File: st.hpp

package info (click to toggle)
ares 126-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 32,600 kB
  • sloc: cpp: 356,508; ansic: 20,394; makefile: 16; sh: 2
file content (187 lines) | stat: -rw-r--r-- 4,346 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#pragma once

//simple circular ring buffer (single-threaded)

namespace nall {

template<typename T> struct queue;

template<typename T, u32 Size>
struct queue<T[Size]> {
  auto flush() -> void {
    _read  = 0;
    _write = 2 * Size;
  }

  auto size() const -> u32 {
    return (_write - _read) % (2 * Size);
  }

  auto capacity() const -> u32 {
    return Size;
  }

  auto empty() const -> bool {
    return size() == 0;
  }

  auto full() const -> bool {
    return size() == Size;
  }

  auto peek(u32 index = 0) const -> T {
    return _data[(_read + index) % Size];
  }

  auto read() -> maybe<T> {
    if(empty()) return nothing;
    auto value = _data[_read % Size];
    _read = _read + 1 < 2 * Size ? _read + 1 : 0;
    return value;
  }

  auto read(const T& fallback) -> T {
    if(empty()) return fallback;
    auto value = _data[_read % Size];
    _read = _read + 1 < 2 * Size ? _read + 1 : 0;
    return value;
  }

  auto write(const T& value) -> bool {
    if(full()) return false;
    _data[_write % Size] = value;
    _write = _write + 1 < 4 * Size ? _write + 1 : 2 * Size;
    return true;
  }

  struct iterator_const {
    iterator_const(const queue& self, u64 offset) : self(self), offset(offset) {}
    auto operator*() -> T { return self.peek(offset); }
    auto operator!=(const iterator_const& source) const -> bool { return offset != source.offset; }
    auto operator++() -> iterator_const& { return offset++, *this; }

    const queue& self;
    u64 offset;
  };

  auto begin() const -> iterator_const { return {*this, 0}; }
  auto end() const -> iterator_const { return {*this, size()}; }

  auto serialize(serializer& s) -> void {
    s(_data);
    s(_read);
    s(_write);
  }

private:
  T _data[Size];
  u32 _read  = 0;
  u32 _write = 2 * Size;
};

template<typename T>
struct queue {
  queue() = default;
  queue(const queue& source) { operator=(source); }
  queue(queue&& source) { operator=(move(source)); }
  ~queue() { reset(); }

  auto operator=(const queue& source) -> queue& {
    if(this == &source) return *this;
    delete[] _data;
    _data = new T[source._capacity];
    _capacity = source._capacity;
    _size = source._size;
    _read = source._read;
    _write = source._write;
    for(u32 n : range(_capacity)) _data[n] = source._data[n];
    return *this;
  }

  auto operator=(queue&& source) -> queue& {
    if(this == &source) return *this;
    _data = source._data;
    _capacity = source._capacity;
    _size = source._size;
    _read = source._read;
    _write = source._write;
    source._data = nullptr;
    source.reset();
    return *this;
  }

  template<typename U = T> auto capacity() const -> u32 { return _capacity * sizeof(T) / sizeof(U); }
  template<typename U = T> auto size() const -> u32 { return _size * sizeof(T) / sizeof(U); }
  auto empty() const -> bool { return _size == 0; }
  auto pending() const -> bool { return _size > 0; }
  auto full() const -> bool { return _size >= (s32)_capacity; }
  auto underflow() const -> bool { return _size < 0; }
  auto overflow() const -> bool { return _size > (s32)_capacity; }

  auto data() -> T* { return _data; }
  auto data() const -> const T* { return _data; }

  auto reset() {
    delete[] _data;
    _data = nullptr;
    _capacity = 0;
    _size = 0;
    _read = 0;
    _write = 0;
  }

  auto resize(u32 capacity, const T& value = {}) -> void {
    delete[] _data;
    _data = new T[capacity];
    _capacity = capacity;
    _size = 0;
    _read = 0;
    _write = 0;
    for(u32 n : range(_capacity)) _data[n] = value;
  }

  auto flush() -> void {
    _size = 0;
    _read = 0;
    _write = 0;
  }

  auto fill(const T& value = {}) -> void {
    _size = 0;
    _read = 0;
    _write = 0;
    for(u32 n : range(_capacity)) _data[n] = value;
  }

  auto peek(u32 index = 0) const -> T {
    return _data[(_read + index) % _capacity];
  }

  auto read() -> T {
    T value = _data[_read++];
    if(_read >= _capacity) _read = 0;
    _size--;
    return value;
  }

  auto write(const T& value) -> void {
    _data[_write++] = value;
    if(_write >= _capacity) _write = 0;
    _size++;
  }

  auto serialize(serializer& s) -> void {
    s(array_span<T>{_data, _capacity});
    s(_read);
    s(_write);
  }

private:
  T* _data = nullptr;
  u32 _capacity = 0;
  s32 _size = 0;
  u32 _read = 0;
  u32 _write = 0;
};

}