1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
#include <nall/windows/registry.hpp>
#include "asio.hpp"
struct AudioASIO : AudioDriver {
static AudioASIO* instance;
AudioASIO& self = *this;
AudioASIO(Audio& super) : AudioDriver(super) { instance = this; }
~AudioASIO() { terminate(); }
auto create() -> bool override {
super.setDevice(hasDevices().first());
super.setChannels(2);
super.setFrequency(48000);
super.setLatency(2048);
return initialize();
}
auto driver() -> string override { return "ASIO"; }
auto ready() -> bool override { return _ready; }
auto hasContext() -> bool override { return true; }
auto hasBlocking() -> bool override { return true; }
auto hasDevices() -> vector<string> override {
self.devices.reset();
for(auto candidate : registry::contents("HKLM\\SOFTWARE\\ASIO\\")) {
if(auto classID = registry::read({"HKLM\\SOFTWARE\\ASIO\\", candidate, "CLSID"})) {
self.devices.append({candidate.trimRight("\\", 1L), classID});
}
}
vector<string> devices;
for(auto& device : self.devices) devices.append(device.name);
return devices;
}
auto hasChannels() -> vector<u32> override {
return {1, 2};
}
auto hasFrequencies() -> vector<u32> override {
return {self.frequency};
}
auto hasLatencies() -> vector<u32> override {
vector<u32> latencies;
u32 latencyList[] = {64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 6144}; //factors of 6144
for(auto& latency : latencyList) {
if(self.activeDevice) {
if(latency < self.activeDevice.minimumBufferSize) continue;
if(latency > self.activeDevice.maximumBufferSize) continue;
}
latencies.append(latency);
}
//it is possible that no latencies in the hard-coded list above will match; so ensure driver-declared latencies are available
if(!latencies.find(self.activeDevice.minimumBufferSize)) latencies.append(self.activeDevice.minimumBufferSize);
if(!latencies.find(self.activeDevice.maximumBufferSize)) latencies.append(self.activeDevice.maximumBufferSize);
if(!latencies.find(self.activeDevice.preferredBufferSize)) latencies.append(self.activeDevice.preferredBufferSize);
latencies.sort();
return latencies;
}
auto setContext(uintptr context) -> bool override { return initialize(); }
auto setDevice(string device) -> bool override { return initialize(); }
auto setBlocking(bool blocking) -> bool override { return initialize(); }
auto setChannels(u32 channels) -> bool override { return initialize(); }
auto setLatency(u32 latency) -> bool override { return initialize(); }
auto clear() -> void override {
if(!ready()) return;
for(u32 n : range(self.channels)) {
memory::fill<u8>(_channel[n].buffers[0], self.latency * _sampleSize);
memory::fill<u8>(_channel[n].buffers[1], self.latency * _sampleSize);
}
memory::fill<u8>(_queue.samples, sizeof(_queue.samples));
_queue.read = 0;
_queue.write = 0;
_queue.count = 0;
}
auto output(const f64 samples[]) -> void override {
if(!ready()) return;
//defer call to IASIO::start(), because the drivers themselves will sometimes crash internally.
//if software initializes AudioASIO but does not play music at startup, this can prevent a crash loop.
if(!_started) {
_started = true;
if(_asio->start() != ASE_OK) {
_ready = false;
return;
}
}
if(self.blocking) {
while(_queue.count >= self.latency);
}
for(u32 n : range(self.channels)) {
_queue.samples[_queue.write][n] = samples[n];
}
_queue.write++;
_queue.count++;
}
private:
auto initialize() -> bool {
terminate();
hasDevices(); //this call populates self.devices
if(!self.devices) return false;
self.activeDevice = {};
for(auto& device : self.devices) {
if(self.device == device.name) {
self.activeDevice = device;
break;
}
}
if(!self.activeDevice) {
self.activeDevice = self.devices.first();
self.device = self.activeDevice.name;
}
CLSID classID;
if(CLSIDFromString((LPOLESTR)utf16_t(self.activeDevice.classID), (LPCLSID)&classID) != S_OK) return false;
if(CoCreateInstance(classID, 0, CLSCTX_INPROC_SERVER, classID, (void**)&_asio) != S_OK) return false;
if(!_asio->init((void*)self.context)) return false;
if(_asio->getSampleRate(&self.activeDevice.sampleRate) != ASE_OK) return false;
if(_asio->getChannels(&self.activeDevice.inputChannels, &self.activeDevice.outputChannels) != ASE_OK) return false;
if(_asio->getBufferSize(
&self.activeDevice.minimumBufferSize,
&self.activeDevice.maximumBufferSize,
&self.activeDevice.preferredBufferSize,
&self.activeDevice.granularity
) != ASE_OK) return false;
self.frequency = self.activeDevice.sampleRate;
self.latency = self.latency < self.activeDevice.minimumBufferSize ? self.activeDevice.minimumBufferSize : self.latency;
self.latency = self.latency > self.activeDevice.maximumBufferSize ? self.activeDevice.maximumBufferSize : self.latency;
for(u32 n : range(self.channels)) {
_channel[n].isInput = false;
_channel[n].channelNum = n;
_channel[n].buffers[0] = nullptr;
_channel[n].buffers[1] = nullptr;
}
ASIOCallbacks callbacks;
callbacks.bufferSwitch = &AudioASIO::_bufferSwitch;
callbacks.sampleRateDidChange = &AudioASIO::_sampleRateDidChange;
callbacks.asioMessage = &AudioASIO::_asioMessage;
callbacks.bufferSwitchTimeInfo = &AudioASIO::_bufferSwitchTimeInfo;
if(_asio->createBuffers(_channel, self.channels, self.latency, &callbacks) != ASE_OK) return false;
if(_asio->getLatencies(&self.activeDevice.inputLatency, &self.activeDevice.outputLatency) != ASE_OK) return false;
//assume for the sake of sanity that all buffers use the same sample format ...
ASIOChannelInfo channelInformation = {};
channelInformation.channel = 0;
channelInformation.isInput = false;
if(_asio->getChannelInfo(&channelInformation) != ASE_OK) return false;
switch(_sampleFormat = channelInformation.type) {
case ASIOSTInt16LSB: _sampleSize = 2; break;
case ASIOSTInt24LSB: _sampleSize = 3; break;
case ASIOSTInt32LSB: _sampleSize = 4; break;
case ASIOSTFloat32LSB: _sampleSize = 4; break;
case ASIOSTFloat64LSB: _sampleSize = 8; break;
default: return false; //unsupported sample format
}
_ready = true;
_started = false;
clear();
return true;
}
auto terminate() -> void {
_ready = false;
_started = false;
self.activeDevice = {};
if(_asio) {
_asio->stop();
_asio->disposeBuffers();
_asio->Release();
_asio = nullptr;
}
}
private:
static auto _bufferSwitch(long doubleBufferInput, ASIOBool directProcess) -> void {
return instance->bufferSwitch(doubleBufferInput, directProcess);
}
static auto _sampleRateDidChange(ASIOSampleRate sampleRate) -> void {
return instance->sampleRateDidChange(sampleRate);
}
static auto _asioMessage(long selector, long value, void* message, double* optional) -> long {
return instance->asioMessage(selector, value, message, optional);
}
static auto _bufferSwitchTimeInfo(ASIOTime* parameters, long doubleBufferIndex, ASIOBool directProcess) -> ASIOTime* {
return instance->bufferSwitchTimeInfo(parameters, doubleBufferIndex, directProcess);
}
auto bufferSwitch(long doubleBufferInput, ASIOBool directProcess) -> void {
for(u32 sampleIndex : range(self.latency)) {
f64 samples[8] = {0};
if(_queue.count) {
for(u32 n : range(self.channels)) {
samples[n] = _queue.samples[_queue.read][n];
}
_queue.read++;
_queue.count--;
}
for(u32 n : range(self.channels)) {
auto buffer = (u8*)_channel[n].buffers[doubleBufferInput];
buffer += sampleIndex * _sampleSize;
switch(_sampleFormat) {
case ASIOSTInt16LSB: {
*(u16*)buffer = (u16)sclamp<16>(samples[n] * (32768.0 - 1.0));
break;
}
case ASIOSTInt24LSB: {
auto value = (u32)sclamp<24>(samples[n] * (256.0 * 32768.0 - 1.0));
buffer[0] = value >> 0;
buffer[1] = value >> 8;
buffer[2] = value >> 16;
break;
}
case ASIOSTInt32LSB: {
*(u32*)buffer = (u32)sclamp<32>(samples[n] * (65536.0 * 32768.0 - 1.0));
break;
}
case ASIOSTFloat32LSB: {
*(f32*)buffer = max(-1.0, min(+1.0, samples[n]));
break;
}
case ASIOSTFloat64LSB: {
*(f64*)buffer = max(-1.0, min(+1.0, samples[n]));
break;
}
}
}
}
}
auto sampleRateDidChange(ASIOSampleRate sampleRate) -> void {
}
auto asioMessage(long selector, long value, void* message, double* optional) -> long {
return ASE_OK;
}
auto bufferSwitchTimeInfo(ASIOTime* parameters, long doubleBufferIndex, ASIOBool directProcess) -> ASIOTime* {
return nullptr;
}
bool _ready = false;
bool _started = false;
struct Queue {
f64 samples[65536][8];
u16 read;
u16 write;
std::atomic<u16> count;
};
struct Device {
explicit operator bool() const { return name; }
string name;
string classID;
ASIOSampleRate sampleRate;
long inputChannels;
long outputChannels;
long inputLatency;
long outputLatency;
long minimumBufferSize;
long maximumBufferSize;
long preferredBufferSize;
long granularity;
};
Queue _queue;
vector<Device> devices;
Device activeDevice;
IASIO* _asio = nullptr;
ASIOBufferInfo _channel[8];
long _sampleFormat;
long _sampleSize;
};
AudioASIO* AudioASIO::instance = nullptr;
|