File: xaudio2.cpp

package info (click to toggle)
ares 134%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 34,680 kB
  • sloc: cpp: 338,717; ansic: 89,036; sh: 52; makefile: 27
file content (214 lines) | stat: -rw-r--r-- 7,072 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include "xaudio2.hpp"

struct AudioXAudio2 : AudioDriver, public IXAudio2VoiceCallback {
  enum : u32 { Buffers = 32 };

  AudioXAudio2& self = *this;
  AudioXAudio2(Audio& super) : AudioDriver(super) { construct(); }
  ~AudioXAudio2() { destruct(); }

  auto create() -> bool override {
    if(hasDevices()) super.setDevice(hasDevices().first());
    super.setChannels(2);
    super.setFrequency(48000);
    super.setLatency(40);
    return initialize();
  }

  auto driver() -> string override { return "XAudio 2.1"; }
  auto ready() -> bool override { return self.isReady; }

  auto hasBlocking() -> bool override { return true; }
  auto hasDynamic() -> bool override { return true; }

  auto hasDevices() -> vector<string> override {
    vector<string> devices;
    for(auto& device : self.devices) devices.append(device.name);
    return devices;
  }

  auto hasFrequencies() -> vector<u32> override {
    return {44100, 48000, 96000};
  }

  auto hasLatencies() -> vector<u32> override {
    return {20, 40, 60, 80, 100};
  }

  auto setDevice(string device) -> bool override { return initialize(); }
  auto setBlocking(bool blocking) -> bool override { return true; }
  auto setFrequency(u32 frequency) -> bool override { return initialize(); }
  auto setLatency(u32 latency) -> bool override { return initialize(); }

  auto clear() -> void override {
    if(self.sourceVoice) {
      self.sourceVoice->Stop(0);
      self.sourceVoice->FlushSourceBuffers();  //calls OnBufferEnd for all currently submitted buffers
    }

    self.index = 0;
    self.queue = 0;
    for(u32 n : range(Buffers)) self.buffers[n].fill();

    if(self.sourceVoice) self.sourceVoice->Start(0);
  }

  auto level() -> f64 override {
    XAUDIO2_VOICE_STATE state{};
    self.sourceVoice->GetState(&state);
    u32 level = state.BuffersQueued * self.period + buffers[self.index].size() - state.SamplesPlayed % self.period;
    u32 limit = Buffers * self.period;
    return (f64)level / limit;
  }

  auto output(const f64 samples[]) -> void override {
    u32 frame = 0;
    frame |= (u16)sclamp<16>(samples[0] * 32767.0) <<  0;
    frame |= (u16)sclamp<16>(samples[1] * 32767.0) << 16;

    auto& buffer = self.buffers[self.index];
    buffer.write(frame);
    if(!buffer.full()) return;

    buffer.flush();
    if(self.queue == Buffers - 1) {
      if(self.blocking) {
        //wait until there is at least one other free buffer for the next sample
        while(self.queue == Buffers - 1);
      } else {
        //there is no free buffer for the next block, so ignore the current contents
        return;
      }
    }

    write(buffer.data(), buffer.capacity<u8>());
    self.index = (self.index + 1) % Buffers;
  }

private:
  struct Device {
    u32 id = 0;
    u32 channels = 0;
    u32 frequency = 0;
    Format format = Format::none;
    string name;
  };
  vector<Device> devices;

  auto construct() -> void {
    if(FAILED(XAudio2Create(&self.xa2Interface, 0 , XAUDIO2_DEFAULT_PROCESSOR))) return;

    u32 deviceCount = 0;
    self.xa2Interface->GetDeviceCount(&deviceCount);
    for(u32 deviceIndex : range(deviceCount)) {
      XAUDIO2_DEVICE_DETAILS deviceDetails{};
      self.xa2Interface->GetDeviceDetails(deviceIndex, &deviceDetails);
      auto format = deviceDetails.OutputFormat.Format.wFormatTag;
      auto bits = deviceDetails.OutputFormat.Format.wBitsPerSample;

      Device device;
      device.id = deviceIndex;
      device.name = (const char*)utf8_t(deviceDetails.DisplayName);
      device.channels = deviceDetails.OutputFormat.Format.nChannels;
      device.frequency = deviceDetails.OutputFormat.Format.nSamplesPerSec;
      if(format == WAVE_FORMAT_PCM) {
        if(bits == 16) device.format = Format::int16;
        if(bits == 32) device.format = Format::int32;
      } else if(format == WAVE_FORMAT_IEEE_FLOAT) {
        if(bits == 32) device.format = Format::float32;
      }

      //ensure devices.first() is the default device
      if(deviceDetails.Role & DefaultGameDevice) {
        devices.prepend(device);
      } else {
        devices.append(device);
      }
    }
  }

  auto destruct() -> void {
    terminate();

    if(self.xa2Interface) {
      self.xa2Interface->Release();
      self.xa2Interface = nullptr;
    }
  }

  auto initialize() -> bool {
    terminate();
    if(!self.xa2Interface) return false;

    self.period = self.frequency * self.latency / Buffers / 1000.0 + 0.5;
    for(u32 n : range(Buffers)) buffers[n].resize(self.period);
    self.index = 0;
    self.queue = 0;

    if(!hasDevices().find(self.device)) self.device = hasDevices().first();
    u32 deviceID = devices[hasDevices().find(self.device)()].id;

    if(FAILED(self.xa2Interface->CreateMasteringVoice(&self.masterVoice, self.channels, self.frequency, 0, deviceID, nullptr))) return terminate(), false;

    WAVEFORMATEX waveFormat{};
    waveFormat.wFormatTag = WAVE_FORMAT_PCM;
    waveFormat.nChannels = self.channels;
    waveFormat.nSamplesPerSec = self.frequency;
    waveFormat.nBlockAlign = 4;
    waveFormat.wBitsPerSample = 16;
    waveFormat.nAvgBytesPerSec = waveFormat.nSamplesPerSec * waveFormat.nBlockAlign;
    waveFormat.cbSize = 0;

    if(FAILED(self.xa2Interface->CreateSourceVoice(&self.sourceVoice, (WAVEFORMATEX*)&waveFormat, XAUDIO2_VOICE_NOSRC, XAUDIO2_DEFAULT_FREQ_RATIO, this, nullptr, nullptr))) return terminate(), false;

    clear();
    return self.isReady = true;
  }

  auto terminate() -> void {
    self.isReady = false;

    if(self.sourceVoice) {
      self.sourceVoice->Stop(0);
      self.sourceVoice->DestroyVoice();
      self.sourceVoice = nullptr;
    }

    if(self.masterVoice) {
      self.masterVoice->DestroyVoice();
      self.masterVoice = nullptr;
    }
  }

  auto write(const u32* audioData, u32 bytes) -> void {
    XAUDIO2_BUFFER buffer{};
    buffer.AudioBytes = bytes;
    buffer.pAudioData = (const BYTE*)audioData;
    buffer.pContext = nullptr;
    InterlockedIncrement(&self.queue);
    self.sourceVoice->SubmitSourceBuffer(&buffer);
  }

  bool isReady = false;

  queue<u32> buffers[Buffers];
  u32 period = 0;          //amount (in 32-bit frames) of samples per buffer
  u32 index = 0;           //current buffer for writing samples to
  volatile long queue = 0;  //how many buffers are queued and ready for playback

  IXAudio2* xa2Interface = nullptr;
  IXAudio2MasteringVoice* masterVoice = nullptr;
  IXAudio2SourceVoice* sourceVoice = nullptr;

  //inherited from IXAudio2VoiceCallback
  STDMETHODIMP_(void) OnBufferStart(void* pBufferContext) noexcept override {}
  STDMETHODIMP_(void) OnLoopEnd(void* pBufferContext) noexcept override {}
  STDMETHODIMP_(void) OnStreamEnd() noexcept override {}
  STDMETHODIMP_(void) OnVoiceError(void* pBufferContext, HRESULT Error) noexcept override {}
  STDMETHODIMP_(void) OnVoiceProcessingPassEnd() noexcept override {}
  STDMETHODIMP_(void) OnVoiceProcessingPassStart(UINT32 BytesRequired) noexcept override {}

  STDMETHODIMP_(void) OnBufferEnd(void* pBufferContext) noexcept override {
    InterlockedDecrement(&self.queue);
  }
};