1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
// Squawk Soft-Synthesizer Library for Arduino
//
// Davey Taylor 2013
// d.taylor@arduino.cc
#include "Squawk.h"
// Period range, used for clamping
#define PERIOD_MIN 28
#define PERIOD_MAX 3424
// Convenience macros
#define LO4(V) ((V) & 0x0F)
#define HI4(V) (((V) & 0xF0) >> 4)
#define MIN(A, B) ((A) < (B) ? (A) : (B))
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#define FREQ(PERIOD) (tuning_long / (PERIOD))
// SquawkStream class for PROGMEM data
class StreamROM : public SquawkStream {
private:
uint8_t *p_start;
uint8_t *p_cursor;
public:
StreamROM(const uint8_t *p_rom = NULL) { p_start = p_cursor = (uint8_t*)p_rom; }
uint8_t read() { return pgm_read_byte(p_cursor++); }
void seek(size_t offset) { p_cursor = p_start + offset; }
};
// Oscillator memory
typedef struct {
uint8_t fxp;
uint8_t offset;
uint8_t mode;
} pto_t;
// Deconstructed cell
typedef struct {
uint8_t fxc, fxp, ixp;
} cel_t;
// Effect memory
typedef struct {
int8_t volume;
uint8_t port_speed;
uint16_t port_target;
bool glissando;
pto_t vibr;
pto_t trem;
uint16_t period;
uint8_t param;
} fxm_t;
// Locals
static uint8_t order_count;
static uint8_t order[64];
static uint8_t speed;
static uint8_t tick;
static uint8_t ix_row;
static uint8_t ix_order;
static uint8_t ix_nextrow;
static uint8_t ix_nextorder;
static uint8_t row_delay;
static fxm_t fxm[4];
static cel_t cel[4];
static uint32_t tuning_long;
static uint16_t sample_rate;
static float tuning = 1.0;
static uint16_t tick_rate = 50;
static SquawkStream *stream;
static uint16_t stream_base;
static StreamROM rom;
// Imports
extern intptr_t squawk_register;
extern uint16_t cia;
// Exports
osc_t osc[4];
uint8_t pcm = 128;
// ProTracker period tables
const uint16_t period_tbl[84] PROGMEM = {
3424, 3232, 3048, 2880, 2712, 2560, 2416, 2280, 2152, 2032, 1920, 1814,
1712, 1616, 1524, 1440, 1356, 1280, 1208, 1140, 1076, 1016, 960, 907,
856, 808, 762, 720, 678, 640, 604, 570, 538, 508, 480, 453,
428, 404, 381, 360, 339, 320, 302, 285, 269, 254, 240, 226,
214, 202, 190, 180, 170, 160, 151, 143, 135, 127, 120, 113,
107, 101, 95, 90, 85, 80, 75, 71, 67, 63, 60, 56,
53, 50, 47, 45, 42, 40, 37, 35, 33, 31, 30, 28,
};
// ProTracker sine table
const int8_t sine_tbl[32] PROGMEM = {
0x00, 0x0C, 0x18, 0x25, 0x30, 0x3C, 0x47, 0x51, 0x5A, 0x62, 0x6A, 0x70, 0x76, 0x7A, 0x7D, 0x7F,
0x7F, 0x7F, 0x7D, 0x7A, 0x76, 0x70, 0x6A, 0x62, 0x5A, 0x51, 0x47, 0x3C, 0x30, 0x25, 0x18, 0x0C,
};
// Squawk object
SquawkSynth Squawk;
// Look up or generate waveform for ProTracker vibrato/tremolo oscillator
static int8_t do_osc(pto_t *p_osc) {
int8_t sample = 0;
int16_t mul;
switch(p_osc->mode & 0x03) {
case 0: // Sine
sample = pgm_read_byte(&sine_tbl[(p_osc->offset) & 0x1F]);
if(p_osc->offset & 0x20) sample = -sample;
break;
case 1: // Square
sample = (p_osc->offset & 0x20) ? 127 : -128;
break;
case 2: // Saw
sample = -(p_osc->offset << 2);
break;
case 3: // Noise (random)
sample = rand();
break;
}
mul = sample * LO4(p_osc->fxp);
p_osc->offset = (p_osc->offset + HI4(p_osc->fxp));
return mul >> 6;
}
// Calculates and returns arpeggio period
// Essentially finds period of current note + halftones
static inline uint16_t arpeggio(uint8_t ch, uint8_t halftones) {
uint8_t n;
for(n = 0; n != 47; n++) {
if(fxm[ch].period >= pgm_read_word(&period_tbl[n])) break;
}
return pgm_read_word(&period_tbl[MIN(n + halftones, 47)]);
}
// Calculates and returns glissando period
// Essentially snaps a sliding frequency to the closest note
static inline uint16_t glissando(uint8_t ch) {
uint8_t n;
uint16_t period_h, period_l;
for(n = 0; n != 47; n++) {
period_l = pgm_read_word(&period_tbl[n]);
period_h = pgm_read_word(&period_tbl[n + 1]);
if(fxm[ch].period < period_l && fxm[ch].period >= period_h) {
if(period_l - fxm[ch].period <= fxm[ch].period - period_h) {
period_h = period_l;
}
break;
}
}
return period_h;
}
// Tunes Squawk to a different frequency
void SquawkSynth::tune(float new_tuning) {
tuning = new_tuning;
tuning_long = (long)(((double)3669213184.0 / (double)sample_rate) * (double)tuning);
}
// Sets tempo
void SquawkSynth::tempo(uint16_t new_tempo) {
tick_rate = new_tempo;
cia = sample_rate / tick_rate; // not atomic?
}
// Initializes Squawk
// Sets up the selected port, and the sample grinding ISR
void SquawkSynth::begin(uint16_t hz) {
word isr_rr;
sample_rate = hz;
tuning_long = (long)(((double)3669213184.0 / (double)sample_rate) * (double)tuning);
cia = sample_rate / tick_rate;
if(squawk_register == (intptr_t)&OCR0A) {
// Squawk uses PWM on OCR0A/PD5(ATMega328/168)/PB7(ATMega32U4)
#ifdef __AVR_ATmega32U4__
DDRB |= 0b10000000; // TODO: FAIL on 32U4
#else
DDRD |= 0b01000000;
#endif
TCCR0A = 0b10000011; // Fast-PWM 8-bit
TCCR0B = 0b00000001; // 62500Hz
OCR0A = 0x7F;
} else if(squawk_register == (intptr_t)&OCR0B) {
// Squawk uses PWM on OCR0B/PC5(ATMega328/168)/PD0(ATMega32U4)
#ifdef __AVR_ATmega32U4__
DDRD |= 0b00000001;
#else
DDRD |= 0b00100000;
#endif // Set timer mode to
TCCR0A = 0b00100011; // Fast-PWM 8-bit
TCCR0B = 0b00000001; // 62500Hz
OCR0B = 0x7F;
#ifdef OCR2A
} else if(squawk_register == (intptr_t)&OCR2A) {
// Squawk uses PWM on OCR2A/PB3
DDRB |= 0b00001000; // Set timer mode to
TCCR2A = 0b10000011; // Fast-PWM 8-bit
TCCR2B = 0b00000001; // 62500Hz
OCR2A = 0x7F;
#endif
#ifdef OCR2B
} else if(squawk_register == (intptr_t)&OCR2B) {
// Squawk uses PWM on OCR2B/PD3
DDRD |= 0b00001000; // Set timer mode to
TCCR2A = 0b00100011; // Fast-PWM 8-bit
TCCR2B = 0b00000001; // 62500Hz
OCR2B = 0x7F;
#endif
#ifdef OCR3AL
} else if(squawk_register == (intptr_t)&OCR3AL) {
// Squawk uses PWM on OCR3AL/PC6
DDRC |= 0b01000000; // Set timer mode to
TCCR3A = 0b10000001; // Fast-PWM 8-bit
TCCR3B = 0b00001001; // 62500Hz
OCR3AH = 0x00;
OCR3AL = 0x7F;
#endif
} else if(squawk_register == (intptr_t)&SPDR) {
// NOT YET SUPPORTED
// Squawk uses external DAC via SPI
// TODO: Configure SPI
// TODO: Needs SS toggle in sample grinder
} else if(squawk_register == (intptr_t)&PORTB) {
// NOT YET SUPPORTED
// Squawk uses resistor ladder on PORTB
// TODO: Needs shift right in sample grinder
DDRB = 0b11111111;
} else if(squawk_register == (intptr_t)&PORTC) {
// NOT YET SUPPORTED
// Squawk uses resistor ladder on PORTC
// TODO: Needs shift right in sample grinder
DDRC = 0b11111111;
}
// Seed LFSR (needed for noise)
osc[3].freq = 0x2000;
// Set up ISR to run at sample_rate (may not be exact)
isr_rr = F_CPU / sample_rate;
TCCR1A = 0b00000000; // Set timer mode
TCCR1B = 0b00001001;
OCR1AH = isr_rr >> 8; // Set freq
OCR1AL = isr_rr & 0xFF;
}
// Decrunches a 9 byte row into a useful data
static void decrunch_row() {
uint8_t data;
// Initial decrunch
stream->seek(stream_base + ((order[ix_order] << 6) + ix_row) * 9);
data = stream->read(); cel[0].fxc = data << 0x04;
cel[1].fxc = data & 0xF0;
data = stream->read(); cel[0].fxp = data;
data = stream->read(); cel[1].fxp = data;
data = stream->read(); cel[2].fxc = data << 0x04;
cel[3].fxc = data >> 0x04;
data = stream->read(); cel[2].fxp = data;
data = stream->read(); cel[3].fxp = data;
data = stream->read(); cel[0].ixp = data;
data = stream->read(); cel[1].ixp = data;
data = stream->read(); cel[2].ixp = data;
// Decrunch extended effects
if(cel[0].fxc == 0xE0) { cel[0].fxc |= cel[0].fxp >> 4; cel[0].fxp &= 0x0F; }
if(cel[1].fxc == 0xE0) { cel[1].fxc |= cel[1].fxp >> 4; cel[1].fxp &= 0x0F; }
if(cel[2].fxc == 0xE0) { cel[2].fxc |= cel[2].fxp >> 4; cel[2].fxp &= 0x0F; }
// Decrunch cell 3 ghetto-style
cel[3].ixp = ((cel[3].fxp & 0x80) ? 0x00 : 0x7F) | ((cel[3].fxp & 0x40) ? 0x80 : 0x00);
cel[3].fxp &= 0x3F;
switch(cel[3].fxc) {
case 0x02:
case 0x03: if(cel[3].fxc & 0x01) cel[3].fxp |= 0x40; cel[3].fxp = (cel[3].fxp >> 4) | (cel[3].fxp << 4); cel[3].fxc = 0x70; break;
case 0x01: if(cel[3].fxp & 0x08) cel[3].fxp = (cel[3].fxp & 0x07) << 4; cel[3].fxc = 0xA0; break;
case 0x04: cel[3].fxc = 0xC0; break;
case 0x05: cel[3].fxc = 0xB0; break;
case 0x06: cel[3].fxc = 0xD0; break;
case 0x07: cel[3].fxc = 0xF0; break;
case 0x08: cel[3].fxc = 0xE7; break;
case 0x09: cel[3].fxc = 0xE9; break;
case 0x0A: cel[3].fxc = (cel[3].fxp & 0x08) ? 0xEA : 0xEB; cel[3].fxp &= 0x07; break;
case 0x0B: cel[3].fxc = (cel[3].fxp & 0x10) ? 0xED : 0xEC; cel[3].fxp &= 0x0F; break;
case 0x0C: cel[3].fxc = 0xEE; break;
}
// Apply generic effect parameter memory
uint8_t ch;
cel_t *p_cel = cel;
fxm_t *p_fxm = fxm;
for(ch = 0; ch != 4; ch++) {
uint8_t fx = p_cel->fxc;
if(fx == 0x10 || fx == 0x20 || fx == 0xE1 || fx == 0xE2 || fx == 0x50 || fx == 0x60 || fx == 0xA0) {
if(p_cel->fxp) {
p_fxm->param = p_cel->fxp;
} else {
p_cel->fxp = p_fxm->param;
}
}
p_cel++; p_fxm++;
}
}
// Resets playback
static void playroutine_reset() {
memset(fxm, 0, sizeof(fxm));
tick = 0;
ix_row = 0;
ix_order = 0;
ix_nextrow = 0xFF;
ix_nextorder = 0xFF;
row_delay = 0;
speed = 6;
decrunch_row();
}
// Start grinding samples
void SquawkSynth::play() {
TIMSK1 = 1 << OCIE1A; // Enable interrupt
}
// Load a melody stream and start grinding samples
void SquawkSynth::play(SquawkStream *melody) {
uint8_t n;
pause();
stream = melody;
stream->seek(0);
n = stream->read();
if(n == 'S') {
// Squawk SD file
stream->seek(4);
stream_base = stream->read() << 8;
stream_base |= stream->read();
stream_base += 6;
} else {
// Squawk ROM array
stream_base = 1;
}
stream->seek(stream_base);
order_count = stream->read();
if(order_count <= 64) {
stream_base += order_count + 1;
for(n = 0; n < order_count; n++) order[n] = stream->read();
playroutine_reset();
play();
} else {
order_count = 0;
}
}
// Load a melody in PROGMEM and start grinding samples
void SquawkSynth::play(const uint8_t *melody) {
pause();
rom = StreamROM(melody);
play(&rom);
}
// Pause playback
void SquawkSynth::pause() {
TIMSK1 = 0; // Disable interrupt
}
// Stop playing, unload melody
void SquawkSynth::stop() {
pause();
order_count = 0; // Unload melody
}
// Progress module by one tick
void squawk_playroutine() {
static bool lockout = false;
if(!order_count) return;
// Protect from re-entry via ISR
cli();
if(lockout) {
sei();
return;
}
lockout = true;
sei();
// Handle row delay
if(row_delay) {
if(tick == 0) row_delay--;
// Advance tick
if(++tick == speed) tick = 0;
} else {
// Quick pointer access
fxm_t *p_fxm = fxm;
osc_t *p_osc = osc;
cel_t *p_cel = cel;
// Temps
uint8_t ch, fx, fxp;
bool pattern_jump = false;
uint8_t ix_period;
for(ch = 0; ch != 4; ch++) {
uint8_t temp;
// Local register copy
fx = p_cel->fxc;
fxp = p_cel->fxp;
ix_period = p_cel->ixp;
// If first tick
if(tick == (fx == 0xED ? fxp : 0)) {
// Reset volume
if(ix_period & 0x80) p_osc->vol = p_fxm->volume = 0x20;
if((ix_period & 0x7F) != 0x7F) {
// Reset oscillators (unless continous flag set)
if((p_fxm->vibr.mode & 0x4) == 0x0) p_fxm->vibr.offset = 0;
if((p_fxm->trem.mode & 0x4) == 0x0) p_fxm->trem.offset = 0;
// Cell has note
if(fx == 0x30 || fx == 0x50) {
// Tone-portamento effect setup
p_fxm->port_target = pgm_read_word(&period_tbl[ix_period & 0x7F]);
} else {
// Set required effect memory parameters
p_fxm->period = pgm_read_word(&period_tbl[ix_period & 0x7F]);
// Start note
if(ch != 3) p_osc->freq = FREQ(p_fxm->period);
}
}
// Effects processed when tick = 0
switch(fx) {
case 0x30: // Portamento
if(fxp) p_fxm->port_speed = fxp;
break;
case 0xB0: // Jump to pattern
ix_nextorder = (fxp >= order_count ? 0x00 : fxp);
ix_nextrow = 0;
pattern_jump = true;
break;
case 0xC0: // Set volume
p_osc->vol = p_fxm->volume = MIN(fxp, 0x20);
break;
case 0xD0: // Jump to row
if(!pattern_jump) ix_nextorder = ((ix_order + 1) >= order_count ? 0x00 : ix_order + 1);
pattern_jump = true;
ix_nextrow = (fxp > 63 ? 0 : fxp);
break;
case 0xF0: // Set speed, BPM(CIA) not supported
if(fxp <= 0x20) speed = fxp;
break;
case 0x40: // Vibrato
if(fxp) p_fxm->vibr.fxp = fxp;
break;
case 0x70: // Tremolo
if(fxp) p_fxm->trem.fxp = fxp;
break;
case 0xE1: // Fine slide up
if(ch != 3) {
p_fxm->period = MAX(p_fxm->period - fxp, PERIOD_MIN);
p_osc->freq = FREQ(p_fxm->period);
}
break;
case 0xE2: // Fine slide down
if(ch != 3) {
p_fxm->period = MIN(p_fxm->period + fxp, PERIOD_MAX);
p_osc->freq = FREQ(p_fxm->period);
}
break;
case 0xE3: // Glissando control
p_fxm->glissando = (fxp != 0);
break;
case 0xE4: // Set vibrato waveform
p_fxm->vibr.mode = fxp;
break;
case 0xE7: // Set tremolo waveform
p_fxm->trem.mode = fxp;
break;
case 0xEA: // Fine volume slide up
p_osc->vol = p_fxm->volume = MIN(p_fxm->volume + fxp, 0x20);
break;
case 0xEB: // Fine volume slide down
p_osc->vol = p_fxm->volume = MAX(p_fxm->volume - fxp, 0);
break;
case 0xEE: // Delay
row_delay = fxp;
break;
}
} else {
// Effects processed when tick > 0
switch(fx) {
case 0x10: // Slide up
if(ch != 3) {
p_fxm->period = MAX(p_fxm->period - fxp, PERIOD_MIN);
p_osc->freq = FREQ(p_fxm->period);
}
break;
case 0x20: // Slide down
if(ch != 3) {
p_fxm->period = MIN(p_fxm->period + fxp, PERIOD_MAX);
p_osc->freq = FREQ(p_fxm->period);
}
break;
/*
// Just feels... ugly
case 0xE9: // Retrigger note
temp = tick; while(temp >= fxp) temp -= fxp;
if(!temp) {
if(ch == 3) {
p_osc->freq = p_osc->phase = 0x2000;
} else {
p_osc->phase = 0;
}
}
break;
*/
case 0xEC: // Note cut
if(fxp == tick) p_osc->vol = 0x00;
break;
default: // Multi-effect processing
// Portamento
if(ch != 3 && (fx == 0x30 || fx == 0x50)) {
if(p_fxm->period < p_fxm->port_target) p_fxm->period = MIN(p_fxm->period + p_fxm->port_speed, p_fxm->port_target);
else p_fxm->period = MAX(p_fxm->period - p_fxm->port_speed, p_fxm->port_target);
if(p_fxm->glissando) p_osc->freq = FREQ(glissando(ch));
else p_osc->freq = FREQ(p_fxm->period);
}
// Volume slide
if(fx == 0x50 || fx == 0x60 || fx == 0xA0) {
if((fxp & 0xF0) == 0) p_fxm->volume -= (LO4(fxp));
if((fxp & 0x0F) == 0) p_fxm->volume += (HI4(fxp));
p_osc->vol = p_fxm->volume = MAX(MIN(p_fxm->volume, 0x20), 0);
}
}
}
// Normal play and arpeggio
if(fx == 0x00) {
if(ch != 3) {
temp = tick; while(temp > 2) temp -= 2;
if(temp == 0) {
// Reset
p_osc->freq = FREQ(p_fxm->period);
} else if(fxp) {
// Arpeggio
p_osc->freq = FREQ(arpeggio(ch, (temp == 1 ? HI4(fxp) : LO4(fxp))));
}
}
} else if(fx == 0x40 || fx == 0x60) {
// Vibrato
if(ch != 3) p_osc->freq = FREQ((p_fxm->period + do_osc(&p_fxm->vibr)));
} else if(fx == 0x70) {
int8_t trem = p_fxm->volume + do_osc(&p_fxm->trem);
p_osc->vol = MAX(MIN(trem, 0x20), 0);
}
// Next channel
p_fxm++; p_cel++; p_osc++;
}
// Advance tick
if(++tick == speed) tick = 0;
// Advance playback
if(tick == 0) {
if(++ix_row == 64) {
ix_row = 0;
if(++ix_order >= order_count) ix_order = 0;
}
// Forced order/row
if( ix_nextorder != 0xFF ) {
ix_order = ix_nextorder;
ix_nextorder = 0xFF;
}
if( ix_nextrow != 0xFF ) {
ix_row = ix_nextrow;
ix_nextrow = 0xFF;
}
decrunch_row();
}
}
lockout = false;
}
|