1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
|
// ppoint7c
// Approach that picks poorly supprted points with maximum interpolation
// error each time. Version that creates a candidate list when adding
// previous points to the distance grid.
// Development of version that uses interpolation error and perceptual
// distance to nearest sample point driven point placement metric, this
// one usin incremental rspl for interpolation estimation.
/*
* Argyll Color Correction System
*
* Perceptually distributed point class
*
* Author: Graeme W. Gill
* Date: 5/10/96
*
* Copyright 1996 - 2004 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* TTBD:
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#if defined(__IBMC__)
#include <float.h>
#endif
#include "numlib.h"
#include "rspl.h"
#include "sort.h"
#include "icc.h"
#include "xcolorants.h"
#include "targen.h"
#include "ppoint.h"
#ifdef DUMP_PLOT
# include "plot.h"
# include "ui.h"
#endif
#undef DEBUG
#define DUMP_PLOT /* Show on screen plot */
#define PERC_PLOT 0 /* Emit perceptive space plots */
#define DO_WAIT 1 /* Wait for user key after each plot */
#define ALWAYS
#undef NEVER
#ifdef NEVER
#ifdef __STDC__
#include <stdarg.h>
void error(char *fmt, ...), warning(char *fmt, ...), verbose(int level, char *fmt, ...);
#else
#include <varargs.h>
void error(), warning(), verbose();
#endif
#endif /* NEVER */
#ifdef STANDALONE_TEST
#ifdef DUMP_PLOT
static void dump_image(ppoint *s, int pcp);
#endif
#endif
static void add_dist_points(ppoint *s, co *pp, int nn);
//static double far_dist(ppoint *s, double *p);
/* Default convert the nodes device coordinates into approximate perceptual coordinates */
/* (usually overriden by caller supplied function) */
static void
default_ppoint_to_percept(void *od, double *p, double *d) {
ppoint *s = (ppoint *)od;
int e;
#ifndef NEVER
/* Default Do nothing - copy device to perceptual. */
for (e = 0; e < s->di; e++) {
double tt = d[e];
if (e == 0)
tt = pow(tt, 2.0);
else
tt = pow(tt, 0.5);
p[e] = tt * 100.0;
}
#else
for (e = 0; e < s->di; e++) {
double tt = d[e];
/* Two slopes with a sharp turnover in X */
if (e == 0) {
if (tt < 0.5)
tt = tt * 0.3/0.5;
else
tt = 0.3 + ((tt-0.5) * 0.7/0.5);
}
p[e] = tt * 100.0;
}
#endif
}
/* return the distance of the device value from the device gamut */
/* This will be -ve if the point is outside */
/* If bvp is non-null, the index of the closest dim times 2 */
/* will be returned for the 0.0 boundary, dim * 2 + 1 for the 1.0 */
/* boundary, and di * 2 for the ink limit boundary. */
static double
ppoint_in_dev_gamut(ppoint *s, double *d, int *bvp) {
int e;
int di = s->di;
double tt, dd = 1.0;
double ss = 0.0;
int bv = di;
for (e = 0; e < di; e++) {
tt = d[e];
if (tt < dd) {
dd = tt;
bv = e * 2;
}
tt = 1.0 - d[e];
if (tt < dd) {
dd = tt;
bv = e * 2 + 1;
}
ss += d[e];
}
ss = (s->ilimit-ss)/di; /* Axis aligned distance to ink limit */
tt = sqrt((double)di) * ss; /* Diagonal distance to ink limit */
if (tt < dd) {
dd = tt;
bv = di * 2;
}
if (bvp != NULL)
*bvp = bv;
return dd;
}
#ifdef NEVER /* Not currently used */
/* Given the new intended device coordinates, */
/* clip the new position to the device gamut edge */
/* return non-zero if the point was clipped */
static int
ppoint_clip_point(ppoint *s, double *d) {
int e;
double ss = 0.0;
int rv = 0;
for (e = 0; e < s->di; e++) {
if (d[e] < 0.0) {
d[e] = 0.0;
rv |= 1;
} else if (d[e] > 1.0) {
d[e] = 1.0;
rv |= 1;
}
ss += d[e];
}
if (ss > s->ilimit) {
ss = (ss - s->ilimit)/s->di;
for (e = 0; e < s->di; e++)
d[e] -= ss;
rv |= 1;
}
return rv;
}
#endif /* NEVER */
/* --------------------------------------------------- */
/* Locate the best set of points to add */
/* Definition of the optimization functions handed to powell(.) */
/* Return distance error to be minimised (maximises distance from */
/* an existing sample point) */
static double efunc1(ppoint *s, double p[]) {
double rv = 0.0; /* return value */
//printf("\n~1 p = %f %f\n",p[0],p[1]);
if ((rv = (ppoint_in_dev_gamut(s, p, NULL))) < 0.0) {
rv = rv * -500.0 + 50000.0; /* Discourage being out of gamut */
//printf("~1 out of gamut, rv = %f\n",rv);
} else {
int e, di = s->di;
double vf[MXPD]; /* Perceptual value of reference */
co tp; /* Lookup from interpolation grid */
double ierr; /* Interpolation error */
double cdist; /* closest distance to point */
double errd; /* Overall error/distance to maximise */
for (e = 0; e < di; e++)
tp.p[e] = p[e];
s->pd->interp(s->pd, &tp); /* Lookup current closest distance value */
cdist = tp.v[di];
if (cdist >= 10000.0) /* Initial value */
cdist = 0.0;
//printf("~1 min pdist = %f\n",cdist);
/* Not quite sure which is best here. */
/* Using percept() is slower, and has more point placement artefacts, */
/* but seems to arrive at a better result. */
#ifdef NEVER
for (e = 0; e < di; e++)
vf[e] = tp.v[e]; /* Use interpolated perceptual value */
#else
s->percept(s->od, vf, p); /* Lookup perceptual value */
#endif
s->g->interp(s->g, &tp); /* Lookup current interpolation */
//printf("~1 interp %f %f, percept %f %f\n",tp.v[0],tp.v[1],vf[0],vf[1]);
for (ierr = 0.0, e = 0; e < di; e++) {
double tt = tp.v[e] - vf[e];
ierr += tt * tt;
}
ierr = sqrt(ierr);
//printf("~1 interp error = %f\n",ierr);
/* The ratio of interpolation error to support distance affects */
/* peak vs. average error in final result. */
#ifdef NEVER
/* Weighted squares */
errd = ierr * ierr + DWEIGHT * cdist * cdist;
#else
/* Linear weighted then squared */
errd = ierr + DWEIGHT * cdist;
errd = errd * errd;
#endif
/* Convert max error to min return value */
rv = 1000.0/(0.1 + errd);
//printf("~1 err val %f\n",rv);
}
//printf("~1 efunc1 returning %f from %f %f\n",rv,p[0],p[1]);
return rv;
}
/* return the interpolation error at the given device location */
static double
ppoint_ierr(
ppoint *s,
double *p
) {
int e, di = s->di;
double vf[MXPD]; /* Perceptual value of reference */
double err;
co tp; /* Perceptual value of test point */
for (e = 0; e < di; e++)
tp.p[e] = p[e];
s->g->interp(s->g, &tp);
s->percept(s->od, vf, p);
for (err = 0.0, e = 0; e < di; e++) {
double tt = tp.v[e] - vf[e];
err += tt * tt;
}
err = sqrt(err);
return err;
}
/* Find the next set of points to add to our test sample set. */
/* Both device and perceptual value are returned. */
/* We try and do a batch of points because adding points to the rspl interpolation */
/* is a high cost operation. The main trap is that we may add points that are almost identical, */
/* since we don't know the effect of adding other points in this batch. */
/* To try and counter this, points are rejected that are two close together in this group. */
/* Candidate points are located that have amongst the largest distances to existing */
/* points (measured in a device/perceptual distance mix), and from those points, */
/* the ones with the highest current interpolation mis-prediction error are selected. */
/* In this way a well spread set of samples is hoped to be gemerated, but favouring */
/* those that best reduce overall interpolation error. */
static int
ppoint_find_worst(
ppoint *s,
co *p, /* return device values */
int tnn /* Number to return */
) {
co *fp = s->fwfp; /* Copy of s-> info, stored in s because of size. */
int nfp; /* Current number in fp[] */
int opoints;
int e, di = s->di;
double sr[MXPD]; /* Search radius */
int i, j;
for (e = 0; e < di; e++)
sr[e] = 0.01; /* Device space search radius */
//printf("~1 currently %d points in fp list\n",s->nfp);
/* The distance grid functions will have a list of the FPOINTS best */
/* grid points to start from. Make a copy of it */
for (nfp = 0; nfp < s->nfp; nfp++) {
fp[nfp] = s->fp[nfp]; /* Structure copy */
fp[nfp].v[0] = efunc1(s, fp[nfp].p); /* Compute optimiser error value */
}
/* If list is not full, fill with random numbers: */
if (nfp < FPOINTS) {
//printf("~1 not full, so adding %d random points\n",FPOINTS-nfp);
// for (; nfp < FPOINTS; nfp++) {
for (; nfp < tnn; nfp++) {
double sum;
for (;;) { /* Find an in-gamut point */
for (sum = 0.0, e = 0; e < di; e++)
sum += fp[nfp].p[e] = d_rand(0.0, 1.0);
if (sum <= s->ilimit)
break;
}
fp[nfp].v[0] = efunc1(s, fp[nfp].p); /* Compute optimiser dist error value */
}
}
/* Sort them by derr, smallest to largest */
#define HEAP_COMPARE(A,B) ((A).v[0] < (B).v[0])
HEAPSORT(co, fp, nfp);
#undef HEAP_COMPARE
opoints = nfp < OPOINTS ? nfp : OPOINTS;
/* Optimise best portion of the list of starting points, according to */
/* interpolation error weighted distance. */
for (i = 0; i < opoints; i++) {
double mx;
if (powell(&mx, di, fp[i].p, sr, 0.001, 1000,
(double (*)(void *, double *))efunc1, (void *)s, NULL, NULL) != 0 || mx >= 50000.0) {
#ifdef ALWAYS
printf("ppoint powell failed, tt = %f\n",mx);
#endif
}
fp[i].v[0] = mx;
//printf("~1 optimised point %d to %f %f derr %f\n",i,fp[i].p[0],fp[i].p[1],mx);
/* Check if this duplicates a previous point */
for (j = 0; j < i; j++) {
double ddif = 0.0;
for (e = 0; e < di; e++) {
double tt = fp[i].p[e] - fp[j].p[e];
ddif += tt * tt;
}
ddif = sqrt(ddif); /* Device value difference */
if (ddif < CLOSED) {
//printf("~1 duplicate of %d, so marked\n",j);
fp[i].v[0] = 50000.0; /* Mark so it won't be used */
break; /* too close */
}
}
}
//printf("~1 derr sorted list:\n");
//for (i = 0; i < opoints; i++)
// printf("~1 %d: loc %f %f derr %f\n", i, fp[i].p[0],fp[i].p[1],fp[i].v[0]);
/* Compute the interpolation error for the points of interest */
for (i = 0; i < opoints; i++) {
if (fp[i].v[0] >= 50000.0) /* Duplicate or failed to optimis point */
fp[i].v[0] = -1.0; /* Impossibly low interpolation error */
else
fp[i].v[0] = ppoint_ierr(s, fp[i].p);
}
/* Sort them by ierr, largest to smallest */
#define HEAP_COMPARE(A,B) ((A).v[0] > (B).v[0])
HEAPSORT(co, fp, opoints);
#undef HEAP_COMPARE
//printf("~1 ierr sorted list:\n");
//for (i = 0; i < OPOINTS; i++)
// printf("~1 %d: loc %f %f ierr %f\n", i, fp[i].p[0],fp[i].p[1],fp[i].v[0]);
/* Return the best tnn as next points */
for (j = i = 0; j < tnn && i < opoints; i++) {
if (fp[i].v[0] < 0.0)
continue; /* Skip marked points */
for (e = 0; e < di; e++)
p[j].p[e] = fp[i].p[e];
s->percept(s->od, p[j].v, p[j].p);
j++;
}
//printf("~1 returning %d points\n",j);
return j;
}
/* --------------------------------------------------- */
/* determine the errors between the rspl and 100000 random test points */
static void
ppoint_stats(
ppoint *s
) {
int i, n;
int e, di = s->di;
double mx = -1e80, av = 0.0, mn = 1e80;
for (i = n = 0; i < 100000; i++) {
co tp; /* Perceptual value of test point */
double vf[MXPD]; /* Perceptual value of reference */
double sum, err;
for (sum = 0.0, e = 0; e < di; e++)
sum += tp.p[e] = d_rand(0.0, 1.0);
if (sum <= s->ilimit) {
/* rspl estimate of expected profile interpolation */
s->g->interp(s->g, &tp);
/* Target values */
s->percept(s->od, vf, tp.p);
for (err = 0.0, e = 0; e < di; e++) {
double tt = tp.v[e] - vf[e];
err += tt * tt;
}
err = sqrt(err);
if (err > mx)
mx = err;
if (err < mn)
mn = err;
av += err;
n++;
}
}
av /= (double)n;
printf("~1 Random check errors max %f, avg %f, min %f\n",mx,av,mn);
}
/* --------------------------------------------------- */
/* Support for maintaining the device/perceptual distance grid */
/* as well as keeping the far point candidate list up to date. */
/* Structure to hold data for callback function */
struct _pdatas {
ppoint *s; /* ppoint structure */
int init; /* Initialisation flag */
co *pp; /* List of new points */
int nn; /* Number of points */
}; typedef struct _pdatas pdatas;
/* rspl set callback function for maintaining perceptual distance information */
static void
pdfunc1(
void *ctx, /* Context */
double *out, /* output value, = di percept + distance */
double *in /* inut value */
) {
pdatas *pp = (pdatas *)ctx;
ppoint *s = pp->s;
int e, di = s->di;
if (pp->init) {
s->percept(s->od, out, in); /* Lookup perceptual value */
out[di] = 10000.0; /* Set to very high distance */
} else { /* Adding some points */
int i;
double sd = 1e80;
/* Find smallest distance from this grid point to any of the new points */
for (i = 0; i < pp->nn; i++) {
double ddist, pdist;
double dist; /* Combined distance */
/* Compute device and perceptual distance */
for (ddist = pdist = 0.0, e = 0; e < di; e++) {
double tt = out[e] - pp->pp[i].v[e];
pdist += tt * tt;
tt = 100.0 * (in[e] - pp->pp[i].p[e]);
ddist += tt * tt;
}
dist = DDMIX * ddist + (1.0-DDMIX) * pdist; /* Combine both */
if (dist < sd)
sd = dist;
}
sd = sqrt(sd);
if (sd < out[di])
out[di] = sd;
/* Update far point candidate list */
if (s->nfp < FPOINTS) { /* List isn't full yet */
for (e = 0; e < di; e++)
s->fp[s->nfp].p[e] = in[e];
s->fp[s->nfp].v[0] = sd; /* store distance here */
if (sd > s->wfpd) { /* If this is the worst */
s->wfpd = sd;
s->wfp = s->nfp;
}
s->nfp++;
} else if (sd < s->wfpd) { /* Found better, replace current worst */
for (e = 0; e < di; e++)
s->fp[s->wfp].p[e] = in[e];
s->fp[s->wfp].v[0] = sd; /* store distance here */
/* Locate the next worst */
s->wfpd = -1.0;
for (i = 0; i < s->nfp; i++) {
if (s->fp[i].v[0] > s->wfp) {
s->wfp = i;
s->wfpd = s->fp[i].v[0];
}
}
}
}
}
/* Add a list of new points to the perceptual distance grid */
/* (Can change this to just adding 1 point) */
static void add_dist_points(
ppoint *s,
co *pp, /* List of points including device and perceptual values */
int nn /* Number in the list */
) {
pdatas pdd; /* pd callback context */
pdd.s = s;
pdd.init = 0; /* Initialise values in the grid */
pdd.pp = pp;
pdd.nn = nn;
/* let callback do all the work */
s->pd->re_set_rspl(s->pd,
0, /* No special flags */
&pdd, /* Callback function context */
pdfunc1); /* Callback function */
}
#ifdef NEVER /* Not currently used */
/* Return the farthest distance value for this given location */
static double far_dist(ppoint *s, double *p) {
int e, di = s->di;
double cdist;
co tp;
for (e = 0; e < di; e++)
tp.p[e] = p[e];
s->pd->interp(s->pd, &tp); /* Lookup current closest distance value */
cdist = tp.v[di];
if (cdist >= 10000.0) /* Initial value */
cdist = 0.0;
return cdist;
}
#endif /* NEVER */
/* --------------------------------------------------- */
/* Seed the whole thing with points */
static void
ppoint_seed(
ppoint *s,
fxpos *fxlist, /* List of existing fixed points */
int fxno /* Number in fixed list */
) {
int e, di = s->di;
int i, j;
if (fxno > 0) {
co *pp;
/* Place all the fixed points at the start of the list */
if ((pp = (co *)malloc(fxno * sizeof(co))) == NULL)
error ("ppoint: malloc failed on %d fixed nodes",fxno);
for (i = 0; (i < fxno) && (i < s->tinp); i++) {
node *p = &s->list[i]; /* Destination for point */
for (e = 0; e < di; e++)
p->p[e] = fxlist[i].p[e];
p->fx = 1; /* is a fixed point */
s->percept(s->od, p->v, p->p);
for (e = 0; e < di; e++) {
pp[i].p[e] = p->p[e];
pp[i].v[e] = p->v[e];
}
}
s->np = s->fnp = i;
/* Add new points to rspl interpolation */
s->g->add_rspl(s->g, 0, pp, i);
free(pp);
}
/* Seed the remainder points randomly */
i = 0;
while(s->np < s->tinp) {
#ifdef NEVER
node *p = &s->list[s->np];
double sum;
/* Add random points */
for (sum = 0.0, e = 0; e < di; e++)
sum += p->p[e] = d_rand(0.0, 1.0);
if (sum > s->ilimit)
continue;
s->np++;
i++;
printf("%cAdded: %d",cr_char,i);
#else
#ifdef NEVER
int nn;
co pp[WPOINTS]; /* Space for return values */
/* Add points at location with the largest error */
nn = WPOINTS;
if ((s->np + nn) > s->tinp) /* Limit to desired value */
nn = s->tinp - s->np;
nn = ppoint_find_worst(s, pp, nn);
/* Add new points to rspl interpolation and far field */
s->g->add_rspl(s->g, 0, pp, nn);
add_dist_points(s, pp, nn);
#else
/* Diagnostic version */
int nn;
co pp[WPOINTS]; /* Space for return values */
double err1[WPOINTS];
double err2[WPOINTS];
nn = WPOINTS;
if ((s->np + nn) > s->tinp) /* Limit to desired value */
nn = s->tinp - s->np;
nn = ppoint_find_worst(s, pp, nn);
for (j = 0; j < nn; j++)
err1[j] = ppoint_ierr(s, pp[j].p);
/* Add new points to rspl interpolation and far field */
s->g->add_rspl(s->g, 0, pp, nn);
add_dist_points(s, pp, nn);
for (j = 0; j < nn; j++)
err2[j] = ppoint_ierr(s, pp[j].p);
for (j = 0; j < nn; j++)
printf("~1 improvement after adding point is %f to %f\n",err1[j],err2[j]);
#endif
/* Copy points into ppoint */
for (j = 0; j < nn; j++) {
for (e = 0; e < di; e++) {
s->list[s->np].p[e] = pp[j].p[e];
s->list[s->np].v[e] = pp[j].v[e];
}
s->np++;
}
i += nn;
printf("%cAdded: %d",cr_char,i);
#endif
}
printf("\n"); /* Finish "Added:" */
}
/* --------------------------------------------------- */
/* Rest the read index */
static void
ppoint_reset(ppoint *s) {
s->rix = 0;
}
/* Read the next non-fixed point value */
/* Return nz if no more */
static int
ppoint_read(ppoint *s, double *p, double *f) {
int e;
/* Advance to next non-fixed point */
while(s->rix < s->np && s->list[s->rix].fx)
s->rix++;
if (s->rix >= s->np)
return 1;
/* Return point info to caller */
for (e = 0; e < s->di; e++) {
if (p != NULL)
p[e] = s->list[s->rix].p[e];
if (f != NULL)
f[e] = s->list[s->rix].v[e];
}
s->rix++;
return 0;
}
/* Destroy ourselves */
static void
ppoint_del(ppoint *s) {
/* Free our nodes */
free(s->list);
/* Free our rspl interpolation */
s->g->del(s->g);
/* Free our perceptual distance grid */
s->pd->del(s->pd);
free (s);
}
/* Creator */
ppoint *new_ppoint(
int di, /* Dimensionality of device space */
double ilimit, /* Ink limit (sum of device coords max) */
int tinp, /* Total number of points to generate, including fixed */
fxpos *fxlist, /* List of existing fixed points (may be NULL) */
int fxno, /* Number of existing fixes points */
void (*percept)(void *od, double *out, double *in), /* Perceptual lookup func. */
void *od /* context for Perceptual function */
) {
ppoint *s;
// ~~~99 Info for logging
fprintf(stderr, "WPOINTS = %d\n",WPOINTS);
fprintf(stderr, "FPOINTS = %d\n",FPOINTS);
fprintf(stderr, "OPOINTS = %d\n",OPOINTS);
fprintf(stderr, "DDMIX = %f\n",DDMIX);
fprintf(stderr, "DWEIGHT = %f\n",DWEIGHT);
fprintf(stderr, "CLOSED = %f\n",CLOSED);
if ((s = (ppoint *)calloc(sizeof(ppoint), 1)) == NULL)
error ("ppoint: malloc failed");
#if defined(__IBMC__)
_control87(EM_UNDERFLOW, EM_UNDERFLOW);
_control87(EM_OVERFLOW, EM_OVERFLOW);
#endif
if (di > MXPD)
error ("ppoint: Can't handle di %d",di);
s->di = di;
if (tinp < fxno) /* Make sure we return at least the fixed points */
tinp = fxno;
s->tinp = tinp; /* Target total number of points */
s->ilimit = ilimit;
/* Init method pointers */
s->reset = ppoint_reset;
s->read = ppoint_read;
s->stats = ppoint_stats;
s->del = ppoint_del;
/* If no perceptual function given, use default */
if (percept == NULL) {
s->percept = default_ppoint_to_percept;
s->od = s;
} else {
s->percept = percept;
s->od = od;
}
/* Allocate the list of points */
s->np = 0;
if ((s->list = (node *)calloc(sizeof(node), tinp)) == NULL)
error ("ppoint: malloc failed on nodes");
/* Setup the interpolation and perceptual distance rspls */
{
int e;
int tres, gres[MXDI];
datai pl,ph;
datai vl,vh;
double avgdev[MXDO];
pdatas pdd; /* pd callback context */
#ifndef NEVER /* High res. */
if (di <= 2)
tres = 41; /* Make depend on no points and dim ? */
else if (di <= 3)
tres = 33; /* Make depend on no points and dim ? */
else
tres = 15;
#else
if (di <= 2)
tres = 3; /* Make depend on no points and dim ? */
else if (di <= 3)
tres = 17; /* Make depend on no points and dim ? */
else
tres = 9;
#endif
/* The interpolation grid mimics the operation of the profile */
/* package creating a device to CIE mapping for the device from */
/* the given test points. */
s->g = new_rspl(RSPL_NOFLAGS, di, di);
for (e = 0; e < di; e++) {
pl[e] = 0.0;
ph[e] = 1.0;
if (e == 1 || e == 2) { /* Assume Lab */
vl[e] = -128.0;
vh[e] = 128.0;
} else {
vl[e] = 0.0;
vh[e] = 100.0;
}
gres[e] = tres;
avgdev[e] = 0.005;
}
/* Setup other details of rspl */
s->g->fit_rspl(s->g,
RSPL_INCREMENTAL |
/* RSPL_EXTRAFIT | */ /* Extra fit flag */
0,
NULL, /* No test points initialy */
0, /* No test points */
pl, ph, gres, /* Low, high, resolution of grid */
vl, vh, /* Data scale */
0.3, /* Smoothing */
avgdev, /* Average Deviation */
NULL);
/* Track closest perceptual distance to existing test points. */
/* To save looking up the perceptual value for every grid location */
/* every time a point is added, cache this values in the grid too. */
s->pd = new_rspl(RSPL_NOFLAGS, di, di+1);
/* Initialise the pd grid ready for the first points. */
pdd.s = s;
pdd.init = 1; /* Initialise values in the grid */
s->pd->set_rspl(s->pd,
0, /* No special flags */
&pdd, /* Callback function context */
pdfunc1, /* Callback function */
pl, ph, gres, /* Low, high, resolution of grid */
vl, vh); /* Data scale */
s->wfpd = -1.0; /* Impossibly good worst point distance */
}
/* Create the points */
ppoint_seed(s, fxlist, fxno);
/* Print some stats */
ppoint_stats(s);
ppoint_reset(s); /* Reset read index */
return s;
}
/* =================================================== */
#ifdef STANDALONE_TEST
/* Graphics Gems curve */
static double gcurve(double vv, double g) {
if (g >= 0.0) {
vv = vv/(g - g * vv + 1.0);
} else {
vv = (vv - g * vv)/(1.0 - g * vv);
}
return vv;
}
#ifdef NEVER
static void sa_percept(void *od, double *out, double *in) {
double lab[3];
clu->dev_to_rLab(clu, lab, in);
out[0] = lab[0];
// out[1] = (lab[1]+100.0)/2.0;
out[1] = (lab[2]+100.0)/2.0;
}
#else
static void sa_percept(void *od, double *p, double *d) {
#ifndef NEVER
/* Default Do nothing - copy device to perceptual. */
p[0] = 100.0 * gcurve(d[0], -4.5);
p[1] = 100.0 * gcurve(d[1], 2.8);
p[1] = 0.8 * p[1] + 0.2 * p[0];
#else
for (e = 0; e < di; e++) {
double tt = d[e];
/* Two slopes with a sharp turnover in X */
if (e == 0) {
if (tt < 0.5)
tt = tt * 0.3/0.5;
else
tt = 0.3 + ((tt-0.5) * 0.7/0.5);
}
p[e] = tt * 100.0;
}
#endif
}
#endif
int
main(argc,argv)
int argc;
char *argv[];
{
int npoints = 21;
ppoint *s;
long stime,ttime;
error_program = argv[0];
printf("Standalone test of ppoint, argument is number of points, default %d\n",npoints);
if (argc > 1)
npoints = atoi(argv[1]);
/* Create the required points */
stime = clock();
s = new_ppoint(2, 1.5, npoints, NULL, 0, sa_percept, (void *)NULL);
ttime = clock() - stime;
printf("Execution time = %f seconds\n",ttime/(double)CLOCKS_PER_SEC);
#ifdef DUMP_PLOT
printf("Perceptual plot:\n");
dump_image(s, 1);
printf("Device plot:\n");
dump_image(s, 0);
#endif /* DUMP_PLOT */
s->del(s);
return 0;
}
#ifdef NEVER
/* Basic printf type error() and warning() routines */
#ifdef __STDC__
void
error(char *fmt, ...)
#else
void
error(va_alist)
va_dcl
#endif
{
va_list args;
#ifndef __STDC__
char *fmt;
#endif
fprintf(stderr,"ppoint: Error - ");
#ifdef __STDC__
va_start(args, fmt);
#else
va_start(args);
fmt = va_arg(args, char *);
#endif
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, "\n");
fflush(stdout);
exit (-1);
}
#endif /* NEVER */
#endif /* STANDALONE_TEST */
#ifdef STANDALONE_TEST
#ifdef DUMP_PLOT
/* Dump the current point positions to a plot window file */
void
static dump_image(ppoint *s, int pcp) {
int i;
double minx, miny, maxx, maxy;
static double *x1a = NULL;
static double *y1a = NULL;
if (pcp != 0) { /* Perceptual range */
minx = 0.0; /* Assume */
maxx = 100.0;
miny = 0.0;
maxy = 100.0;
} else {
minx = 0.0; /* Assume */
miny = 0.0;
maxx = 1.0;
maxy = 1.0;
}
if (x1a == NULL) {
if ((x1a = (double *)malloc(s->np * sizeof(double))) == NULL)
error ("ppoint: malloc failed");
if ((y1a = (double *)malloc(s->np * sizeof(double))) == NULL)
error ("ppoint: malloc failed");
}
for (i = 0; i < s->np; i++) {
node *p = &s->list[i];
if (pcp != 0) {
x1a[i] = p->v[0];
y1a[i] = p->v[1];
} else {
x1a[i] = p->p[0];
y1a[i] = p->p[1];
}
}
/* Plot the vectors */
do_plot_vec(minx, maxx, miny, maxy,
x1a, y1a, x1a, y1a, s->np, DO_WAIT, NULL, NULL, NULL, NULL, 0);
}
#endif /* DUMP_PLOT */
#endif /* STANDALONE_TEST */
|