NULL, "Substitution rate parameters:");

#define XOFF -25
#define YOFF 0

    aws->at(xpos[1]+XOFF, ypos[0]+YOFF); aws->create_input_field(FA_AWAR_SUBST_PARA_AC, 4);
    aws->at(xpos[2]+XOFF, ypos[0]+YOFF); aws->create_input_field(FA_AWAR_SUBST_PARA_AG, 4);
    aws->at(xpos[3]+XOFF, ypos[0]+YOFF); aws->create_input_field(FA_AWAR_SUBST_PARA_AT, 4);
    aws->at(xpos[2]+XOFF, ypos[1]+YOFF); aws->create_input_field(FA_AWAR_SUBST_PARA_CG, 4);
    aws->at(xpos[3]+XOFF, ypos[1]+YOFF); aws->create_input_field(FA_AWAR_SUBST_PARA_CT, 4);
    aws->at(xpos[3]+XOFF, ypos[2]+YOFF); aws->create_input_field(FA_AWAR_SUBST_PARA_GT, 4);

#undef XOFF
#undef YOFF

    aws->label_length(22);

    aws->at("dist");
    aws->label("Expected distance");
    aws->create_input_field(FA_AWAR_EXPECTED_DISTANCE, 5);

    aws->at("supp");
    aws->label("Structure supplement");
    aws->create_input_field(FA_AWAR_STRUCTURE_SUPPLEMENT, 5);

    aws->at("thres");
    aws->label("Threshold");
    aws->create_input_field(FA_AWAR_THRESHOLD, 5);

    aws->label_length(10);

    aws->at("gapA");
    aws->label("Gap A");
    aws->create_input_field(FA_AWAR_GAP_A, 5);

    aws->at("gapB");
    aws->label("Gap B");
    aws->create_input_field(FA_AWAR_GAP_B, 5);

    aws->at("gapC");
    aws->label("Gap C");
    aws->create_input_field(FA_AWAR_GAP_C, 5);

    return (AW_window *)aws;
}

static AW_window *create_family_settings_window(AW_root *root) {
    static AW_window_simple *aws = 0;

    if (!aws) {
        aws = new AW_window_simple;

        aws->init(root, "FAMILY_PARAMS", "Family search parameters");
        aws->load_xfig("faligner/family_settings.fig");

        aws->at("close");
        aws->callback     ((AW_CB0)AW_POPDOWN);
        aws->create_button("CLOSE", "CLOSE", "O");

        aws->at("help");
        aws->callback(makeHelpCallback("next_neighbours_common.hlp"));
        aws->create_button("HELP", "HELP");

        AWTC_create_common_next_neighbour_fields(aws);
    }

    return aws;
}

AW_window *FastAligner_create_window(AW_root *root, const AlignDataAccess *data_access) {
    AW_window_simple *aws = new AW_window_simple;

    aws->init(root, "INTEGRATED_ALIGNERS", INTEGRATED_ALIGNERS_TITLE);
    aws->load_xfig("faligner/faligner.fig");

    aws->label_length(10);
    aws->button_length(10);

    aws->at("close");
    aws->callback     ((AW_CB0)AW_POPDOWN);
    aws->create_button("CLOSE", "CLOSE", "O");

    aws->at("help");
    aws->callback(makeHelpCallback("faligner.hlp"));
    aws->create_button("HELP", "HELP");

    aws->at("aligner");
    aws->create_toggle_field(FA_AWAR_USE_ISLAND_HOPPING, "Aligner", "A");
    aws->insert_default_toggle("Fast aligner",   "F", 0);
    aws->sens_mask(AWM_EXP);
    aws->insert_toggle        ("Island Hopping", "I", 1);
    aws->sens_mask(AWM_ALL);
    aws->update_toggle_field();

    aws->button_length(12);
    aws->at("island_para");
    aws->callback(AW_POPUP, (AW_CL)create_island_hopping_window, 0);
    aws->sens_mask(AWM_EXP);
    aws->create_button("island_para", "Parameters", "");
    aws->sens_mask(AWM_ALL);

    aws->button_length(10);

    aws->at("rev_compl");
    aws->callback(build_reverse_complement, (AW_CL)data_access);
    aws->create_button("reverse_complement", "Turn now!", "");

    aws->at("what");
    aws->create_toggle_field(FA_AWAR_TO_ALIGN, "Align what?", "A");
    aws->insert_toggle        ("Current Species:", "A", FA_CURRENT);
    aws->insert_default_toggle("Marked Species",   "M", FA_MARKED);
    aws->insert_toggle        ("Selected Species", "S", FA_SELECTED);
    aws->update_toggle_field();

    aws->at("swhat");
    aws->create_input_field(AWAR_SPECIES_NAME, 2);

    aws->at("against");
    aws->create_toggle_field(FA_AWAR_REFERENCE, "Reference", "");
    aws->insert_toggle        ("Species by name:",          "S", FA_REF_EXPLICIT);
    aws->insert_toggle        ("Group consensus",           "K", FA_REF_CONSENSUS);
    aws->insert_default_toggle("Auto search by pt_server:", "A", FA_REF_RELATIVES);
    aws->update_toggle_field();

    aws->at("sagainst");
    aws->create_input_field(FA_AWAR_REFERENCE_NAME, 2);

    aws->at("copy");
    aws->callback(FastAligner_set_reference_species, (AW_CL)root);
    aws->create_button("Copy", "Copy", "");

    aws->label_length(0);
    aws->at("pt_server");
    awt_create_selection_list_on_pt_servers(aws, AWAR_PT_SERVER, true);

    aws->at("relrange");
    aws->label("Data from range only, plus");
    aws->create_input_field(FA_AWAR_RELATIVE_RANGE, 3);
    
    aws->at("use_ali");
    aws->label("Alignment");
    aws->create_input_field(FA_AWAR_PT_SERVER_ALIGNMENT, 12);

    aws->at("relatives");
    aws->label("Number of relatives to use");
    aws->create_input_field(FA_AWAR_NEXT_RELATIVES, 3);

    aws->at("relSett");
    aws->callback(AW_POPUP, (AW_CL)create_family_settings_window, (AW_CL)root);
    aws->create_autosize_button("Settings", "More settings", "");

    // Range

    aws->label_length(10);
    aws->at("range");
    aws->create_toggle_field(FA_AWAR_RANGE, "Range", "");
    aws->insert_default_toggle("Whole sequence",            "", FA_WHOLE_SEQUENCE);
    aws->insert_toggle        ("Positions around cursor: ", "", FA_AROUND_CURSOR);
    aws->insert_toggle        ("Selected range",            "", FA_SELECTED_RANGE);
    aws->insert_toggle        ("Multi-Range by SAI",        "", FA_SAI_MULTI_RANGE);
    aws->update_toggle_field();

    aws->at("around");
    aws->create_input_field(FA_AWAR_AROUND, 2);

    aws->at("sai");
    awt_create_SAI_selection_button(data_access->gb_main, aws, FA_AWAR_SAI_RANGE_NAME);
    
    aws->at("rchars");
    aws->create_input_field(FA_AWAR_SAI_RANGE_CHARS, 2);

    // Protection

    aws->at("protection");
    aws->label("Protection");
    aws->create_option_menu(FA_AWAR_PROTECTION, true);
    aws->insert_default_option("0", 0, 0);
    aws->insert_option("1", 0, 1);
    aws->insert_option("2", 0, 2);
    aws->insert_option("3", 0, 3);
    aws->insert_option("4", 0, 4);
    aws->insert_option("5", 0, 5);
    aws->insert_option("6", 0, 6);
    aws->update_option_menu();

    // MirrorCheck

    aws->at("mirror");
    aws->label("Turn check");
    aws->create_option_menu(FA_AWAR_MIRROR, true);
    aws->insert_option        ("Never turn sequence",         "", FA_TURN_NEVER);
    aws->insert_default_option("User acknowledgment ",        "", FA_TURN_INTERACTIVE);
    aws->insert_option        ("Automatically turn sequence", "", FA_TURN_ALWAYS);
    aws->update_option_menu();

    // Report

    aws->at("insert");
    aws->label("Report");
    aws->create_option_menu(FA_AWAR_REPORT, true);
    aws->insert_option        ("No report",                   "", FA_NO_REPORT);
    aws->sens_mask(AWM_EXP);
    aws->insert_default_option("Report to temporary entries", "", FA_TEMP_REPORT);
    aws->insert_option        ("Report to resident entries",  "", FA_REPORT);
    aws->sens_mask(AWM_ALL);
    aws->update_option_menu();

    aws->at("gaps");
    aws->create_toggle(FA_AWAR_SHOW_GAPS_MESSAGES);

    aws->at("continue");
    aws->create_toggle(FA_AWAR_CONTINUE_ON_ERROR);

    aws->at("on_failure");
    aws->label("On failure");
    aws->create_option_menu(FA_AWAR_ACTION_ON_ERROR, true);
    aws->insert_default_option("do nothing",   "", FA_NO_ACTION);
    aws->insert_option        ("mark failed",  "", FA_MARK_FAILED);
    aws->insert_option        ("mark aligned", "", FA_MARK_ALIGNED);
    aws->update_option_menu();

    aws->at("align");
    aws->callback(FastAligner_start, (AW_CL)data_access);
    aws->highlight();
    aws->create_button("GO", "GO", "G");

    return aws;
}

// --------------------------------------------------------------------------------

#ifdef UNIT_TESTS

#include <test_unit.h>

// ---------------------
//      OligoCounter

#include <map>
#include <string>

using std::map;
using std::string;

typedef map<string, size_t> OligoCount;

class OligoCounter {
    size_t oligo_len;
    size_t datasize;
    
    mutable OligoCount occurance;

    static string removeGaps(const char *seq) {
        size_t len = strlen(seq);
        string nogaps;
        nogaps.reserve(len);

        for (size_t p = 0; p<len; ++p) {
            char c = seq[p];
            if (c != '-' && c != '.') nogaps.append(1, c);
        }
        return nogaps;
    }

    void count_oligos(const string& seq) {
        occurance.clear();
        size_t max_pos = seq.length()-oligo_len;
        for (size_t p = 0; p <= max_pos; ++p) {
            string oligo(seq, p, oligo_len);
            occurance[oligo]++;
        }
    }

public:
    OligoCounter()
        : oligo_len(0), 
          datasize(0)
    {}
    OligoCounter(const char *seq, size_t oligo_len_)
        : oligo_len(oligo_len_)
    {
        string seq_nogaps = removeGaps(seq);
        datasize          = seq_nogaps.length();
        count_oligos(seq_nogaps);
    }

    OligoCounter(const OligoCounter& other)
        : oligo_len(other.oligo_len),
          datasize(other.datasize),
          occurance(other.occurance)
    {}

    size_t oligo_count(const char *oligo) {
        fa_assert(strlen(oligo) == oligo_len);
        return occurance[oligo];
    }

    size_t similarity_score(const OligoCounter& other) const {
        size_t score = 0;
        if (oligo_len == other.oligo_len) {
            for (OligoCount::const_iterator o = occurance.begin(); o != occurance.end(); ++o) {
                const string& oligo = o->first;
                size_t        count = o->second;

                score += min(count, other.occurance[oligo]);
            }
        }
        return score;
    }

    size_t getDataSize() const { return datasize; }
};

void TEST_OligoCounter() {
    OligoCounter oc1("CCAGGT", 3);
    OligoCounter oc2("GGTCCA", 3);
    OligoCounter oc2_gaps("..GGT--CCA..", 3);
    OligoCounter oc3("AGGTCC", 3);
    OligoCounter oc4("AGGTCCAGG", 3);

    TEST_EXPECT_EQUAL(oc1.oligo_count("CCA"), 1);
    TEST_EXPECT_ZERO(oc1.oligo_count("CCG"));
    TEST_EXPECT_EQUAL(oc4.oligo_count("AGG"), 2);

    int sc1_2 = oc1.similarity_score(oc2);
    int sc2_1 = oc2.similarity_score(oc1);
    TEST_EXPECT_EQUAL(sc1_2, sc2_1);

    int sc1_2gaps = oc1.similarity_score(oc2_gaps);
    TEST_EXPECT_EQUAL(sc1_2, sc1_2gaps);
    
    int sc1_3 = oc1.similarity_score(oc3);
    int sc2_3 = oc2.similarity_score(oc3);
    int sc3_4 = oc3.similarity_score(oc4);

    TEST_EXPECT_EQUAL(sc1_2, 2); // common oligos (CCA GGT)
    TEST_EXPECT_EQUAL(sc1_3, 2); // common oligos (AGG GGT)
    TEST_EXPECT_EQUAL(sc2_3, 3); // common oligos (GGT GTC TCC)

    TEST_EXPECT_EQUAL(sc3_4, 4);
}

// -------------------------
//      FakeFamilyFinder

class FakeFamilyFinder: public FamilyFinder { // derived from a Noncopyable
    // used by unit tests to detect next relatives instead of asking the pt-server

    GBDATA                    *gb_main;
    string                     ali_name;
    map<string, OligoCounter>  oligos_counted;      // key = species name
    PosRange                   counted_for_range;
    size_t                     oligo_len;

public:
    FakeFamilyFinder(GBDATA *gb_main_, string ali_name_, bool rel_matches_, size_t oligo_len_)
        : FamilyFinder(rel_matches_, RSS_BOTH_MIN),
          gb_main(gb_main_),
          ali_name(ali_name_),
          counted_for_range(PosRange::whole()), 
          oligo_len(oligo_len_)
    {}

    GB_ERROR searchFamily(const char *sequence, FF_complement compl_mode, int max_results, double min_score) OVERRIDE { // @@@ use min_score
        // 'sequence' has to contain full sequence or part corresponding to 'range'

        TEST_EXPECT_EQUAL(compl_mode, FF_FORWARD); // not fit for other modes

        delete_family_list();
        
        OligoCounter seq_oligo_count(sequence, oligo_len);

        if (range != counted_for_range) {
            oligos_counted.clear(); // forget results for different range
            counted_for_range = range;
        }

        char *buffer     = 0;
        int   buffersize = 0;

        bool partial_match = range.is_part();

        GB_transaction ta(gb_main);
        int            results = 0;

        for (GBDATA *gb_species = GBT_first_species(gb_main);
             gb_species && results<max_results;
             gb_species = GBT_next_species(gb_species))
        {
            string name = GBT_get_name(gb_species);
            if (oligos_counted.find(name) == oligos_counted.end()) {
                GBDATA     *gb_data  = GBT_read_sequence(gb_species, ali_name.c_str());
                const char *spec_seq = GB_read_char_pntr(gb_data);

                if (partial_match) {
                    int spec_seq_len = GB_read_count(gb_data);
                    int range_len    = ExplicitRange(range, spec_seq_len).size();

                    if (buffersize<range_len) {
                        delete [] buffer;
                        buffersize = range_len;
                        buffer     = new char[buffersize+1];
                    }

                    range.copy_corresponding_part(buffer, spec_seq, spec_seq_len);
                    oligos_counted[name] = OligoCounter(buffer, oligo_len);
                }
                else {
                    oligos_counted[name] = OligoCounter(spec_seq, oligo_len);
                }
            }

            const OligoCounter& spec_oligo_count = oligos_counted[name];
            size_t              score            = seq_oligo_count.similarity_score(spec_oligo_count);

            FamilyList *newMember = new FamilyList;

            newMember->name        = strdup(name.c_str());
            newMember->matches     = score;
            newMember->rel_matches = score/spec_oligo_count.getDataSize();
            newMember->next        = NULL;

            family_list = newMember->insertSortedBy_matches(family_list);
            results++;
        }

        delete [] buffer;

        return NULL;
    }
};

// ----------------------------
//      test_alignment_data

#include <arb_unit_test.h>

static const char *test_aliname = "ali_test";

static const char *get_aligned_data_of(GBDATA *gb_main, const char *species_name) {
    GB_transaction  ta(gb_main);
    ARB_ERROR       error;
    const char     *data = NULL;

    GBDATA *gb_species     = GBT_find_species(gb_main, species_name);
    if (!gb_species) error = GB_await_error();
    else {
        GBDATA *gb_data     = GBT_read_sequence(gb_species, test_aliname);
        if (!gb_data) error = GB_await_error();
        else {
            data             = GB_read_char_pntr(gb_data);
            if (!data) error = GB_await_error();
        }
    }

    TEST_EXPECT_NULL(error.deliver());
    
    return data;
}

static const char *get_used_rels_for(GBDATA *gb_main, const char *species_name) {
    GB_transaction  ta(gb_main);
    const char     *result     = NULL;
    GBDATA         *gb_species = GBT_find_species(gb_main, species_name);
    if (!gb_species) result    = GBS_global_string("<No such species '%s'>", species_name);
    else {
        GBDATA *gb_used_rels      = GB_search(gb_species, "used_rels", GB_FIND);
        if (!gb_used_rels) result = "<No such field 'used_rels'>";
        else    result            = GB_read_char_pntr(gb_used_rels);
    }
    return result;
}

static GB_ERROR forget_used_relatives(GBDATA *gb_main) {
    GB_ERROR       error = NULL;
    GB_transaction ta(gb_main);
    for (GBDATA *gb_species = GBT_first_species(gb_main);
         gb_species && !error;
         gb_species = GBT_next_species(gb_species))
    {
        GBDATA *gb_used_rels = GB_search(gb_species, "used_rels", GB_FIND);
        if (gb_used_rels) {
            error = GB_delete(gb_used_rels);
        }
    }
    return error;
}


#define ALIGNED_DATA_OF(name) get_aligned_data_of(gb_main, name)
#define USED_RELS_FOR(name)   get_used_rels_for(gb_main, name)

// ----------------------------------------

static GBDATA *selection_fake_gb_main = NULL;
static GBDATA *selection_fake_gb_last = NULL;

static GBDATA *fake_first_selected(int *count) {
    selection_fake_gb_last = NULL;
    *count                 = 2; // we fake two species as selected ("c1" and "c2")
    return GBT_find_species(selection_fake_gb_main, "c1");
}
static GBDATA *fake_next_selected() {
    if (!selection_fake_gb_last) {
        selection_fake_gb_last = GBT_find_species(selection_fake_gb_main, "c2");
    }
    else {
        selection_fake_gb_last = NULL;
    }
    return selection_fake_gb_last;
}

static char *fake_get_consensus(const char*, PosRange range) {
    const char *data = get_aligned_data_of(selection_fake_gb_main, "s1");
    if (range.is_whole()) return strdup(data);
    return GB_strpartdup(data+range.start(), data+range.end());
}

static void test_install_fakes(GBDATA *gb_main) {
    selection_fake_gb_main = gb_main;
}


// ----------------------------------------

static AlignParams test_ali_params = {
    FA_NO_REPORT,
    false, // showGapsMessages
    PosRange::whole()
};

static AlignParams test_ali_params_partial = {
    FA_NO_REPORT,
    false, // showGapsMessages
    PosRange(25, 60)
};

// ----------------------------------------

static struct arb_unit_test::test_alignment_data TestAlignmentData_TargetAndReferenceHandling[] = {
    { 0, "s1", ".........A--UCU-C------C-U-AAACC-CA-A-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-GUAA-CU-C..........." }, // reference
    { 0, "s2", "AUCUCCUAAACCCAACCGUAGUUCGAAUUGAGGACUGUAACUC......................................................" }, // align single sequence (same data as reference)
    { 1, "m1", "UAGAGGAUUUGGGUUGGCAUCAAGCUUAACUCCUGACAUUGAG......................................................" }, // align marked sequences.. (complement of reference)
    { 1, "m2", "...UCCUAAACCAACCCGUAGUUCGAAUUGAGGACUGUAA........................................................." },
    { 1, "m3", "AUC---UAAACCAACCCGUAGUUCGAAUUGAGGACUG---CUC......................................................" },
    { 0, "c1", "AUCUCCUAAACCCAACC--------AAUUGAGGACUGUAACUC......................................................" },  // align selected sequences..
    { 0, "c2", "AUCUCCU------AACCGUAGUUCCCCGAA------ACUGUAACUC..................................................." },
    { 0, "r1", "GAGUUACAGUCCUCAAUUCGGGGAACUACGGUUGGGUUUAGGAGAU..................................................." },  // align by faked pt_server
};

void TEST_Aligner_TargetAndReferenceHandling() {
    // performs some alignments to check logic of target and reference handling
    
    GB_shell   shell;
    ARB_ERROR  error;
    GBDATA    *gb_main = TEST_CREATE_DB(error, test_aliname, TestAlignmentData_TargetAndReferenceHandling, false);

    TEST_EXPECT_NULL(error.deliver());

    SearchRelativeParams search_relative_params(new FakeFamilyFinder(gb_main, test_aliname, false, 8),
                                                test_aliname,
                                                2);

    test_install_fakes(gb_main);
    arb_suppress_progress silence;

    // bool cont_on_err    = true;
    bool cont_on_err = false;

    TEST_EXPECT_EQUAL(GBT_count_marked_species(gb_main), 3); // we got 3 marked species
    {
        Aligner aligner(gb_main,
                        FA_CURRENT,
                        test_aliname,
                        "s2",                       // toalign
                        NULL,                       // get_first_selected_species
                        NULL,                       // get_next_selected_species
                        "s1",                       // reference species
                        NULL,                       // get_consensus
                        search_relative_params,     // relative search
                        FA_TURN_ALWAYS,
                        test_ali_params,
                        0,
                        cont_on_err,
                        FA_NO_ACTION);
        error = aligner.run();
        TEST_EXPECT_NULL(error.deliver());
    }
    TEST_EXPECT_EQUAL(GBT_count_marked_species(gb_main), 3); // we still got 3 marked species
    {
        Aligner aligner(gb_main,
                        FA_MARKED,
                        test_aliname,
                        NULL,                       // toalign
                        NULL,                       // get_first_selected_species
                        NULL,                       // get_next_selected_species
                        "s1",                       // reference species
                        NULL,                       // get_consensus
                        search_relative_params,     // relative search
                        FA_TURN_ALWAYS,
                        test_ali_params,
                        0,
                        cont_on_err,
                        FA_MARK_FAILED);
        error = aligner.run();
        TEST_EXPECT_NULL(error.deliver());

        TEST_EXPECT(!cont_on_err || GBT_count_marked_species(gb_main) == 0); // FA_MARK_FAILED (none failed -> none marked)
    }
    {
        Aligner aligner(gb_main,
                        FA_SELECTED,
                        test_aliname,
                        NULL,                       // toalign
                        fake_first_selected,        // get_first_selected_species
                        fake_next_selected,         // get_next_selected_species
                        NULL,                       // reference species
                        fake_get_consensus,         // get_consensus
                        search_relative_params,     // relative search
                        FA_TURN_ALWAYS,
                        test_ali_params,
                        0,
                        cont_on_err,
                        FA_MARK_ALIGNED);
        error = aligner.run();
        TEST_EXPECT_NULL(error.deliver());

        TEST_EXPECT(!cont_on_err || GBT_count_marked_species(gb_main) == 2); // FA_MARK_ALIGNED (2 selected were aligned)
    }
    {
        Aligner aligner(gb_main,
                        FA_CURRENT,
                        test_aliname,
                        "r1",                       // toalign
                        NULL,                       // get_first_selected_species
                        NULL,                       // get_next_selected_species
                        NULL,                       // reference species
                        NULL,                       // get_consensus
                        search_relative_params,     // relative search
                        FA_TURN_ALWAYS,
                        test_ali_params,
                        0,
                        cont_on_err,
                        FA_MARK_ALIGNED);

        error = aligner.run();
        TEST_EXPECT_NULL(error.deliver());

        TEST_EXPECT(!cont_on_err || GBT_count_marked_species(gb_main) == 1);
    }
    
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("s2"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-GUAA-CU-C...........");

    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("m1"), ".......UAG--AGG-A------U-U-UGGGU-UG-G-C-A-U-CAA-GCU--------UAA-C-UCCUG-AC--A-UUGAG...............");
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("m2"), "..............U-C------C-U-AAACC-AA-C-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-GUAA................");
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("m3"), ".........A--U----------C-U-AAACC-AA-C-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-G----CU-C...........");

    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("c1"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-------------------AA-U-UGAGG-AC--U-GUAA-CU-C...........");
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("c2"), ".........A--UCU-C------C-U-AA---------C-C-G-UAG-UUC------------C-CCGAA-AC--U-GUAA-CU-C...........");

    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("r1"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-G-UAG-UUCCCC-----GAA-U-UGAGG-AC--U-GUAA-CU-C..........."); // here sequence shall be turned!


    TEST_EXPECT_EQUAL(USED_RELS_FOR("r1"), "s2:43, s1:1");

    // ----------------------------------------------
    //      now align all others vs next relative

    search_relative_params.maxRelatives = 5;
    TEST_EXPECT_NO_ERROR(forget_used_relatives(gb_main));

    int species_count = ARRAY_ELEMS(TestAlignmentData_TargetAndReferenceHandling);
    for (int sp = 0; sp<species_count; ++sp) {
        const char *name = TestAlignmentData_TargetAndReferenceHandling[sp].name;
        if (strcmp(name, "r1") != 0) { // skip "r1" (already done above)
            Aligner aligner(gb_main,
                            FA_CURRENT,
                            test_aliname,
                            name,                       // toalign
                            NULL,                       // get_first_selected_species
                            NULL,                       // get_next_selected_species
                            NULL,                       // reference species
                            NULL,                       // get_consensus
                            search_relative_params,     // relative search
                            FA_TURN_ALWAYS,
                            test_ali_params,
                            0,
                            cont_on_err,
                            FA_MARK_ALIGNED);

            error = aligner.run();
            TEST_EXPECT_NULL(error.deliver());

            TEST_EXPECT(!cont_on_err || GBT_count_marked_species(gb_main) == 1);
        }
    }

    TEST_EXPECT_EQUAL(USED_RELS_FOR("s1"), "s2");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("s2"), "s1"); // same as done manually
    TEST_EXPECT_EQUAL(USED_RELS_FOR("m1"), "r1:42");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("m2"), "m3");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("m3"), "m2");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("c1"), "r1");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("c2"), "r1");

    //                                       range aligned below (see test_ali_params_partial)
    //                                       "-------------------------XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX------------------------------------"
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("s1"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-GUAA-CU-C..........."); // 1st aligning of 's1'
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("s2"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-GUAA-CU-C..........."); // same_as_above (again aligned vs 's1')

    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("m1"), ".........U--AGA-G------G---AUUUG-GG-U-U-G-G-CAU-CAAGCU-----UAA-C-UCCUG-AC--A-UUGAG---------------"); // changed; @@@ bug: no dots at end
 
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("m2"), ".........U--C----------C-U-AAACC-AA-C-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-G----UA-A..........."); // changed (1st align vs 's1', this align vs 'm3')
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("m3"), ".........A--U----------C-U-AAACC-AA-C-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-G----CU-C..........."); // same_as_above (1st align vs 's1', this align vs 'm2')
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("c1"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-------------------AA-U-UGAGG-AC--U-GUAA-CU-C..........."); // same_as_above
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("c2"), ".........A--UCU-C------C-U--------A-A-C-C-G-UAG-UUCCCC-----GA--------A-AC--U-GUAA-CU-C..........."); // changed

    // --------------------------------------
    //      test partial relative search

    search_relative_params.getFamilyFinder()->restrict_2_region(test_ali_params_partial.range);
    TEST_EXPECT_NO_ERROR(forget_used_relatives(gb_main));

    for (int sp = 0; sp<species_count; ++sp) {
        const char *name = TestAlignmentData_TargetAndReferenceHandling[sp].name;
        Aligner aligner(gb_main,
                        FA_CURRENT,
                        test_aliname,
                        name,                       // toalign
                        NULL,                       // get_first_selected_species
                        NULL,                       // get_next_selected_species
                        NULL,                       // reference species
                        NULL,                       // get_consensus
                        search_relative_params,     // relative search
                        FA_TURN_NEVER,
                        test_ali_params_partial,
                        0,
                        cont_on_err,
                        FA_MARK_ALIGNED);

        error = aligner.run();
        TEST_EXPECT_NULL(error.deliver());

        TEST_EXPECT(!cont_on_err || GBT_count_marked_species(gb_main) == 1);
    }

    TEST_EXPECT_EQUAL(USED_RELS_FOR("s1"), "s2");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("s2"), "s1");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("m1"), "r1"); // (not really differs)
    TEST_EXPECT_EQUAL(USED_RELS_FOR("m2"), "m3");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("m3"), "m2");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("c1"), "r1");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("c2"), "r1");
    TEST_EXPECT_EQUAL(USED_RELS_FOR("r1"), "s2:20, c2:3");

    //                                       aligned range (see test_ali_params_partial)
    //                                       "-------------------------XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX------------------------------------"
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("s1"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-GUAA-CU-C..........."); // same_as_above
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("s2"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-GUAA-CU-C..........."); // same_as_above

    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("m1"), ".........U--AGA-G------G-A-UU-UG-GG-U-U-G-G-CAU-CAAGCU-----UAA-C-UCCUG-AC--A-UUGAG---------------"); // changed
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("m2"), ".........U--C----------C-U-AAACC-AA-C-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-G----UA-A..........."); // same_as_above
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("m3"), ".........A--U----------C-U-AAACC-AA-C-C-C-G-UAG-UUC--------GAA-U-UGAGG-AC--U-G----CU-C..........."); // same_as_above

    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("c1"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-------------------AA-U-UGAGG-AC--U-GUAA-CU-C..........."); // same_as_above
    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("c2"), ".........A--UCU-C------C---------UA-A-C-C-G-UAG-UUCCCC-----GA--------A-AC--U-GUAA-CU-C..........."); // changed

    TEST_EXPECT_EQUAL(ALIGNED_DATA_OF("r1"), ".........A--UCU-C------C-U-AAACC-CA-A-C-C-G-UAG-UUCCCC-----GAA-U-UGAGG-AC--U-GUAA-CU-C..........."); // same_as_above

    GB_close(gb_main);
}

// ----------------------------------------

static struct arb_unit_test::test_alignment_data TestAlignmentData_checksumError[] = {
    { 0, "MtnK1722", "...G-GGC-C-G............CCC-GG--------CAAUGGGGGCGGCCCGGCGGAC----GG--C-UCAGU-A---AAG-UCGUAACAA-GG-UAG-CCGU-AGGGGAA-CCUG-CGGC-UGGAUCACCUCC....." }, // gets aligned
    { 0, "MhnFormi", "...A-CGA-U-C------------CUUCGG--------GGUCG-U-GG-C-GU-A--C------GG--C-UCAGU-A---AAG-UCGUAACAA-GG-UAG-CCGU-AGGGGAA-CCUG-CGGC-UGGAUCACCUCCU...." }, // 1st relative
    { 0, "MhnT1916", "...A-CGA-A-C------------CUU-GU--------GUUCG-U-GG-C-GA-A--C------GG--C-UCAGU-A---AAG-UCGUAACAA-GG-UAG-CCGU-AGGGGAA-CCUG-CGGC-UGGAUCACCUCCU...." }, // next relative
    { 0, "MthVanni", "...U-GGU-U-U------------C-------------GGCCA-U-GG-C-GG-A--C------GG--C-UCAUU-A---AAG-UCGUAACAA-GG-UAG-CCGU-AGGGGAA-CCUG-CGGC-UGGAUCACCUCC....." }, // next relative
    { 0, "ThcCeler", "...G-GGG-C-G...CC-U---U--------GC--G--CGCAC-C-GG-C-GG-A--C------GG--C-UCAGU-A---AAG-UCGUAACAA-GG-UAG-CCGU-AGGGGAA-CCUA-CGGC-UCGAUCACCUCCU...." }, // next relative
};

void TEST_SLOW_Aligner_checksumError() {
    // @@@ SLOW cause this often gets terminated in nightly builds
    //     no idea why. normally it runs a few ms
    
    // this produces an internal aligner error

    GB_shell   shell;
    ARB_ERROR  error;
    GBDATA    *gb_main = TEST_CREATE_DB(error, test_aliname, TestAlignmentData_checksumError, false);

    SearchRelativeParams search_relative_params(new FakeFamilyFinder(gb_main, test_aliname, false, 8),
                                                test_aliname,
                                                10); // use up to 10 relatives

    test_install_fakes(gb_main);
    arb_suppress_progress silence;

    bool cont_on_err = true;
    if (!error) {
        Aligner aligner(gb_main,
                        FA_CURRENT,
                        test_aliname,
                        "MtnK1722",                 // toalign
                        NULL,                       // get_first_selected_species
                        NULL,                       // get_next_selected_species
                        NULL,                       // reference species
                        NULL,                       // get_consensus
                        search_relative_params,     // relative search
                        FA_TURN_ALWAYS,
                        test_ali_params,
                        0,
                        cont_on_err,
                        FA_MARK_ALIGNED);

        error = aligner.run();
    }
    {
        GB_ERROR err = error.deliver();
        TEST_EXPECT_NULL__BROKEN(err, "Aligner produced 1 error");
    }
    TEST_EXPECT_EQUAL__BROKEN(USED_RELS_FOR("MtnK1722"), "???", "<No such field 'used_rels'>"); // subsequent failure

    GB_close(gb_main);
}

static const char *asstr(LooseBases& ub) {
    LooseBases tmp;
    while (!ub.is_empty()) tmp.memorize(ub.recall());
    
    const char *result = "";
    while (!tmp.is_empty()) {
        ExplicitRange r = tmp.recall();
        result          = GBS_global_string("%s %i/%i", result, r.start(), r.end());
        ub.memorize(r);
    }
    return result;
}

void TEST_BASIC_UnalignedBases() {
    LooseBases ub;
    TEST_EXPECT(ub.is_empty());
    TEST_EXPECT_EQUAL(asstr(ub), "");

    // test add+remove
    ub.memorize(ExplicitRange(5, 7));
    TEST_REJECT(ub.is_empty());
    TEST_EXPECT_EQUAL(asstr(ub), " 5/7");
    
    TEST_EXPECT(ub.recall() == ExplicitRange(5, 7));
    TEST_EXPECT(ub.is_empty());

    ub.memorize(ExplicitRange(2, 4));
    TEST_EXPECT_EQUAL(asstr(ub), " 2/4");

    ub.memorize(ExplicitRange(4, 9));
    TEST_EXPECT_EQUAL(asstr(ub), " 2/4 4/9");
    
    ub.memorize(ExplicitRange(8, 10));
    ub.memorize(ExplicitRange(11, 14));
    ub.memorize(ExplicitRange(12, 17));
    TEST_EXPECT_EQUAL(asstr(ub), " 2/4 4/9 8/10 11/14 12/17");
    TEST_EXPECT_EQUAL(asstr(ub), " 2/4 4/9 8/10 11/14 12/17"); // check asstr has no side-effect

    {
        LooseBases toaddNrecalc;

        CompactedSubSequence Old("ACGTACGT", 8, "name1");
        CompactedSubSequence New("--A-C--G-T--A-C-G-T", 19, "name2");
        // ---------------------- 0123456789012345678

        toaddNrecalc.memorize(ExplicitRange(1, 7));
        toaddNrecalc.memorize(ExplicitRange(3, 5));
        TEST_EXPECT_EQUAL(asstr(toaddNrecalc), " 1/7 3/5");

        ub.follow_ali_change_and_append(toaddNrecalc, AliChange(Old, New));

        TEST_EXPECT_EQUAL(asstr(ub), " 3/18 8/15 2/4 4/9 8/10 11/14 12/17");
        TEST_EXPECT(toaddNrecalc.is_empty());

        LooseBases selfRecalc;
        selfRecalc.follow_ali_change_and_append(ub, AliChange(New, New));
        TEST_EXPECT_EQUAL__BROKEN(asstr(selfRecalc),
                                  " 3/18 8/15 0/6 3/11 8/11 10/15 10/17",  // wanted behavior?
                                  " 3/18 8/17 0/6 3/11 8/13 10/15 10/18"); // doc wrong behavior @@@ "8/17", "8/13", "10/18" are wrong

        ub.follow_ali_change_and_append(selfRecalc, AliChange(New, Old));
        TEST_EXPECT_EQUAL__BROKEN(asstr(ub),
                                  " 1/7 3/5 0/1 1/3 3/3 4/5 4/6",  // wanted behavior? (from wanted behavior above)
                                  " 1/7 3/7 0/2 1/4 3/5 4/6 4/7"); // document wrong behavior
        TEST_EXPECT_EQUAL__BROKEN(asstr(ub),
                                  " 1/7 3/6 0/1 1/3 3/4 4/5 4/7",  // wanted behavior? (from wrong result above)
                                  " 1/7 3/7 0/2 1/4 3/5 4/6 4/7"); // document wrong behavior
    }
}


#endif // UNIT_TESTS