File: StateChangeDetection.pde

package info (click to toggle)
arduino 0018%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 5,704 kB
  • ctags: 8,331
  • sloc: java: 38,036; ansic: 5,841; cpp: 2,867; makefile: 667; perl: 111; sh: 10
file content (90 lines) | stat: -rw-r--r-- 2,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/*
  State change detection (edge detection)
 	
 Often, you don't need to know the state of a digital input all the time,
 but you just need to know when the input changes from one state to another.
 For example, you want to know when a button goes from OFF to ON.  This is called
 state change detection, or edge detection.
 
 This example shows how to detect when a button or button changes from off to on
 and on to off.
 	
 The circuit:
 * pushbutton attached to pin 2 from +5V
 * 10K resistor attached to pin 2 from ground
 * LED attached from pin 13 to ground (or use the built-in LED on
   most Arduino boards)
 
 created  27 Sep 2005
 modified 30 Dec 2009
 by Tom Igoe
 	
 http://arduino.cc/en/Tutorial/ButtonStateChange
 
 */

// this constant won't change:
const int  buttonPin = 2;    // the pin that the pushbutton is attached to
const int ledPin = 13;       // the pin that the LED is attached to

// Variables will change:
int buttonPushCounter = 0;   // counter for the number of button presses
int buttonState = 0;         // current state of the button
int lastButtonState = 0;     // previous state of the button

void setup() {
  // initialize the button pin as a input:
  pinMode(buttonPin, INPUT);
  // initialize the LED as an output:
  pinMode(ledPin, OUTPUT);
  // initialize serial communication:
  Serial.begin(9600);
}


void loop() {
  // read the pushbutton input pin:
  buttonState = digitalRead(buttonPin);

  // compare the buttonState to its previous state
  if (buttonState != lastButtonState) {
    // if the state has changed, increment the counter
    if (buttonState == HIGH) {
      // if the current state is HIGH then the button
      // wend from off to on:
      buttonPushCounter++;
      Serial.println("on");
      Serial.print("number of button pushes:  ");
      Serial.println(buttonPushCounter, DEC);
    } 
    else {
      // if the current state is LOW then the button
      // wend from on to off:
      Serial.println("off"); 
    }

    // save the current state as the last state, 
    //for next time through the loop
    lastButtonState = buttonState;
  }
  
  // turns on the LED every four button pushes by 
  // checking the modulo of the button push counter.
  // the modulo function gives you the remainder of 
  // the division of two numbers:
  if (buttonPushCounter % 4 == 0) {
    digitalWrite(ledPin, HIGH);
  } else {
   digitalWrite(ledPin, LOW);
  }
  
}