1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#pragma once
namespace nall {
//nall::vector acts internally as a deque (double-ended queue)
//it does this because it's essentially free to do so, only costing an extra integer in sizeof(vector)
template<typename T> auto vector<T>::reset() -> void {
if(!_pool) return;
for(u64 n : range(_size)) _pool[n].~T();
memory::free(_pool - _left);
_pool = nullptr;
_size = 0;
_left = 0;
_right = 0;
}
//acquire ownership of allocated memory
template<typename T> auto vector<T>::acquire(T* data, u64 size, u64 capacity) -> void {
reset();
_pool = data;
_size = size;
_left = 0;
_right = capacity ? capacity : size;
}
//release ownership of allocated memory
template<typename T> auto vector<T>::release() -> T* {
auto pool = _pool;
_pool = nullptr;
_size = 0;
_left = 0;
_right = 0;
return pool;
}
//reserve allocates memory for objects, but does not initialize them
//when the vector desired size is known, this can be used to avoid growing the capacity dynamically
//reserve will not actually shrink the capacity, only expand it
//shrinking the capacity would destroy objects, and break amortized growth with reallocate and resize
template<typename T> auto vector<T>::reserveLeft(u64 capacity) -> bool {
if(_size + _left >= capacity) return false;
u64 left = bit::round(capacity);
auto pool = memory::allocate<T>(left + _right) + (left - _size);
for(u64 n : range(_size)) new(pool + n) T(move(_pool[n]));
memory::free(_pool - _left);
_pool = pool;
_left = left - _size;
return true;
}
template<typename T> auto vector<T>::reserveRight(u64 capacity) -> bool {
if(_size + _right >= capacity) return false;
u64 right = bit::round(capacity);
auto pool = memory::allocate<T>(_left + right) + _left;
for(u64 n : range(_size)) new(pool + n) T(move(_pool[n]));
memory::free(_pool - _left);
_pool = pool;
_right = right - _size;
return true;
}
//reallocation is meant for POD types, to avoid the overhead of initialization
//do not use with non-POD types, or they will not be properly constructed or destructed
template<typename T> auto vector<T>::reallocateLeft(u64 size) -> bool {
if(size < _size) { //shrink
_pool += _size - size;
_left += _size - size;
_size = size;
return true;
}
if(size > _size) { //grow
reserveLeft(size);
_pool -= size - _size;
_left -= size - _size;
_size = size;
return true;
}
return false;
}
template<typename T> auto vector<T>::reallocateRight(u64 size) -> bool {
if(size < _size) { //shrink
_right += _size - size;
_size = size;
return true;
}
if(size > _size) { //grow
reserveRight(size);
_right -= size - _size;
_size = size;
return true;
}
return false;
}
//resize is meant for non-POD types, and will properly construct objects
template<typename T> auto vector<T>::resizeLeft(u64 size, const T& value) -> bool {
if(size < _size) { //shrink
for(u64 n : range(_size - size)) _pool[n].~T();
_pool += _size - size;
_left += _size - size;
_size = size;
return true;
}
if(size > _size) { //grow
reserveLeft(size);
_pool -= size - _size;
for(u64 n : nall::reverse(range(size - _size))) new(_pool + n) T(value);
_left -= size - _size;
_size = size;
return true;
}
return false;
}
template<typename T> auto vector<T>::resizeRight(u64 size, const T& value) -> bool {
if(size < _size) { //shrink
for(u64 n : range(size, _size)) _pool[n].~T();
_right += _size - size;
_size = size;
return true;
}
if(size > _size) { //grow
reserveRight(size);
for(u64 n : range(_size, size)) new(_pool + n) T(value);
_right -= size - _size;
_size = size;
return true;
}
return false;
}
}
|