1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
/* Multi-dimentional minizer using Powell or Conjugate Gradient methods */
/* This is good for smoother, well behaved functions. */
/* Code is an original expression of the algorithms decsribed in */
/* "Numerical Recipes in C", by W.H.Press, B.P.Flannery, */
/* S.A.Teukolsky & W.T.Vetterling. */
/*
* Copyright 2000, 2006 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* TTBD:
Fix error handling to return status (malloc, excessive itters)
Create to "safe" library ?
Make standalone - ie remove numsup ?
*/
/*
Idea for improving progress accounting:
count number of itterations already done (pitter)
estimate number yet needed (fitter)
progress = pitter/(pitter + fitter)
Number yet needed estimated by progress of retval delta
againsth threshold target.
ie fitters = (lastdel - curdel)/(curdel - stopth)
*/
/* Note that all arrays are indexed from 0 */
#include "numsup.h"
#include "powell.h"
#undef SLOPE_SANITY_CHECK /* exermental */
#undef ABSTOL /* Make tollerance absolute */
#undef DEBUG /* Some debugging printfs (not comprehensive) */
#ifdef DEBUG
#undef DBG
#define DBG(xxx) printf xxx ;
#else
#undef DBG
#define DBG(xxx)
#endif
static double linmin(double p[], double xi[], int n, double ftol,
double (*func)(void *fdata, double tp[]), void *fdata);
/* Standard interface for powell function */
/* return 0 on sucess, 1 on failure due to excessive itterions */
/* Result will be in cp */
int powell(
double *rv, /* If not NULL, return the residual error */
int di, /* Dimentionality */
double cp[], /* Initial starting point */
double s[], /* Size of initial search area */
#ifdef ABSTOL
double ftol, /* Absolute tollerance of error change to stop on */
#else
double ftol, /* Relative tollerance of error change to stop on */
#endif
int maxit, /* Maximum iterations allowed */
double (*func)(void *fdata, double tp[]), /* Error function to evaluate */
void *fdata, /* Opaque data needed by function */
void (*prog)(void *pdata, int perc), /* Optional progress percentage callback */
void *pdata /* Opaque data needed by prog() */
) {
int i;
double **dmtx; /* Direction vector */
double *spt; /* Sarting point before exploring all the directions */
double *xpt; /* Extrapolated point */
double *svec; /* Search vector */
int iter;
double retv; /* Returned function value at p */
double stopth; /* Current stop threshold */
double startdel = -1.0; /* Initial change in function value */
double curdel; /* Current change in function value */
int pc = 0; /* Percentage complete */
dmtx = dmatrixz(0, di-1, 0, di-1); /* Zero filled */
spt = dvector(0,di-1);
xpt = dvector(0,di-1);
svec = dvector(0,di-1);
/* Create initial direction matrix by */
/* placing search start on diagonal */
for (i = 0; i < di; i++)
dmtx[i][i] = s[i];
/* Save the starting point */
for (i = 0; i < di; i++)
spt[i] = cp[i];
if (prog != NULL) /* Report initial progress */
prog(pdata, pc);
/* Initial function evaluation */
retv = (*func)(fdata, cp);
//printf("~1 ### initial retv = %f\n",retv);
/* Itterate untill we converge on a solution, or give up. */
for (iter = 1; iter < maxit; iter++) {
int j;
double lretv; /* Last function return value */
int ibig = 0; /* Index of biggest delta */
double del = 0.0; /* Biggest function value decrease */
double pretv; /* Previous function return value */
pretv = retv; /* Save return value at top of itteration */
/* Loop over all directions in the set */
for (i = 0; i < di; i++) {
DBG(("Looping over direction %d\n",i))
for (j = 0; j < di; j++) /* Extract this direction to make search vector */
svec[j] = dmtx[j][i];
//printf("~1 ### chosen dir = %f %f\n", svec[0],svec[1]);
/* Minimize in that direction */
lretv = retv;
retv = linmin(cp, svec, di, ftol, func, fdata);
/* Record bigest function decrease, and dimension it occured on */
if (fabs(lretv - retv) > del) {
del = fabs(lretv - retv);
ibig = i;
}
}
//printf("~1 ### biggest change was dir %d by %f\n", ibig, del);
#ifdef ABSTOL
stopth = ftol; /* Absolute tollerance */
#else
stopth = ftol * 0.5 * (fabs(pretv) + fabs(retv) + DBL_EPSILON);
#endif
curdel = fabs(pretv - retv);
if (startdel < 0.0) {
startdel = curdel;
} else {
int tt;
tt = (int)(100.0 * pow((log(curdel) - log(startdel))/(log(stopth) - log(startdel)), 4.0) + 0.5);
if (tt > pc && tt < 100) {
pc = tt;
if (prog != NULL) /* Report initial progress */
prog(pdata, pc);
}
}
/* If we have had at least one change of direction and */
/* reached a suitable tollerance, then finish */
if (iter > 1 && curdel <= stopth) {
//printf("~1 ### stopping on itter %d because curdel %f <= stopth %f\n",iter, curdel,stopth);
DBG(("Reached stop tollerance because curdel %f <= stopth %f\n",curdel,stopth))
break;
}
DBG(("Not stopping because curdel %f > stopth %f\n",curdel,stopth))
//printf("~1 ### recomputing direction\n");
for (i = 0; i < di; i++) {
svec[i] = cp[i] - spt[i]; /* Average direction moved after minimization round */
xpt[i] = cp[i] + svec[i]; /* Extrapolated point after round of minimization */
spt[i] = cp[i]; /* New start point for next round */
}
//printf("~1 ### new dir = %f %f\n", svec[0],svec[1]);
/* Function value at extrapolated point */
lretv = (*func)(fdata, xpt);
if (lretv < pretv) { /* If extrapolation is an improvement */
double t, t1, t2;
//printf("~1 ### extrap is improvement\n");
t1 = pretv - retv - del;
t2 = pretv - lretv;
t = 2.0 * (pretv -2.0 * retv + lretv) * t1 * t1 - del * t2 * t2;
if (t < 0.0) {
//printf("~1 ### move to min in new direction\n");
/* Move to the minimum of the new direction */
retv = linmin(cp, svec, di, ftol, func, fdata);
for (i = 0; i < di; i++) { /* Save the new direction */
dmtx[i][ibig] = svec[i]; /* by replacing best previous */
}
}
}
}
//printf("~1 iters = %d\n",iter);
/* Free up all the temporary vectors and matrix */
free_dvector(svec,0,di-1);
free_dvector(xpt,0,di-1);
free_dvector(spt,0,di-1);
free_dmatrix(dmtx, 0, di-1, 0, di-1);
if (prog != NULL) /* Report final progress */
prog(pdata, 100);
if (rv != NULL)
*rv = retv;
if (iter < maxit)
return 0;
DBG(("powell: returning 1 due to excessive itterations\n"))
return 1; /* Failed due to execessive itterations */
}
/* -------------------------------------- */
/* Conjugate Gradient optimiser */
/* return 0 on sucess, 1 on failure due to excessive itterions */
/* Result will be in cp */
/* Note that we could use gradient in line minimiser, */
/* but haven't bothered yet. */
int conjgrad(
double *rv, /* If not NULL, return the residual error */
int di, /* Dimentionality */
double cp[], /* Initial starting point */
double s[], /* Size of initial search area */
#ifdef ABSTOL
double ftol, /* Absolute tollerance of error change to stop on */
#else
double ftol, /* Relative tollerance of error change to stop on */
#endif
int maxit, /* Maximum iterations allowed */
double (*func)(void *fdata, double tp[]), /* Error function to evaluate */
double (*dfunc)(void *fdata, double dp[], double tp[]), /* Gradient function to evaluate */
void *fdata, /* Opaque data needed by function */
void (*prog)(void *pdata, int perc), /* Optional progress percentage callback */
void *pdata /* Opaque data needed by prog() */
) {
int i, iter;
double *svec; /* Search vector */
double *gvec; /* G direction vector */
double *hvec; /* H direction vector */
double retv; /* Returned function value at p */
double stopth; /* Current stop threshold */
double startdel = -1.0; /* Initial change in function value */
double curdel; /* Current change in function value */
double svec_sca; /* initial svec scale factor */
int pc = 0; /* Percentage complete */
svec = dvector(0,di-1);
gvec = dvector(0,di-1);
hvec = dvector(0,di-1);
if (prog != NULL) /* Report initial progress */
prog(pdata, pc);
/* Initial function evaluation */
retv = (*dfunc)(fdata, svec, cp);
/* svec[] seems to be large after this. */
/* Rescale it to conform to maximum of s[] */
for (svec_sca = 0.0, i = 0; i < di; i++) {
if (fabs(svec[i]) > svec_sca)
svec_sca = fabs(svec[i]);
}
/* set scale so largest <= 1 */
if (svec_sca < 1e-12)
svec_sca = 1.0;
else
svec_sca = 1.0/svec_sca;
//printf("~1 ### initial dir = %f %f\n", svec[0],svec[1]);
//printf("~1 ### initial retv = %f\n",retv);
/* Initial vector setup */
for (i = 0; i < di; i++) {
gvec[i] = hvec[i] = -svec[i]; /* Inverse gradient */
svec[i] = s[i] * -svec[i] * svec_sca; /* Scale the search vector */
}
//printf("~1 ### svec = %f %f\n", svec[0],svec[1]);
/* Itterate untill we converge on a solution, or give up. */
for (iter = 1; iter < maxit; iter++) {
double gamden, gamnum, gam;
double pretv; /* Previous function return value */
DBG(("conjrad: about to do linmin\n"))
pretv = retv;
retv = linmin(cp, svec, di, ftol, func, fdata);
#ifdef ABSTOL
stopth = ftol; /* Absolute tollerance */
#else
stopth = ftol * 0.5 * (fabs(pretv) + fabs(retv) + DBL_EPSILON); // Old code
#endif
curdel = fabs(pretv - retv);
//printf("~1 ### this retv = %f, pretv = %f, curdel = %f\n",retv,pretv,curdel);
if (startdel < 0.0) {
startdel = curdel;
} else {
int tt;
tt = (int)(100.0 * pow((log(curdel) - log(startdel))/(log(stopth) - log(startdel)), 4.0) + 0.5);
if (tt > pc && tt < 100) {
pc = tt;
if (prog != NULL) /* Report initial progress */
prog(pdata, pc);
}
}
/* If we have had at least one change of direction and */
/* reached a suitable tollerance, then finish */
if (iter > 1 && curdel <= stopth) {
//printf("~1 ### stopping on itter %d because curdel %f <= stopth %f\n",iter, curdel,stopth);
break;
}
//printf("~1 ### Not stopping on itter %d because curdel %f > stopth %f\n",iter, curdel,stopth);
DBG(("conjrad: recomputing direction\n"))
//printf("~1 ### recomputing direction\n");
(*dfunc)(fdata, svec, cp); /* (Don't use retv as it wrecks stop test) */
//printf("~1 ### pderiv = %f %f\n", svec[0],svec[1]);
/* Compute gamma */
for (gamnum = gamden = 0.0, i = 0; i < di; i++) {
gamnum += svec[i] * (gvec[i] + svec[i]);
gamden += gvec[i] * gvec[i];
}
//printf("~1 ### gamnum = %f, gamden = %f\n", gamnum,gamden);
if (gamden == 0.0) { /* Gradient is exactly zero */
DBG(("conjrad: gradient is exactly zero\n"))
break;
}
gam = gamnum/gamden;
DBG(("conjrad: gamma = %f = %f/%f\n",gam,gamnum,gamden))
//printf("~1 ### gvec[] = %f %f, gamma = %f, hvec = %f %f\n", gvec[0],gvec[1],gam,hvec[0],hvec[1]);
/* Adjust seach direction */
for (i = 0; i < di; i++) {
gvec[i] = -svec[i];
svec[i] = hvec[i] = gvec[i] + gam * hvec[i];
}
/* svec[] seems to be large after this. */
/* Rescale it to conform to maximum of s[] */
for (svec_sca = 0.0, i = 0; i < di; i++) {
if (fabs(svec[i]) > svec_sca)
svec_sca = fabs(svec[i]);
}
/* set scale so largest <= 1 */
if (svec_sca < 1e-12)
svec_sca = 1.0;
else
svec_sca = 1.0/svec_sca;
for (i = 0; i < di; i++)
svec[i] = svec[i] * s[i] * svec_sca;
//printf("~1 ### svec = %f %f\n", svec[0],svec[1]);
}
/* Free up all the temporary vectors and matrix */
free_dvector(hvec,0,di-1);
free_dvector(gvec,0,di-1);
free_dvector(svec,0,di-1);
if (prog != NULL) /* Report final progress */
prog(pdata, 100);
if (rv != NULL)
*rv = retv;
//printf("~1 ### done\n");
if (iter < maxit)
return 0;
return 1; /* Failed due to execessive itterations */
}
/*------------------------------*/
#define POWELL_GOLD 1.618034
#define POWELL_CGOLD 0.3819660
#define POWELL_MAXIT 100
/* Line bracketing and minimisation routine. */
/* Return value at minimum. */
static double linmin(
double cp[], /* Start point, and returned value */
double xi[], /* Search vector */
int di, /* Dimensionality */
#ifdef ABSTOL
double ftol, /* Absolute tolerance to stop on */
#else
double ftol, /* Relative tolerance to stop on */
#endif
double (*func)(void *fdata, double tp[]), /* Error function to evaluate */
void *fdata) /* Opaque data for func() */
{
int i;
double ax, xx, bx; /* Search vector multipliers */
double af, xf, bf; /* Function values at those points */
double *xt, XT[10]; /* Trial point */
if (di <= 10)
xt = XT;
else
xt = dvector(0, di-1); /* Vector for trial point */
/* -------------------------- */
/* First bracket the solution */
DBG(("linmin: Bracketing solution\n"))
/* The line is measured as startpoint + offset * search vector. */
/* (Search isn't symetric, but it seems to depend on cp being */
/* best current solution ?) */
ax = 0.0;
for (i = 0; i < di; i++)
xt[i] = cp[i] + ax * xi[i];
af = (*func)(fdata, xt);
/* xx being vector offset 0.618 */
xx = 1.0/POWELL_GOLD;
for (i = 0; i < di; i++)
xt[i] = cp[i] + xx * xi[i];
xf = (*func)(fdata, xt);
DBG(("linmin: Initial points a:%f:%f -> b:%f:%f\n",ax,af,xx,xf))
/* Fix it so that we are decreasing from point a -> x */
if (xf > af) {
double tt;
tt = ax; ax = xx; xx = tt;
tt = af; af = xf; xf = tt;
}
DBG(("linmin: Ordered Initial points a:%f:%f -> b:%f:%f\n",ax,af,xx,xf))
bx = xx + POWELL_GOLD * (xx-ax); /* Guess b beyond a -> x */
for (i = 0; i < di; i++)
xt[i] = cp[i] + bx * xi[i];
bf = (*func)(fdata, xt);
DBG(("linmin: Initial bracket a:%f:%f x:%f:%f b:%f:%f\n",ax,af,xx,xf,bx,bf))
#ifdef SLOPE_SANITY_CHECK
/* If we're not seeing a slope indicitive of progress */
/* of order ftol, give up straight away */
if (2000.0 * fabs(xf - bf) <= ftol * (fabs(xf) + fabs(bf))
&& 2000.0 * fabs(af - xf) <= ftol * (fabs(af) + fabs(xf))) {
DBG(("linmin: giving up because slope is too shallow\n"))
if (xt != XT)
free_dvector(xt,0,di-1);
if (bf < xf) {
xf = bf;
xx = bx;
}
/* Compute solution vector */
for (i = 0; i < di; i++)
cp[i] += xx * xi[i];
return xf;
}
#endif /* SLOPE_SANITY_CHECK */
/* While not bracketed */
while (xf > bf) {
double ulim, ux, uf;
double tt, r, q;
// DBG(("linmin: Not bracketed a:%f:%f x:%f%f b:%f:%f\n",ax,af,xx,xf,bx,bf))
DBG(("linmin: Not bracketed because xf %f > bf %f\n",xf, bf))
DBG((" ax = %f, xx = %f, bx = %f\n",ax,xx,bx))
/* Compute ux by parabolic interpolation from a, x & b */
q = (xx - bx) * (xf - af);
r = (xx - ax) * (xf - bf);
tt = q - r;
if (tt >= 0.0 && tt < 1e-20) /* If +ve too small */
tt = 1e-20;
else if (tt <= 0.0 && tt > -1e-20) /* If -ve too small */
tt = -1e-20;
ux = xx - ((xx - bx) * q - (xx - ax) * r) / (2.0 * tt);
ulim = xx + 100.0 * (bx - xx); /* Extrapolation limit */
//printf("~1 ux = %f, ulim = %f\n",ux,ulim);
if ((xx - ux) * (ux - bx) > 0.0) { /* u is between x and b */
for (i = 0; i < di; i++) /* Evaluate u */
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
//printf("~1 u is between x and b, uf = %f\n",uf);
if (uf < bf) { /* Minimum is between x and b */
//printf("~1 min is between x and b\n");
ax = xx; af = xf;
xx = ux; xf = uf;
break;
} else if (uf > xf) { /* Minimum is between a and u */
//printf("~1 min is between a and u\n");
bx = ux; bf = uf;
break;
}
/* Parabolic fit didn't work, look further out in direction of b */
ux = bx + POWELL_GOLD * (bx-xx);
//printf("~1 parabolic fit didn't work,look further in direction of b (%f)\n",ux);
} else if ((bx - ux) * (ux - ulim) > 0.0) { /* u is between b and limit */
for (i = 0; i < di; i++) /* Evaluate u */
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
//printf("~1 u is between b and limit uf = %f\n",uf);
if (uf > bf) { /* Minimum is between x and u */
//printf("~1 min is between x and uf\n");
ax = xx; af = xf;
xx = bx; xf = bf;
bx = ux; bf = uf;
break;
}
xx = bx; xf = bf; /* Continue looking */
bx = ux; bf = uf;
ux = bx + POWELL_GOLD * (bx - xx); /* Test beyond b */
//printf("~1 continue looking beyond b (%f)\n",ux);
} else if ((ux - ulim) * (ulim - bx) >= 0.0) { /* u is beyond limit */
ux = ulim;
//printf("~1 use limit\n");
} else { /* u is to left side of x ? */
ux = bx + POWELL_GOLD * (bx-xx);
//printf("~1 look gold beyond b (%f)\n",ux);
}
/* Evaluate u, and move into place at b */
for (i = 0; i < di; i++)
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
//printf("~1 lookup ux %f value uf = %f\n",ux,uf);
ax = xx; af = xf;
xx = bx; xf = bf;
bx = ux; bf = uf;
//printf("~1 move along to the right (a<-x, x<-b, b-<u)\n");
}
DBG(("linmin: Got bracket a:%f:%f x:%f:%f b:%f:%f\n",ax,af,xx,xf,bx,bf))
/* Got bracketed minimum between a -> x -> b */
//printf("~1 got bracketed minimum at %f (%f), %f (%f), %f (%f)\n",ax,af,xx,xf,bx,bf);
/* --------------------------------------- */
/* Now use brent minimiser bewteen a and b */
{
/* a and b bracket solution */
/* x is best function value so far */
/* w is second best function value so far */
/* v is previous second best, or third best */
/* u is most recently tested point */
double wx, vx, ux; /* Search vector multipliers */
double wf, vf = 0.0, uf; /* Function values at those points */
int iter;
double de = 0.0; /* Distance moved on previous step */
double e = 0.0; /* Distance moved on 2nd previous step */
/* Make sure a and b are in ascending order */
if (ax > bx) {
double tt;
tt = ax; ax = bx; bx = tt;
tt = af; af = bf; bf = tt;
}
wx = vx = xx; /* Initial values of other center points */
wf = xf = xf;
for (iter = 1; iter <= POWELL_MAXIT; iter++) {
double mx = 0.5 * (ax + bx); /* m is center of bracket values */
#ifdef ABSTOL
double tol1 = ftol; /* Absolute tollerance */
#else
double tol1 = ftol * fabs(xx) + 1e-10;
#endif
double tol2 = 2.0 * tol1;
DBG(("linmin: Got bracket a:%f:%f x:%f:%f b:%f:%f\n",ax,af,xx,xf,bx,bf))
/* See if we're done */
//printf("~1 linmin check %f <= %f\n",fabs(xx - mx), tol2 - 0.5 * (bx - ax));
if (fabs(xx - mx) <= (tol2 - 0.5 * (bx - ax))) {
DBG(("linmin: We're done because %f <= %f\n",fabs(xx - mx), tol2 - 0.5 * (bx - ax)))
break;
}
if (fabs(e) > tol1) { /* Do a trial parabolic fit */
double te, p, q, r;
r = (xx-wx) * (xf-vf);
q = (xx-vx) * (xf-wf);
p = (xx-vx) * q - (xx-wx) * r;
q = 2.0 * (q - r);
if (q > 0.0)
p = -p;
else
q = -q;
te = e; /* Save previous e value */
e = de; /* Previous steps distance moved */
DBG(("linmin: Trial parabolic fit\n" ))
if (fabs(p) >= fabs(0.5 * q * te) || p <= q * (ax-xx) || p >= q * (bx-xx)) {
/* Give up on the parabolic fit, and use the golden section search */
e = ((xx >= mx) ? ax-xx : bx-xx); /* Override previous distance moved */
de = POWELL_CGOLD * e;
DBG(("linmin: Moving to golden section search\n" ))
} else { /* Use parabolic fit */
de = p/q; /* Change in xb */
ux = xx + de; /* Trial point according to parabolic fit */
if ((ux - ax) < tol2 || (bx - ux) < tol2) {
if ((mx - xx) > 0.0) /* Don't use parabolic, use tol1 */
de = tol1; /* tol1 is +ve */
else
de = -tol1;
}
DBG(("linmin: Using parabolic fit\n" ))
}
} else { /* Keep using the golden section search */
e = ((xx >= mx) ? ax-xx : bx-xx); /* Override previous distance moved */
de = POWELL_CGOLD * e;
DBG(("linmin: Continuing golden section search\n" ))
}
if (fabs(de) >= tol1) { /* If de moves as much as tol1 would */
ux = xx + de; /* use it */
DBG(("linmin: ux = %f = xx %f + de %f\n",ux,xx,de))
} else { /* else move by tol1 in direction de */
if (de > 0.0) {
ux = xx + tol1;
DBG(("linmin: ux = %f = xx %f + tol1 %f\n",ux,xx,tol1))
} else {
ux = xx - tol1;
DBG(("linmin: ux = %f = xx %f - tol1 %f\n",ux,xx,tol1))
}
}
/* Evaluate function */
for (i = 0; i < di; i++)
xt[i] = cp[i] + ux * xi[i];
uf = (*func)(fdata, xt);
if (uf <= xf) { /* Found new best solution */
if (ux >= xx) {
ax = xx; af = xf; /* New lower bracket */
} else {
bx = xx; bf = xf; /* New upper bracket */
}
vx = wx; vf = wf; /* New previous 2nd best solution */
wx = xx; wf = xf; /* New 2nd best solution from previous best */
xx = ux; xf = uf; /* New best solution from latest */
DBG(("linmin: found new best solution\n"))
} else { /* Found a worse solution */
if (ux < xx) {
ax = ux; af = uf; /* New lower bracket */
} else {
bx = ux; bf = uf; /* New upper bracket */
}
if (uf <= wf || wx == xx) { /* New 2nd best solution, or equal best */
vx = wx; vf = wf; /* New previous 2nd best solution */
wx = ux; wf = uf; /* New 2nd best from latest */
} else if (uf <= vf || vx == xx || vx == wx) { /* New 3rd best, or equal 1st & 2nd */
vx = ux; vf = uf; /* New previous 2nd best from latest */
}
DBG(("linmin: found new worse solution\n"))
}
}
/* !!! should do something if iter > POWELL_MAXIT !!!! */
/* Solution is at xx, xf */
/* Compute solution vector */
for (i = 0; i < di; i++)
cp[i] += xx * xi[i];
}
if (xt != XT)
free_dvector(xt,0,di-1);
//printf("~~~ line minimizer returning %e\n",xf);
return xf;
}
#undef POWELL_GOLD
#undef POWELL_CGOLD
#undef POWELL_MAXIT
/**************************************************/
|