1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
#pragma once
//BML v1.0 parser
//revision 0.04
namespace nall::BML {
//metadata is used to store nesting level
struct ManagedNode;
using SharedNode = shared_pointer<ManagedNode>;
struct ManagedNode : Markup::ManagedNode {
protected:
//test to verify if a valid character for a node name
auto valid(char p) const -> bool { //A-Z, a-z, 0-9, -.
return p - 'A' < 26u || p - 'a' < 26u || p - '0' < 10u || p - '-' < 2u;
}
//determine indentation level, without incrementing pointer
auto readDepth(const char* p) -> u32 {
u32 depth = 0;
while(p[depth] == '\t' || p[depth] == ' ') depth++;
return depth;
}
//determine indentation level
auto parseDepth(const char*& p) -> u32 {
u32 depth = readDepth(p);
p += depth;
return depth;
}
//read name
auto parseName(const char*& p) -> void {
u32 length = 0;
while(valid(p[length])) length++;
if(length == 0) throw "Invalid node name";
_name = slice(p, 0, length);
p += length;
}
auto parseData(const char*& p, string_view spacing) -> void {
if(*p == '=' && *(p + 1) == '\"') {
u32 length = 2;
while(p[length] && p[length] != '\n' && p[length] != '\"') length++;
if(p[length] != '\"') throw "Unescaped value";
_value = {slice(p, 2, length - 2), "\n"};
p += length + 1;
} else if(*p == '=') {
u32 length = 1;
while(p[length] && p[length] != '\n' && p[length] != '\"' && p[length] != ' ') length++;
if(p[length] == '\"') throw "Illegal character in value";
_value = {slice(p, 1, length - 1), "\n"};
p += length;
} else if(*p == ':') {
u32 length = 1;
while(p[length] && p[length] != '\n') length++;
_value = {slice(p, 1, length - 1).trimLeft(spacing, 1L), "\n"};
p += length;
}
}
//read all attributes for a node
auto parseAttributes(const char*& p, string_view spacing) -> void {
while(*p && *p != '\n') {
if(*p != ' ') throw "Invalid node name";
while(*p == ' ') p++; //skip excess spaces
if(*(p + 0) == '/' && *(p + 1) == '/') break; //skip comments
SharedNode node(new ManagedNode);
u32 length = 0;
while(valid(p[length])) length++;
if(length == 0) throw "Invalid attribute name";
node->_name = slice(p, 0, length);
node->parseData(p += length, spacing);
node->_value.trimRight("\n", 1L);
_children.append(node);
}
}
//read a node and all of its child nodes
auto parseNode(const vector<string>& text, u32& y, string_view spacing) -> void {
const char* p = text[y++];
_metadata = parseDepth(p);
parseName(p);
parseData(p, spacing);
parseAttributes(p, spacing);
while(y < text.size()) {
u32 depth = readDepth(text[y]);
if(depth <= _metadata) break;
if(text[y][depth] == ':') {
_value.append(slice(text[y++], depth + 1).trimLeft(spacing, 1L), "\n");
continue;
}
SharedNode node(new ManagedNode);
node->parseNode(text, y, spacing);
_children.append(node);
}
_value.trimRight("\n", 1L);
}
//read top-level nodes
auto parse(string document, string_view spacing) -> void {
//in order to simplify the parsing logic; we do an initial pass to normalize the data
//the below code will turn '\r\n' into '\n'; skip empty lines; and skip comment lines
char* p = document.get(), *output = p;
while(*p) {
char* origin = p;
bool empty = true;
while(*p) {
//scan for first non-whitespace character. if it's a line feed or comment; skip the line
if(p[0] == ' ' || p[0] == '\t') { p++; continue; }
empty = p[0] == '\r' || p[0] == '\n' || (p[0] == '/' && p[1] == '/');
break;
}
while(*p) {
if(p[0] == '\r') p[0] = '\n'; //turns '\r\n' into '\n\n' (second '\n' will be skipped)
if(*p++ == '\n') break; //include '\n' in the output to be copied
}
if(empty) continue;
memory::move(output, origin, p - origin);
output += p - origin;
}
document.resize(document.size() - (p - output)).trimRight("\n");
if(document.size() == 0) return; //empty document
auto text = document.split("\n");
u32 y = 0;
while(y < text.size()) {
SharedNode node(new ManagedNode);
node->parseNode(text, y, spacing);
if(node->_metadata > 0) throw "Root nodes cannot be indented";
_children.append(node);
}
}
friend auto unserialize(const string&, string_view) -> Markup::Node;
};
inline auto unserialize(const string& markup, string_view spacing = {}) -> Markup::Node {
SharedNode node(new ManagedNode);
try {
node->parse(markup, spacing);
} catch(const char* error) {
node.reset();
}
return (Markup::SharedNode&)node;
}
inline auto serialize(const Markup::Node& node, string_view spacing = {}, u32 depth = 0) -> string {
if(!node.name()) {
string result;
for(auto leaf : node) {
result.append(serialize(leaf, spacing, depth));
}
return result;
}
string padding;
padding.resize(depth * 2);
padding.fill(' ');
vector<string> lines;
if(auto value = node.value()) lines = value.split("\n");
string result;
result.append(padding);
result.append(node.name());
if(lines.size() == 1) result.append(":", spacing, lines[0]);
result.append("\n");
if(lines.size() > 1) {
padding.append(" ");
for(auto& line : lines) {
result.append(padding, ":", spacing, line, "\n");
}
}
for(auto leaf : node) {
result.append(serialize(leaf, spacing, depth + 1));
}
return result;
}
}
|