1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
#include <alsa/asoundlib.h>
struct AudioALSA : AudioDriver {
AudioALSA& self = *this;
AudioALSA(Audio& super) : AudioDriver(super) {}
~AudioALSA() { terminate(); }
auto create() -> bool override {
super.setDevice("default");
super.setChannels(2);
super.setFrequency(48000);
super.setLatency(20);
return initialize();
}
auto driver() -> string override { return "ALSA"; }
auto ready() -> bool override { return _ready; }
auto hasBlocking() -> bool override { return true; }
auto hasDynamic() -> bool override { return true; }
auto hasDevices() -> vector<string> override {
vector<string> devices;
char** list;
if(snd_device_name_hint(-1, "pcm", (void***)&list) == 0) {
u32 index = 0;
while(list[index]) {
char* deviceName = snd_device_name_get_hint(list[index], "NAME");
if(deviceName) devices.append(deviceName);
free(deviceName);
index++;
}
}
snd_device_name_free_hint((void**)list);
return devices;
}
auto hasChannels() -> vector<u32> override {
return {2};
}
auto hasFrequencies() -> vector<u32> override {
return {44100, 48000, 96000};
}
auto hasLatencies() -> vector<u32> override {
return {20, 40, 60, 80, 100};
}
auto setDevice(string device) -> bool override { return initialize(); }
auto setBlocking(bool blocking) -> bool override { return true; }
auto setChannels(u32 channels) -> bool override { return true; }
auto setFrequency(u32 frequency) -> bool override { return initialize(); }
auto setLatency(u32 latency) -> bool override { return initialize(); }
auto level() -> f64 override {
snd_pcm_sframes_t available;
for(u32 timeout : range(256)) {
available = snd_pcm_avail_update(_interface);
if(available >= 0) break;
snd_pcm_recover(_interface, available, 1);
}
return (f64)(_bufferSize - available) / _bufferSize;
}
auto output(const f64 samples[]) -> void override {
_buffer[_offset] = (u16)sclamp<16>(samples[0] * 32767.0) << 0;
_buffer[_offset] |= (u16)sclamp<16>(samples[1] * 32767.0) << 16;
if(++_offset < _periodSize) return;
snd_pcm_sframes_t available;
do {
available = snd_pcm_avail_update(_interface);
if(available < 0) {
snd_pcm_recover(_interface, available, 1);
continue;
}
if(available < _offset) {
if(!self.blocking) {
_offset = 0;
return;
}
s32 error = snd_pcm_wait(_interface, -1);
if(error < 0) snd_pcm_recover(_interface, error, 1);
}
} while(available < _offset);
u32* output = _buffer;
s32 i = 4;
while(_offset > 0 && i--) {
snd_pcm_sframes_t written = snd_pcm_writei(_interface, output, _offset);
if(written < 0) {
//no samples written
snd_pcm_recover(_interface, written, 1);
} else if(written <= _offset) {
_offset -= written;
output += written;
}
}
if(i < 0) {
if(_buffer == output) {
_offset--;
output++;
}
memory::move<u32>(_buffer, output, _offset);
}
}
private:
auto initialize() -> bool {
terminate();
if(!hasDevices().find(self.device)) self.device = "default";
if(snd_pcm_open(&_interface, self.device, SND_PCM_STREAM_PLAYBACK, SND_PCM_NONBLOCK) < 0) return terminate(), false;
u32 rate = self.frequency;
u32 bufferTime = self.latency * 1000;
u32 periodTime = self.latency * 1000 / 8;
snd_pcm_hw_params_t* hardwareParameters;
snd_pcm_hw_params_alloca(&hardwareParameters);
if(snd_pcm_hw_params_any(_interface, hardwareParameters) < 0) return terminate(), false;
if(snd_pcm_hw_params_set_access(_interface, hardwareParameters, SND_PCM_ACCESS_RW_INTERLEAVED) < 0
|| snd_pcm_hw_params_set_format(_interface, hardwareParameters, SND_PCM_FORMAT_S16_LE) < 0
|| snd_pcm_hw_params_set_channels(_interface, hardwareParameters, 2) < 0
|| snd_pcm_hw_params_set_rate_near(_interface, hardwareParameters, &rate, 0) < 0
|| snd_pcm_hw_params_set_period_time_near(_interface, hardwareParameters, &periodTime, 0) < 0
|| snd_pcm_hw_params_set_buffer_time_near(_interface, hardwareParameters, &bufferTime, 0) < 0
) return terminate(), false;
if(snd_pcm_hw_params(_interface, hardwareParameters) < 0) return terminate(), false;
if(snd_pcm_get_params(_interface, &_bufferSize, &_periodSize) < 0) return terminate(), false;
snd_pcm_sw_params_t* softwareParameters;
snd_pcm_sw_params_alloca(&softwareParameters);
if(snd_pcm_sw_params_current(_interface, softwareParameters) < 0) return terminate(), false;
if(snd_pcm_sw_params_set_start_threshold(_interface, softwareParameters, _bufferSize / 2) < 0) return terminate(), false;
if(snd_pcm_sw_params(_interface, softwareParameters) < 0) return terminate(), false;
_buffer = new uint32_t[_periodSize]();
_offset = 0;
return _ready = true;
}
auto terminate() -> void {
_ready = false;
if(_interface) {
//snd_pcm_drain(_interface); //prevents popping noise; but causes multi-second lag
snd_pcm_close(_interface);
_interface = nullptr;
}
if(_buffer) {
delete[] _buffer;
_buffer = nullptr;
}
}
bool _ready = false;
snd_pcm_t* _interface = nullptr;
snd_pcm_uframes_t _bufferSize;
snd_pcm_uframes_t _periodSize;
u32* _buffer = nullptr;
u32 _offset = 0;
};
|