File: wasapi.cpp

package info (click to toggle)
ares 147%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 35,244 kB
  • sloc: cpp: 334,263; ansic: 98,696; sh: 123; makefile: 31
file content (392 lines) | stat: -rw-r--r-- 14,113 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#include <avrt.h>
#include <mmdeviceapi.h>
#include <audioclient.h>
#include <audiopolicy.h>
#include <devicetopology.h>
#include <endpointvolume.h>
#include <functiondiscoverykeys_devpkey.h>

#if defined(_MSC_VER)
  #define CLSID_MMDeviceEnumerator                     __uuidof(MMDeviceEnumerator)
  #define IID_IMMDeviceEnumerator                      __uuidof(IMMDeviceEnumerator)
  #define IID_IAudioClient                             __uuidof(IAudioClient)
  #define IID_IAudioRenderClient                       __uuidof(IAudioRenderClient)
  #define IID_IActivateAudioInterfaceCompletionHandler __uuidof(IActivateAudioInterfaceCompletionHandler)
#endif

struct ActivateAudioInterfaceHandler : public IActivateAudioInterfaceCompletionHandler {
  ActivateAudioInterfaceHandler& self = *this;
  HANDLE completionEvent;

  ActivateAudioInterfaceHandler() : refCount(1) {
    self.completionEvent = CreateEvent(nullptr, false, false, nullptr);
  }

  ~ActivateAudioInterfaceHandler() {
    CloseHandle(self.completionEvent);
  }

  auto __stdcall QueryInterface(REFIID riid, void** ppv) -> HRESULT {
    if(riid == IID_IUnknown || riid == IID_IAgileObject || riid == IID_IActivateAudioInterfaceCompletionHandler) {
      *ppv = (IActivateAudioInterfaceCompletionHandler*)&self;
    } else {
      *ppv = NULL;
      return E_NOINTERFACE;
    }
    self.AddRef();
    return S_OK;
  } 

  auto __stdcall AddRef() -> ULONG {
    return InterlockedIncrement(&self.refCount);
  }

  auto __stdcall Release() -> ULONG {
    if(InterlockedDecrement(&self.refCount) == 0){
        delete &self;
        return 0;
    }
    return self.refCount;
  }

  auto __stdcall ActivateCompleted(IActivateAudioInterfaceAsyncOperation *activateOperation) -> HRESULT {
    if(!self.completionEvent) return E_FAIL;
    if(!SetEvent(self.completionEvent)) return E_FAIL;
    return S_OK;
  }

private:
  long refCount;
};

struct AudioWASAPI : AudioDriver {
  AudioWASAPI& self = *this;
  AudioWASAPI(Audio& super) : AudioDriver(super) { construct(); }
  ~AudioWASAPI() { destruct(); }

  auto create() -> bool override {
    super.setExclusive(false);
    auto devices = hasDevices();
    if(!devices.empty()) super.setDevice(devices.front());
    super.setBlocking(false);
    super.setChannels(2);
    super.setFrequency(48000);
    super.setLatency(40);
    return initialize();
  }

  auto driver() -> string override { return "WASAPI"; }
  auto ready() -> bool override { return self.isReady; }

  auto hasExclusive() -> bool override { 
    if(auto device = self.getDevice()) {
      return !(*device).isDefault;
    } else {
      return false;
    }
  }
  auto hasBlocking() -> bool override { return true; }

  auto hasDevices() -> std::vector<string> override {
    std::vector<string> devices;
    for(auto& device : self.devices) devices.push_back(device.name);
    return devices;
  }

  auto hasChannels() -> std::vector<u32> override {
    return {self.channels};
  }

  auto hasFrequencies() -> std::vector<u32> override {
    return {self.frequency};
  }

  auto hasLatencies() -> std::vector<u32> override {
    return {0, 20, 40, 60, 80, 100};
  }

  auto setExclusive(bool exclusive) -> bool override { return initialize(); }
  auto setDevice(string device) -> bool override { return initialize(); }
  auto setBlocking(bool blocking) -> bool override { return true; }
  auto setFrequency(u32 frequency) -> bool override { return initialize(); }
  auto setLatency(u32 latency) -> bool override { return initialize(); }

  auto clear() -> void override {
    self.queue.read = 0;
    self.queue.write = 0;
    self.queue.count = 0;
    memory::fill<u8>(self.queue.samples, sizeof(self.queue.samples));

    if(self.audioClient) {
      self.audioClient->Stop();
      self.audioClient->Reset();
      self.audioClient->Start();
    }
  }

  auto output(const f64 samples[]) -> void override {
    self.queue.samples[self.queue.write][0] = samples[0];
    self.queue.samples[self.queue.write][1] = samples[1];
    self.queue.write++;
    self.queue.count++;

    if(self.queue.count >= self.bufferSize) {
      //this event is signaled at the device period which is no more than half of bufferSize
      //(in shared mode) or equal to bufferSize (in double-buffered exclusive mode)
      if(WaitForSingleObject(self.eventHandle, self.blocking ? INFINITE : 0) == WAIT_OBJECT_0) {
        write();
      } else {
        self.queue.read++;
        self.queue.count--;
      }
    }
  }

private:
  struct Device {
    string id;
    string name;
    bool isDefault;
  };
  std::vector<Device> devices;

  auto getDevice() -> maybe<Device&> {
    for(auto& device : self.devices) {
      if(device.name == self.device) return device;
    }
    return nothing;
  }

  using PActivateAudioInterfaceAsync = HRESULT(__stdcall *)(LPCWSTR, REFIID, PROPVARIANT*, IActivateAudioInterfaceCompletionHandler*, IActivateAudioInterfaceAsyncOperation**);
  maybe<bool> defaultDeviceSupported;
  PActivateAudioInterfaceAsync activateAudioInterfaceAsync;

  auto isDefaultDeviceSupported() -> bool {
    if(self.defaultDeviceSupported) {
      return *self.defaultDeviceSupported;
    }

    OSVERSIONINFOEX info{};
    info.dwOSVersionInfoSize = sizeof(info);
    info.dwBuildNumber = 14393;

    DWORDLONG conditionMask = 0;
    VER_SET_CONDITION(conditionMask, VER_BUILDNUMBER, VER_GREATER_EQUAL);
    if(VerifyVersionInfo(&info, VER_BUILDNUMBER, conditionMask)) {
      auto audioLib = LoadLibrary(L"mmdevapi");
      self.activateAudioInterfaceAsync = (PActivateAudioInterfaceAsync)GetProcAddress(audioLib, "ActivateAudioInterfaceAsync");
      self.defaultDeviceSupported = true;
    } else {
      self.defaultDeviceSupported = false;
    }

    return *self.defaultDeviceSupported;
  }

  auto construct() -> bool {
    if(self.isDefaultDeviceSupported()) {
      PWSTR defaultDeviceString;
      if(StringFromIID(DEVINTERFACE_AUDIO_RENDER, &defaultDeviceString) != S_OK) return false;

      Device defaultDevice{};
      defaultDevice.id = (const char*)utf8_t(defaultDeviceString);
      defaultDevice.name = "Default";
      defaultDevice.isDefault = true;

      self.devices.push_back(defaultDevice);
      CoTaskMemFree(defaultDeviceString);
    }

    if(CoCreateInstance(CLSID_MMDeviceEnumerator, nullptr, CLSCTX_ALL, IID_IMMDeviceEnumerator, (void**)&self.enumerator) != S_OK) return false;

    IMMDeviceCollection* deviceCollection = nullptr;
    if(self.enumerator->EnumAudioEndpoints(eRender, DEVICE_STATE_ACTIVE, &deviceCollection) != S_OK) return false;

    u32 deviceCount = 0;
    if(deviceCollection->GetCount(&deviceCount) != S_OK) return false;

    for(u32 deviceIndex : range(deviceCount)) {
      IMMDevice* deviceContext = nullptr;
      if(deviceCollection->Item(deviceIndex, &deviceContext) != S_OK) continue;

      Device device;
      device.isDefault = false;

      LPWSTR deviceString = nullptr;
      deviceContext->GetId(&deviceString);
      device.id = (const char*)utf8_t(deviceString);
      CoTaskMemFree(deviceString);

      IPropertyStore* propertyStore = nullptr;
      deviceContext->OpenPropertyStore(STGM_READ, &propertyStore);
      PROPVARIANT propVariant;
      propertyStore->GetValue(PKEY_Device_FriendlyName, &propVariant);
      device.name = (const char*)utf8_t(propVariant.pwszVal);
      propertyStore->Release();

      self.devices.push_back(device);
    }

    deviceCollection->Release();
    return true;
  }

  auto destruct() -> void {
    terminate();

    if(self.enumerator) {
      self.enumerator->Release();
      self.enumerator = nullptr;
    }
  }

  auto initialize() -> bool {
    terminate();

    Device selectedDevice;
    if(auto device = self.getDevice()) {
      selectedDevice = *device;
    } else {
      return false;
    }

    utf16_t deviceString(selectedDevice.id);
    if(selectedDevice.isDefault) {
      ActivateAudioInterfaceHandler* handler = new ActivateAudioInterfaceHandler;
      IActivateAudioInterfaceAsyncOperation* asyncOp;
      if(self.activateAudioInterfaceAsync(deviceString, IID_IAudioClient, nullptr, handler, &asyncOp) != S_OK) return false;
      WaitForSingleObject(handler->completionEvent, INFINITE);
      handler->Release();

      HRESULT activateResult;
      IUnknown* activatedInterface;
      if(asyncOp->GetActivateResult(&activateResult, &activatedInterface) != S_OK) return false;
      asyncOp->Release();
      if(activateResult != S_OK) return false;
      self.audioClient = (IAudioClient*)activatedInterface;
    } else {
      if(self.enumerator->GetDevice(deviceString, &self.audioDevice) != S_OK) return false;

      if(self.audioDevice->Activate(IID_IAudioClient, CLSCTX_ALL, nullptr, (void**)&self.audioClient) != S_OK) return false;
    }

    WAVEFORMATEXTENSIBLE waveFormat{};
    if(self.exclusive && !selectedDevice.isDefault) {
      IPropertyStore* propertyStore = nullptr;
      if(self.audioDevice->OpenPropertyStore(STGM_READ, &propertyStore) != S_OK) return false;
      PROPVARIANT propVariant;
      if(propertyStore->GetValue(PKEY_AudioEngine_DeviceFormat, &propVariant) != S_OK) return false;
      waveFormat = *(WAVEFORMATEXTENSIBLE*)propVariant.blob.pBlobData;
      propertyStore->Release();
      if(self.audioClient->GetDevicePeriod(nullptr, &self.devicePeriod) != S_OK) return false;
      auto latency = max(self.devicePeriod, (REFERENCE_TIME)self.latency * 10'000);  //1ms to 100ns units
      auto result = self.audioClient->Initialize(AUDCLNT_SHAREMODE_EXCLUSIVE, AUDCLNT_STREAMFLAGS_EVENTCALLBACK, latency, latency, &waveFormat.Format, nullptr);
      if(result == AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED) {
        if(self.audioClient->GetBufferSize(&self.bufferSize) != S_OK) return false;
        self.audioClient->Release();
        latency = (REFERENCE_TIME)(10'000 * 1'000 * self.bufferSize / waveFormat.Format.nSamplesPerSec);
        if(self.audioDevice->Activate(IID_IAudioClient, CLSCTX_ALL, nullptr, (void**)&self.audioClient) != S_OK) return false;
        result = self.audioClient->Initialize(AUDCLNT_SHAREMODE_EXCLUSIVE, AUDCLNT_STREAMFLAGS_EVENTCALLBACK, latency, latency, &waveFormat.Format, nullptr);
      }
      if(result != S_OK) return false;
      DWORD taskIndex = 0;
      self.taskHandle = AvSetMmThreadCharacteristics(L"Pro Audio", &taskIndex);
    } else {
      WAVEFORMATEX* waveFormatEx = nullptr;
      if(self.audioClient->GetMixFormat(&waveFormatEx) != S_OK) return false;
      waveFormat = *(WAVEFORMATEXTENSIBLE*)waveFormatEx;
      CoTaskMemFree(waveFormatEx);
      if(self.audioClient->GetDevicePeriod(&self.devicePeriod, nullptr)) return false;
      auto latency = max(self.devicePeriod * 2, (REFERENCE_TIME)self.latency * 10'000);  //1ms to 100ns units
      if(self.audioClient->Initialize(AUDCLNT_SHAREMODE_SHARED, AUDCLNT_STREAMFLAGS_EVENTCALLBACK, latency, 0, &waveFormat.Format, nullptr) != S_OK) return false;
    }

    self.eventHandle = CreateEvent(nullptr, false, false, nullptr);
    if(self.audioClient->SetEventHandle(self.eventHandle) != S_OK) return false;
    if(self.audioClient->GetService(IID_IAudioRenderClient, (void**)&self.renderClient) != S_OK) return false;
    if(self.audioClient->GetBufferSize(&self.bufferSize) != S_OK) return false;

    self.channels = waveFormat.Format.nChannels;
    self.frequency = waveFormat.Format.nSamplesPerSec;
    self.mode = waveFormat.SubFormat.Data1;
    self.precision = waveFormat.Format.wBitsPerSample;

    clear();
    return self.isReady = true;
  }

  auto terminate() -> void {
    self.isReady = false;
    if(self.audioClient) self.audioClient->Stop();
    if(self.renderClient) self.renderClient->Release(), self.renderClient = nullptr;
    if(self.audioClient) self.audioClient->Release(), self.audioClient = nullptr;
    if(self.audioDevice) self.audioDevice->Release(), self.audioDevice = nullptr;
    if(self.eventHandle) CloseHandle(self.eventHandle), self.eventHandle = nullptr;
    if(self.taskHandle) AvRevertMmThreadCharacteristics(self.taskHandle), self.taskHandle = nullptr;
  }

  auto write() -> void {
    u32 available = self.bufferSize;
    if(!self.exclusive) {
      u32 padding = 0;
      self.audioClient->GetCurrentPadding(&padding);
      available = self.bufferSize - padding;
    }
    u32 length = min(available, self.queue.count);

    u8* buffer = nullptr;
    if(self.renderClient->GetBuffer(length, &buffer) == S_OK) {
      u32 bufferFlags = 0;
      for(u32 _ : range(length)) {
        f64 samples[8] = {};
        if(self.queue.count) {
          for(u32 n : range(self.channels)) {
            samples[n] = self.queue.samples[self.queue.read][n];
          }
          self.queue.read++;
          self.queue.count--;
        }

        if(self.mode == 1 && self.precision == 16) {
          auto output = (u16*)buffer;
          for(u32 n : range(self.channels)) *output++ = (u16)sclamp<16>(samples[n] * (32768.0 - 1.0));
          buffer = (u8*)output;
        } else if(self.mode == 1 && self.precision == 32) {
          auto output = (u32*)buffer;
          for(u32 n : range(self.channels)) *output++ = (u32)sclamp<32>(samples[n] * (65536.0 * 32768.0 - 1.0));
          buffer = (u8*)output;
        } else if(self.mode == 3 && self.precision == 32) {
          auto output = (f32*)buffer;
          for(u32 n : range(self.channels)) *output++ = f32(max(-1.0, min(+1.0, samples[n])));
          buffer = (u8*)output;
        } else {
          //output silence for unsupported sample formats
          bufferFlags = AUDCLNT_BUFFERFLAGS_SILENT;
          break;
        }
      }
      self.renderClient->ReleaseBuffer(length, bufferFlags);
    }
  }

  bool isReady = false;

  u32 mode = 0;
  u32 precision = 0;

  struct Queue {
    f64 samples[65536][8];
    u16 read;
    u16 write;
    u16 count;
  } queue;

  IMMDeviceEnumerator* enumerator = nullptr;
  IMMDevice* audioDevice = nullptr;
  IAudioClient* audioClient = nullptr;
  IAudioRenderClient* renderClient = nullptr;
  HANDLE eventHandle = nullptr;
  HANDLE taskHandle = nullptr;
  REFERENCE_TIME devicePeriod = 0;
  u32 bufferSize = 0;  //in frames
};