File: PlotData.py

package info (click to toggle)
arden 1.0-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,128 kB
  • sloc: python: 1,555; javascript: 249; sh: 10; makefile: 2
file content (295 lines) | stat: -rw-r--r-- 9,632 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
'''
Created  2012
@author: GieseS


Little plotting script which is called in the analysis of different mappings to an artificial reference genome.
It produces the following plots:




1) ROC Curve
2) Overview histograms for FP / TP.


'''

import matplotlib
matplotlib.use('Agg')

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import random
import time
import pylab as p

##### HELP FUNCTIONS ####

def trapezoidal_rule(x, y):
    """Approximates the integral through the points a,b"""
    index =  [i+1 for i in range(len(x)-1)]
    xdiff = np.array([x[i]-x[i-1] for i in index])
    ysum = np.array([y[i]+y[i-1] for i in index])
    return(np.dot(xdiff,ysum)/2)


#### HELP FUNCTIONS END ############


""" 
abbreviations:
tp = True positives
fp = false positives
NM = number of mismtaches
mq = mapping quality
rq = readquality
subs = substitutions in artifical reference genome (ARG)
"""


            
###############################################################################            

def CalculateRoc2(dataArray,prefix,readsize,uniquehits,mappedreads,filename):
    """
    Calculates the adjusted ROC curve as well as the AUC value derived from the adjusted points
    and writes the ROC tables to .txt files. 
    """
    starttime= time.time()
    uniquehits = float(uniquehits)
    readsize = float(readsize)
    
    
    entries = len(dataArray)
        

    resultmatrix = np.arange(entries*2)
    resultmatrix = resultmatrix.reshape(2,entries)
        
    maxrq =  max(x.rq for x in dataArray)
    maxnm =  max(x.nm[0] for x in dataArray)
    maxGaps=  max(x.gaps[0] for x in dataArray)
    maxMism=  max(x.mism[0] for x in dataArray)
    
        
    minrq =  min(x.rq for x in dataArray)
    minnm =  min(x.nm[0] for x in dataArray)
    minmq=  min(x.mq[0] for x in dataArray)
    minGaps=  min(x.gaps[0] for x in dataArray)  
    minMism=  min(x.mism[0] for x in dataArray)      
    
    
    # adjust stepsize for rq since the score behaves the other way
    quants = [1,2,3,4,5]
    tempa = maxrq-minrq
    stepsize = tempa/5
        
    rqQuants = [round(minrq+(i-1)*stepsize,3) for i in quants]
    rqQuants.reverse()
    rqQuants[-1] =0 # last entry is rounded bigger than the smallest in the dataset
        
    nmQuants = [i*maxnm/5 for i in quants]
    GapsQuants = [i*maxGaps/5 for i in quants]
    MismQuants = [i*maxMism/5 for i in quants]

    rocvector = []
        
    # i = NM,l = RQ, k = MQ
    for l in quants: # RQ
                for k in quants: # GAPS
                    for j in quants: # MISMATCH
                            temparray = [m for m in dataArray if m.gaps[0] <= GapsQuants[k-1] and m.mism[0] <= MismQuants[j-1]  and m.rq >=rqQuants[l-1]]
                            

                            tempids = [m.id for m in temparray]
                            uniquereads = {}
                            for i in range(0,len(tempids)):
                                uniquereads[tempids[i]] = ""

                            mappedreads = len(uniquereads)
                            
 
                            
                            templength = len(temparray)
                            
                            if templength == 0:
                                continue
                            else:
                                tempTP = sum(x.mr[0] for x in temparray)
                                tempFP =templength-tempTP
                                F = round((float(mappedreads)/ readsize) ,3)
                                sens = round((tempTP/ uniquehits) * F,3)
                                if tempFP == 0:
                                    spec = 0
                                else:
                                    spec = round((tempFP / uniquehits) * F,3)                    
                                
                                rocvector.append([rqQuants[l-1],GapsQuants[k-1],MismQuants[j-1],tempTP,tempFP,templength,sens,spec,F])
                        
                    #print ("%d\t%d\t%d\t" % (templength,tempTP,tempFP))

    #0 = NM        4 = TP        7 = sens
    #1 = RQ        5 = FP        8 = 1-spec
    #2 = GAPS        6 = P        9 = F
    #append needed for last entry in AUC calculation
    rocvector.append([0,0,0,0,0,0,0,0,0])                
    nproc = np.array(rocvector)
    
    #write the sens and specificity values from nproc according to the enumeration in line 149. 
    #specificity is in cell -2
    # sensitivity is in cell -3
    sens =  [i[-3] for i in nproc]
    spez =  [i[-2] for i in nproc]
    
    # adjust ROC curve. It is necessary that it the 1-specificity ends in 1.
    # for the last record copy the  predecessor in sens to it
    # and write 1 to specificity    
    spez[-1] = 1
    sens[-1] = sens[-2]
    

    rocarray1 = np.array([sens,spez])
    rocarray1 = rocarray1.flatten('F')
    rocarray1= rocarray1.reshape((len(spez),2))
    
    rocarray = np.array([sens,spez])
    rocarray = rocarray.flatten('F')
    rocarray = rocarray.reshape((len(spez),2))
    rocarray = np.sort(rocarray.view('float,float'), order=['f0','f1'], axis=0).view(np.float)
    
    rocarrayCorrected = rocarray
    
    #print rocarrayCorrected
    # project points where...
    for m in range(len(rocarrayCorrected)-2,-1,-1):
        if (rocarrayCorrected[m,1] >= rocarrayCorrected[m+1,1]):
            rocarrayCorrected[m,1] = rocarrayCorrected[m+1,1]

            
    #print rocarrayCorrected            
    plt.hold(True)
    plt.figure()
    plt.subplot(111)
    #plt.scatter(spez, sens, c='b', marker='o', facecolor='red')
    #plt.plot(rocarray[:,1], rocarray[:,0]
    plt.plot(rocarrayCorrected[:,1],rocarrayCorrected[:,0], marker='o', markersize=7,linestyle='--', color='r', label='projected')
    plt.plot(rocarray1[:,1], rocarray1[:,0], linestyle="None",label='real',marker='.',color='g')
    plt.xlabel('1-specificity')
    plt.ylabel('sensitivity')
    plt.title(r'ROC:'+filename)
    plt.axis([-0.1,1.1,-0.1,1.1])
    plt.grid(True)
    plt.legend(loc='lower right')
    plt.tight_layout()
    plt.savefig(prefix + "_ROC.pdf",format='pdf')
    plt.clf  
    
    
    AUC = trapezoidal_rule(rocarrayCorrected[:,1], rocarrayCorrected[:,0])
    
    fobj =  open(prefix+"_roctable.txt","w")
    fobj.write("RQ\tGAPS\tMM\tPTP\tFP\tP\tSn\t1-Sp\tF\r\n")
    for i in range(0,len(rocvector),1):
        temp = [str(k) for k in rocvector[i]]
        tempstr = "\t".join(temp)
        fobj.write(tempstr+"\r\n")

    endtime= time.time()
    return(round(AUC,3))

def plotOverviewHist(fp,tp,label,prefix,mappernames):
    """Plots true positives and false positives into 2 different histogram subplots. """
    prefix2 = "/".join(prefix.split("/")[0:-1])+"/"
    fobj = open(prefix2+"indexMappingTools.txt","w")
    for i in range(0,len(label)):
        fobj.write("%s - %s\r\n" %(i+1,mappernames[i]))
    fobj.close()
    
    x = [i for i in range(1,len(fp)*3,3)]
    xmax = max(x)+1
    ymaxTP = max(tp)+0.1
    ymaxFP = max(fp)+0.1

    ##### SUBPLOT NUMBER OF MISMATCHES ####
    y = tp
    x =x
    z = fp

 
    fig = p.figure()
    # only plot every 2nd label
    if len(label) <= 7:
        widthp = 0.7
        ticks = label
    else:
        widthp = 0.3
        ticks = [i if i%2 == 0 else "" for i in label]
    # Here we're adding 2 subplots.  The grid is set
    # up as one row, two columns.
    ax1 = fig.add_subplot(1,2,1)
    ax1.bar(x,y,width=widthp, facecolor='darkgreen')
    ax1.set_ylabel('#TP hits')
    ax1.set_xlabel('index mapping tool')
    ax1.set_title("Global comparison #TP hits")
    p.xticks(x,ticks)
    p.grid(True)
    p.axis([0,xmax,0,ymaxTP+ymaxTP*10/100])
    
    # on the second axis, make the width smaller (default is 0.8)
    ax2 = fig.add_subplot(1,2,2)
    ax2.bar(x,z,width=widthp, facecolor='darkred')
    ax2.set_ylabel('#FP hits')
    ax2.set_xlabel('index mapping tool')
    ax2.set_title("Global comparison #FP hits")
    p.axis([0,xmax,0,ymaxFP+ymaxFP*10/100])
    p.xticks(x,ticks)
    p.grid(True)
    plt.tight_layout()
    p.savefig(prefix2 + "Overall_histabs.pdf",format='pdf')
    p.clf()
    
    
    tpsum =sum(tp)
    fpsum =sum(fp)
    y = [i/float(tpsum) for i in tp]
    x =x
    z = [i/float(fpsum) for i in fp]
    ymax = max(max(z),max(y))+0.2
    
    fig = p.figure()
    # only plot every 2nd labelare provided
    if len(label) <= 7:
        ticks = label
    else:
        ticks = [i if i%2 == 0 else "" for i in label]
    # Here we're adding 2 subplots.  The grid is set
    # up as one row, two columns.
    ax1 = fig.add_subplot(1,2,1)

   
    ax1.bar(x,y,width=widthp, facecolor='darkgreen')
    ax1.set_ylabel('%TP hits')
    ax1.set_xlabel('index mapping tool')
    ax1.set_title("Global comparison %TP hits")
    p.xticks(x,ticks)
    p.grid(True)
    p.axis([0,xmax,0,1.1])
    
    # on the second axis, make the width smaller (default is 0.8)
    ax2 = fig.add_subplot(1,2,2)
    ax2.bar(x,z,width=widthp, facecolor='darkred')
    ax2.set_ylabel('%FP hits')
    ax2.set_xlabel('index mapping tool')
    ax2.set_title("Global comparison %FP hits")
    p.axis([0,xmax,0,1.1])
    p.xticks(x,ticks)
    p.grid(True)
    plt.tight_layout()
    p.savefig(prefix2 + "Overall_histper.pdf",format='pdf')
    p.clf()