File: reconciling.html

package info (click to toggle)
arch 1.0pre15-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 20,180 kB
  • ctags: 4,560
  • sloc: ansic: 64,410; sh: 29,168; lisp: 1,896; awk: 1,044; makefile: 484; sed: 26
file content (574 lines) | stat: -rw-r--r-- 13,751 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
<html>
<head>
<title>Multi-Branch Merging -- The reconcile Command</title>
</head>
<body>

<a name="Multi-Branch_Merging_--_The_reconcile_Command"></a>

<a href="http://www.regexps.com">The Hackerlab at <code>regexps.com</code></a>

<h2 align=center>Multi-Branch Merging -- The reconcile Command</h2>




<small>
<b>up: </b><a href="arch.html#arch">arch</a></br>
<b>next: </b><a href="sync.html#Synchronizing_Two_Branches">Synchronizing Two Branches</a></br>

<b>prev: </b><a href="arbitrary-patching.html#Arbitrary_Patching_with_delta-patch">Arbitrary Patching with delta-patch</a></br>

</small>
<br>






<p><a name="index-pt:0"></a>

</p><p>History sensative merging with <code>replay</code>
 can avoid some avoidable merge
conflicts, but not all.  One example is a class of merge problems that
we'll name &quot;Repeated Multi-Branch Merging&quot;: the problem of merging
several branches when each of the branches have previously merged with
some of the others.  Although this kind of merging seems arcane, it
can, in fact, easily arise in quite realistic situations (for example,
when simultaneously supporting multiple releases of a single project).
</p><p>Below is an example to illustrate the problem.  The set-up in this
example is a bit long, but each step along the way is perfectly
reasonable, and the end result is quite a tangled knot.  The pay-off
will be seeing how to cope with the resulting mess.
</p>
<a name="The_Repeated_Multi-Branch_Merge_Problem"></a>



<h3 align=center>The Repeated Multi-Branch Merge Problem</h3>










<p>Imagine that we start with a particular version of a particular
branch, call it <code>X</code>
.  We'll begin at a particular revision in that
branch version: <code>X-1</code>
 (for the purposes of this explanation, calling
the revision <code>X-1</code>
 is much less cumbersome than using a real revision
name like <code>foo--mumble--3.5--patch-24</code>
).
</p><p>Three programmers each form their own branch from <code>X-1</code>
: call them
<code>A</code>
, <code>B</code>
, and <code>C</code>
:
</p><pre>
                 ---> A-0
                |
        X-1 ----+---> B-0
                |
                 ---> C-0

</pre>
<p>The plan here is develop on each branch, then merge the changes
together to create a new revision of <code>X</code>
.
</p><p>Programmer <code>B</code>
 starts off, and creates a series of revisions.
Simultaneously, <code>A</code>
 creates a project tree and starts making local
changes for his first revision:
</p><pre>
                 ---> A-0
                |      \
                |       A's project tree with local changes
                |
        X-1 ----+---> B-0 -> B-1 -> B-2 -> B-3
                |
                 ---> C-0

</pre>
<p>Programmer <code>A</code>
 wants to develop on top of those three patches from
<code>B</code>
, and so forms a merge.  At this stage, <code>A</code>
 can do a simple
<code>update</code>
 or <code>replay</code>
 to create a merged project tree:
</p><pre>
                 ---> A-0
                |     \
                |      A's merged project tree
                |                 ^
                |      -----------|---------
                |     /                     \
        X-1 ----+---> B-0 -> B-1 -> B-2 -> B-3
                |
                 ---> C-0

</pre>
<p>Let's assume that <code>A</code>
's merge involved some conflicts: <code>B</code>
's code has
been slightly rearranged in the merged tree.  Now <code>A</code>
 can check in
that revision.  Meanwhile, <code>C</code>
 starts work:
</p><pre>
                 ---> A-0 -> A-1
                |             ^
                |             |
                |      -------|-------------
                |     /                     \
        X-1 ----+---> B-0 -> B-1 -> B-2 -> B-3
                |
                |       C's project tree with local changes
                |      /
                 ---> C-0

</pre>
<p><code>C</code>
 decides it would be a good idea to merge with the feature's found
in <code>A-1</code>
.  In doing so, he'll also be picking up <code>B-0..3</code>
.  Once
again, a simple <code>update</code>
 (or <code>replay</code>
) is sufficient at this point,
though to keep things interesting, we'll again assume that there are
conflicts to resolve during the update.  And meanwhile, by the way,
<code>B</code>
 works on his next patch, and <code>A</code>
 commits a new revision:
</p><pre>
                 ---> B-0 -> B-1 -> B-2 -> B-3
                |     \                     /\
                |      --------------------- |
                |             |              V
                |             |         B's project tree
                |             V
        X-1 ----+---> A-0 -> A-1 -> A-2
                |             |
                |             V
                |       C's merged project tree
                |       ^     |
                |      /      V
                 ---> C-0 -> C-1

</pre>
<p>We're nearly done with the set-up: <code>B</code>
 decides to merge in the changes
in <code>A-2</code>
.  This is a slightly interesting merge (although not the
primary topic of this chapter).  The common ancestor of <code>A-2</code>
 and
<code>B</code>
's project tree is <code>B-3</code>
.  We previously assumed that when <code>A</code>

updated against <code>B-3</code>
 there were conflicts that had to be resolved by
hand.  <code>B</code>
 has a choice.  He can use <code>update</code>
 against <code>A-2</code>
 to create
a new tree:
</p><pre>
        delta (B-3, B's project tree) [A-2]

</pre>
<p>giving priority to <code>A</code>
's resolution of those merge conflicts.  Or, he
can commit his project tree, <code>get</code>
 revision <code>A-2</code>
, and update against
the committed project tree (or do an equivalent thing by hand, without
comitting, using <code>mkpatch</code>
 and <code>dopatch</code>
):
</p><pre>
        delta(B-3, A-2) [B's project tree]

</pre>
<p>giving priority to <code>B</code>
's code, and reconsidering the merge conflicts
that <code>A</code>
 handled.  The choice is arbitrary and the best answer depends
on the particular changes made.  <code>B</code>
 might want to experimentally try
both merges (perhaps in a scratch repository) before picking one.
Either way, after a commit, we'll have something like:
</p><pre>
                 ---> B-0 -> B-1 -> B-2 -> B-3 -> B-4 -> B-5
                |                           /            ^ 
                |                          /            /
                |                         /            /
                |               ----------            /
                |              /       ---------------
                |             /       /
                |            V       /
        X-1 ----+---> A-0 -> A-1 -> A-2
                |             |
                |             V
                 ---> C-0 -> C-1

</pre>
<pre>
        or in English:

</pre>
<pre>
        A-1 is up-to-date with respect to B-3
        B-5 is up-to-date with respect to A-2
        C-1 is up-to-date with respect to A-1 and (therefore) B-3

</pre>
<p>Finally, let's assume that the main development path, <code>X</code>
, has evolved
independently of these three branches, and that <code>A</code>
 has added a few
more revisions:
</p><pre>
                 ---> B-0 -> B-1 -> B-2 -> B-3 -> B-4 -> B-5
                |                           /            ^ 
                |                          /            /
                |                         /            /
                |               ----------            /
                |              /       ---------------
                |             /       /
                |            V       /
        X-1 ----+---> A-0 -> A-1 -> A-2 -> A-3 -> A-4
         |      |             |
         V      |             V
        X-2      ---> C-0 -> C-1

</pre>












<a name="The_Challenge"></a>



<h3 align=center>The Challenge</h3>










<p>Whew.  What an (unfortunately plausible) mess.  Now for the challenge:
</p><pre>
        Create X-3, which is up-to-date with A-4, B-5, and C-1

</pre>
<p>There is no one right answer to the challenge: no elegant solution
that is guaranteed to avoid merge conflicts.  Indeed, there are many
ways to perform the merge which differ in terms of what conflicts
they'll produce.  The goal of <code>arch</code>
 is to arm programmers with plenty
of tools to understand the situation, explore, generate and apply
patches effectively, and find a reasonable solution with the greatest
degree possible of automated assistance.
</p>











<a name="The_Simple_update_Solutions"></a>



<h3 align=center>The Simple update Solutions</h3>










<p>Simple <code>update</code>
 gives us a whole collection of simplistic solutions.
For example, <code>X</code>
 could update against <code>A</code>
, then <code>B</code>
, then <code>C</code>
 or:
</p><pre>
        intermediate-1 := delta (A-4, X-1) [X-2]
        intermediate-2 := delta (B-5, X-1) [intermediate-1]
        X-3-candidate  := delta (C-1, X-1) [intermediate-2]

</pre>
<p>That <code>update</code>
 path has some problems, though.  <code>delta (A-4, X-1)</code>

includes the changes in <code>delta (A-1, X-1)</code>
, and so does <code>delta (B-5,
X-1)</code>
.  So creating <code>intermediate-2</code>
 will involve redundant patching
and plenty of opportunities for conflicts.  Similar problems occur
when creating <code>X-3-candidate</code>
.
</p><p><code>X</code>
 could try doing the <code>update</code>
s in a different order, but similar
problems will still occur.
</p>











<a name="The_Simple_replay_Solutions"></a>



<h3 align=center>The Simple replay Solutions</h3>










<p><code>X</code>
 could <code>replay</code>
 the branches in some order.  Suppose he <code>replays</code>

<code>A</code>
, then <code>B</code>
, then <code>C</code>
:
</p><pre>
    intermediate-1 := A-4 [ A-3 [ A-2 [ A-1 [ A-0 [ X-2 ]]]]]
    intermediate-2 := B-5 [ B-4 [ intermediate-1 ]]
    X-3-candidate  := C-1 [ C-0 [ intermediate-2 ]]

</pre>
<p>History sensitivity helped a bit there: <code>replay</code>
 knows better than to
apply <code>B-0..3</code>
 -- eliminating one source of needless conflicts.
Still, when we replay <code>B-5</code>
 and <code>C-1</code>
, there will be plenty of
conflicts to make up for that.  
</p><p>It's also worth mentioning that that this solution involves applying
nine different patches: we can do better.  By differently ordering the
<code>replay</code>
 solution, we get by with fewer patches (replay <code>C</code>
 first,
then <code>A</code>
, then <code>B</code>
, for example).  Figuring out the best order in
which to apply patches is, ultimately, the subject of this chapter:
</p>











<a name="The_reconcile_Solution"></a>



<h3 align=center>The reconcile Solution</h3>










<p>Suppose that <code>X</code>
 asks, of the tree <code>X-2</code>
:
</p><pre>
        % larch whats-missing A B C

</pre>
<p>the answer is:
</p><pre>
        A-0
        A-1
        A-2
        A-3
        A-4
        B-0
        B-1
        B-2
        B-3
        B-4
        B-5
        C-0
        C-1

</pre>
<p><code>X</code>
 can also ask the more interesting question:
</p><pre>
        % larch whats-missing --merges A B C

</pre>
<p>which will answer not only what patches are missing, but what patches
include other patches:
</p><pre>
        A-0 A-0
        A-1 A-1
        A-1 B-0
        A-1 B-1
        A-1 B-2
        A-1 B-3
        A-2 A-2
        A-3 A-3
        A-4 A-4
        B-0 B-0
        B-1 B-1
        B-2 B-2
        B-3 B-3
        B-4 B-4
        B-5 B-5
        B-5 A-0
        B-5 A-1
        B-5 A-2
        C-0 C-0
        C-1 C-1
        C-1 A-0
        C-1 A-1
        C-1 B-0
        C-1 B-1
        C-1 B-2
        C-1 B-3

</pre>
<p><code>X</code>
 can pipe that list into a filtering command, <code>larch reconcile</code>
,
which does some magic (the trick is revealed below):
</p><pre>
      % larch whats-missing --merges A B C \
        | larch reconcile
        C-0
        C-1
        B-4
        B-5
        A-3
        A-4

</pre>
<p>which means that X can perform the merge with just:
</p><pre>
        A-4 [ A-3 [ B-5 [ B-4 [ C-1 [ C-0 [ X-2 ]]]]]]

</pre>
<p>There is still a potential source of conflicts -- when applying <code>B-5</code>

in this case -- but the patch set is as small as possible (six patches
instead of our earlier nine), and the sources of conflicts are as few
as possible.
</p><p>How did <code>reconcile</code>
 find that solution?  What's the magic?
Conceptually, <code>reconcile</code>
 works in two steps.
</p><p>First, <code>reconcile</code>
 computes a subset of all the patches: the
<em>
<a name="index-pt:1"></a>

necessary patches
</em>
.  The set of necessary patches is the smallest set
of patches which, applied in some order, is sufficient to bring the
tree up to date.  (Proof that there is a unique smallest set of
patches with that property is left as an exercise for the interested
reader.)
</p><p>Second, <code>reconcile</code>
 repeatedly selects the next &quot;necessary&quot; patch to
apply, until none are left.  At each step of this loop, candidates for
the next patch to apply are the patches all of whose prerequisites are
in place.  Of those, the next patch is the one that comes first in the
first column of the input to <code>reconcile</code>
.
</p><p>So, you don't believe this obscure command is useful in real life?
See <a href="implementing-policies.html#Even/Odd_Versions">Even/Odd Versions</a>.
</p>


















<small><i>arch: The arch Revision Control System

</i></small><br>


<a href="http://www.regexps.com">The Hackerlab at <code>regexps.com</code></a>

</body>