1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
|
/*
* Argyll Color Correction System
* ChromCast dither pattern code
*
* Author: Graeme W. Gill
* Date: 11/12/2014
*
* Copyright 2014 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License2.txt file for licencing details.
*
*/
/*
* Locates minimal list of surrounders
* Find initial weight for them using minimizer
Itterates over
* Locate cell changes that match desired correction
with increasing randomness of choosing a poor match
* Reset to starting pattern when accumulated error over
best current is exceeded.
Problem is this is unreliable is locating good matches
for some cases.
Problem is that it doesn't seem to work - ChromeCast doesn't
decode the way we model it :-(
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/types.h>
#include <time.h>
#include "copyright.h"
#include "aconfig.h"
#include "counters.h"
#ifndef SALONEINSTLIB
#include "numlib.h"
#else
#include "numsup.h"
#endif
#include "conv.h"
#include "base64.h"
#include "yajl.h"
#include "ccmdns.h"
#include "ccpacket.h"
#include "ccmes.h"
#include "ccast.h"
#ifdef STANDALONE_TEST
# define DIAGNOSTICS
#endif
#undef TEST_POINT
/* Even/Odd filter filter index ranges (inclusive) and total size */
#define EV_NEG -4
#define EV_POS 4
#define EV_WIDTH (-(EV_NEG) + 1 + EV_POS)
#define OD_NEG -4
#define OD_POS 3
#define OD_WIDTH (-(OD_NEG) + 1 + OD_POS)
/* Weightings [horiz/vert] */
double filt_v_ev[2][EV_WIDTH] = {
{ -0.003467, -0.048341, 0.028688, 0.418873, 0.704674, 0.427551, 0.032480, -0.050146, -0.003793 },
{ -0.013477, 0.000081, -0.087119, 0.357627, 1.000252, 0.378473, -0.083496, -0.000155, -0.009850 }
};
/* Weightings [horiz/vert] */
double filt_v_od[2][OD_WIDTH] = {
{ -0.026810, -0.045190, 0.186825, 0.614579, 0.623721, 0.206987, -0.040217, -0.026419 },
{ 0.008396, -0.078987, -0.013733, 0.796594, 0.813578, 0.013555, -0.086466, 0.004781 }
};
/* [horiz/vert][phase] */
double *filt[2][2] = { { &filt_v_ev[0][-(EV_NEG)], &filt_v_od[0][-(OD_NEG)] },
{ &filt_v_ev[1][-(EV_NEG)], &filt_v_od[1][-(OD_NEG)] } };
/* [phase] */
int fneg[2] = { EV_NEG, OD_NEG };
int fpos[2] = { EV_POS, OD_POS };
/* Dither input size */
#ifdef TEST_POINT
# define DISIZE 8
#else
# define DISIZE CCDITHSIZE
#endif
#define DOSIZE ((DISIZE * 3)/2)
#ifdef DIAGNOSTICS
int vv = 0;
#endif
/* Upsample ipat to opat */
/* And return the average RGB value */
static void upsample(double ret[3], double iipat[DISIZE][DISIZE][3]) {
double ipat[DISIZE][DISIZE][3];
double tpat[DOSIZE][DISIZE][3]; /* Intermediate pattern - horizontal up-sampled */
double opat[DOSIZE][DOSIZE][3]; /* Output pattern */
int x, y;
int i, j;
//printf("~1 doing conversion\n");
/* Convert from RGB to YCbCr */
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
ccast2YCbCr(NULL, ipat[x][y], iipat[x][y]);
// ipat[x][y][0] = iipat[x][y][0];
// ipat[x][y][1] = iipat[x][y][1];
// ipat[x][y][2] = iipat[x][y][2];
//printf("[%d][%d] %f %f %f -> %f %f %f\n",x,y, iipat[x][y][0], iipat[x][y][1], iipat[x][y][2], ipat[x][y][0], ipat[x][y][1], ipat[x][y][2]);
}
}
//printf("~1 doing horiz\n");
/* Up-sample in horizontal direction */
for (y = 0; y < DISIZE; y++) {
/* Zero the intermediate pattern */
for (i = 0; i < DOSIZE; i++) {
tpat[i][y][0] = 0.0;
tpat[i][y][1] = 0.0;
tpat[i][y][2] = 0.0;
}
/* Distribute the input according to the filter */
for (x = 0; x < DISIZE; x++) {
int ph, ii, k;
ph = x & 1;
ii = (int)floor(x * 1.5 + 0.5);
/* For all the filter cooeficients */
for (k = fneg[ph]; k <= fpos[ph]; k++) {
i = (ii + k);
while (i < 0)
i += DOSIZE;
while (i >= DOSIZE)
i -= DOSIZE;
tpat[i][y][0] += filt[0][ph][k] * ipat[x][y][0];
tpat[i][y][1] += filt[0][ph][k] * ipat[x][y][1];
tpat[i][y][2] += filt[0][ph][k] * ipat[x][y][2];
}
}
}
//printf("~1 doing vert\n");
/* Up-sample in vertical direction */
for (i = 0; i < DOSIZE; i++) {
/* Zero the output pattern */
for (j = 0; j < DOSIZE; j++) {
opat[i][j][0] = 0.0;
opat[i][j][1] = 0.0;
opat[i][j][2] = 0.0;
}
/* Distribute the input according to the filter */
for (y = 0; y < DISIZE; y++) {
int ph, jj, k;
ph = y & 1;
jj = (int)floor(y * 1.5 + 0.5);
/* For all the filter cooeficients */
for (k = fneg[ph]; k <= fpos[ph]; k++) {
j = (jj + k);
while (j < 0)
j += DOSIZE;
while (j >= DOSIZE)
j -= DOSIZE;
opat[i][j][0] += filt[1][ph][k] * tpat[i][y][0];
opat[i][j][1] += filt[1][ph][k] * tpat[i][y][1];
opat[i][j][2] += filt[1][ph][k] * tpat[i][y][2];
}
}
}
//printf("~1 doing conversion\n");
/* Convert from YCbCr to RGB */
for (i = 0; i < DOSIZE; i++) {
for (j = 0; j < DOSIZE; j++) {
YCbCr2ccast(NULL, opat[i][j], opat[i][j]);
}
}
//printf("~1 done\n");
if (ret != NULL) {
ret[0] = ret[1] = ret[2] = 0.0;
for (j = 0; j < DOSIZE; j++) {
for (i = 0; i < DOSIZE; i++) {
ret[0] += opat[i][j][0];
ret[1] += opat[i][j][1];
ret[2] += opat[i][j][2];
}
}
ret[0] /= (double)(DOSIZE * DOSIZE);
ret[1] /= (double)(DOSIZE * DOSIZE);
ret[2] /= (double)(DOSIZE * DOSIZE);
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Result\n");
for (j = 0; j < DOSIZE; j++) {
for (i = 0; i < DOSIZE; i++) {
if (i > 0)
printf(", ");
printf("% 5.1f % 5.1f % 5.1f",opat[i][j][0],opat[i][j][1], opat[i][j][2]);
}
printf("\n");
}
}
#endif
}
/* ------------------------------------------------------------- */
/* Given a quantized RGB target, return a quantized RGB that either exactly */
/* maps to it through YCbCr conversion, or is the closest in the */
/* direction away from the target value, or the closest clipped value */
static void quant_rgb(int n, double out[3], double rgb[3]) {
double ycc[3], base[3];
double tmp[3], chval[3];
double dist, bdist = 1e6;
double brgb[3], borgb[3];
int ix, k;
//printf("Quant RGB %f %f %f n %d\n", rgb[0], rgb[1], rgb[2], n);
/* Search current rgb and surround in the same direction */
/* it is from the target value, for a quantized rgb */
/* that is in that direction */
for (k = 0; k < 3; k++)
base[k] = rgb[k];
for (ix = 0; ix < 8; ix++) {
double dist;
/* Comp trial RGB */
for (k = 0; k < 3; k++) {
tmp[k] = base[k];
if (ix & (1 << k)) {
if (n & (1 << k)) /* Move in direction base point is in */
tmp[k] += 1.0;
else
tmp[k] -= 1.0;
if (tmp[k] < 0.0 || tmp[k] > 255.0)
break;
}
}
if (k < 3) /* Trial is out of gamut */
continue;
/* Quantize it */
ccast2YCbCr(NULL, ycc, tmp);
YCbCr2ccast(NULL, chval, ycc);
//printf("Trial RGB %f %f %f\n", tmp[0], tmp[1], tmp[2]);
//printf(" result %f %f %f\n", chval[0], chval[1], chval[2]);
/* It's OK if it is eual or greater in the desired */
/* direction than the input rgb. */
/* Best would be closest to input. */
/* Least worst would be what ? */
dist = 0.0;
for (k = 0; k < 3; k++) {
double tt;
if (n & (1 << k)) {
tt = chval[k] - base[k];
} else {
tt = base[k] - chval[k];
}
if (tt >= 0.0)
dist += 0.1 * tt;
else
dist += 2.0 * -tt;
}
//printf(" dist %f\n", dist);
/* Pick it if it is at least in the right direction */
if (dist < bdist) {
for (k = 0; k < 3; k++) {
rgb[k] = tmp[k];
out[k] = chval[k];
}
bdist = dist;
}
}
#ifdef NEVER
if (bdist > 0.0
&& rgb[0] != 0.0 && rgb[0] != 1.0 && rgb[0] != 254.0 && rgb[0] != 255.0
&& rgb[1] != 0.0 && rgb[1] != 1.0 && rgb[1] != 254.0 && rgb[1] != 255.0
&& rgb[2] != 0.0 && rgb[2] != 1.0 && rgb[2] != 254.0 && rgb[2] != 255.0) {
printf("quant_rgb failed with bdist %f\n",bdist);
printf(" rgb in %f %f %f\n",base[0],base[1],base[2]);
printf(" returning rgb %f %f %f\n",rgb[0],rgb[1],rgb[2]);
printf(" resrgb %f %f %f\n",out[0],out[1],out[2]);
}
#endif /* NEVER */
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - */
typedef struct optcntx {
int di;
double *val; /* Target */
double (*ressur)[8][3]; /* resulting RGB surrounding values */
} optcntx;
static double optfunc(void *fdata, double tp[]) {
optcntx *cntx = (optcntx *)fdata;
int i, k;
double iw, tmp[3];
double err = 0.0;
/* Compute interpolated result */
for (k = 0; k < 3; k++)
tmp[k] = 0.0;
iw = 1.0;
for (i = 0; i < cntx->di; i++) {
if (tp[i] < 0.0)
err += 1000.0 * tp[i] * tp[i];
else if (tp[i] > 1.0)
err += 1000.0 * (tp[i] - 1.0) * (tp[i] - 1.0);
for (k = 0; k < 3; k++)
tmp[k] += tp[i] * (*cntx->ressur)[i][k];
iw -= tp[i];
}
for (k = 0; k < 3; k++)
tmp[k] += iw * (*cntx->ressur)[i][k];
/* Compute error */
for (k = 0; k < 3; k++) {
double tt = tmp[k] - cntx->val[k];
err += tt * tt;
}
//printf("Returning %f from %f %f\n",err,tp[0],tp[1]);
return err;
}
/* Compute pattern */
/* return the delta to the target */
double get_ccast_dith(double ipat[DISIZE][DISIZE][3], double val[3]) {
double itpat[DISIZE][DISIZE][3], tpat[DISIZE][DISIZE][3];
double irtpat[DISIZE][DISIZE][3], rtpat[DISIZE][DISIZE][3]; /* resulting for tpat */
double berr = 0.0;
int n, k;
int x, y;
int i, j;
int ii;
struct {
int x, y;
} order[16] = {
// Dispersed:
{ 3, 1 },{ 1, 3 },{ 1, 1 },{ 3, 0 },{ 3, 3 },{ 1, 2 },{ 3, 2 },{ 2, 0 },
{ 1, 0 },{ 0, 3 },{ 0, 1 },{ 2, 1 },{ 2, 2 },{ 0, 0 },{ 0, 2 },{ 2, 3 }
// Clustered:
// { 0, 0 },{ 0, 1 },{ 1, 1 },{ 1, 0 },{ 2, 0 },{ 3, 0 },{ 3, 1 },{ 2, 1 },
// { 2, 2 },{ 3, 2 },{ 3, 3 },{ 2, 3 },{ 1, 3 },{ 1, 2 },{ 0, 2 },{ 0, 3 }
};
int cix = 0;
int nsur = 8, ncomb = 4;
double sur[8][3]; /* RGB surrounding values to use */
double ressur[8][3]; /* resulting RGB surrounding values */
int bcc[8]; /* Best combination */
double bw[8]; /* Best weight */
int biw[8]; /* Best integer weight/16 */
double dval[3]; /* Dithered value */
double err[3], werr;
double errxs;
/* Tuning params */
int nitters = 300; /* No itters */
int rand_count = 150;
double rand_start = 4.5; /* Ramp with itters */
double rand_end = 0.2;
double rand_pow = 1.5;
double mxerrxs = 2.5; /* accumulated error reset threshold */
unsigned int randv = 0x1234;
/* 32 bit pseudo random sequencer based on XOR feedback */
/* generates number between 1 and 4294967295 */
#define PSRAND32F(S) (((S) & 0x80000000) ? (((S) << 1) ^ 0xa398655d) : ((S) << 1))
/* Locate the 8 surrounding RGB verticies */
for (n = 0; n < 8; n++) {
for (k = 0; k < 3; k++) {
if (n & (1 << k))
sur[n][k] = ceil(val[k]);
else
sur[n][k] = floor(val[k]);
}
//printf("Input sur %d: %f %f %f\n",n,sur[n][0], sur[n][1], sur[n][2], sur[n][3]);
/* Figure out what RGB values to use to surround the point, */
/* and what actual RGB values to expect from using them. */
quant_rgb(n, ressur[n], sur[n]);
//printf("Quant sur %d: %f %f %f\n",n,sur[n][0], sur[n][1], sur[n][2], sur[n][3]);
//printf(" ressur %d: %f %f %f\n",n,ressur[n][0], ressur[n][1], ressur[n][2], ressur[n][3]);
// printf("\n");
}
/* Reduce this to unique surrounders */
for (nsur = 0, i = 0; i < 8; i++) {
/* Check if the i'th entry is already in the list */
for (j = 0; j < nsur; j++) {
for (k = 0; k < 3; k++) {
if (ressur[i][k] != ressur[j][k])
break;
}
if (k < 3)
continue; /* Unique */
break; /* Duplicate */
}
if (j < nsur) /* Duplicate */
continue;
/* Copy i'th to nsur */
for (k = 0; k < 3; k++) {
sur[nsur][k] = sur[i][k];
ressur[nsur][k] = ressur[i][k];
}
nsur++;
}
#ifdef DIAGNOSTICS
if (vv) {
printf("There are %d unique surrounders:\n",nsur);
for (n = 0; n < nsur; n++) {
printf("sur %f %f %f\n",ressur[n][0], ressur[n][1], ressur[n][2]);
}
}
#endif
/* Use an optimzer to set the initial values using all the unique */
/* surrounders. */
{
double s[8];
optcntx cntx;
ncomb = nsur;
for (n = 0; n < nsur; n++) {
bcc[n] = n;
bw[n] = 1.0/nsur;
s[n] = 0.1;
}
cntx.di = nsur-1;
cntx.val = val;
cntx.ressur = &ressur;
powell(NULL, cntx.di, bw, s, 1e-4, 1000, optfunc, &cntx, NULL, NULL);
/* Compute baricentric values */
bw[nsur-1] = 0.0;
for (n = 0; n < (nsur-1); n++) {
if (bw[n] < 0.0)
bw[n] = 0.0;
else if (bw[n] > 1.0)
bw[n] = 1.0;
bw[nsur-1] += bw[n];
}
if (bw[nsur-1] > 1.0) { /* They summed to over 1.0 */
for (n = 0; n < (nsur-1); n++)
bw[n] *= 1.0/bw[nsur-1]; /* Scale them down */
bw[nsur-1] = 1.0;
}
bw[nsur-1] = 1.0 - bw[nsur-1]; /* Remainder */
}
/* Check the result */
#ifdef DIAGNOSTICS
if (vv) {
double tmp[3], err;
/* Compute interpolated result */
for (k = 0; k < 3; k++)
tmp[k] = 0.0;
for (n = 0; n < ncomb; n++) {
for (k = 0; k < 3; k++)
tmp[k] += bw[n] * ressur[bcc[n]][k];
}
/* Compute error */
err = 0.0;
for (k = 0; k < 3; k++) {
tmp[k] -= val[k];
err += tmp[k] * tmp[k];
}
err = sqrt(err);
for (n = 0; n < ncomb; n++)
printf("Comb %d weight %f rgb %f %f %f\n",bcc[n],bw[n],ressur[bcc[n]][0],ressur[bcc[n]][1],ressur[bcc[n]][2]);
printf("Error %f %f %f rms %f\n",tmp[0], tmp[1], tmp[2], err);
printf("\n");
}
#endif
/* Compute the number of pixels for each surounder value */
{
int sw[8], rem;
/* Sort the weightings from smallest to largest */
for (n = 0; n < 8; n++)
sw[n] = n;
for (i = 0; i < (ncomb-1); i++) {
for (j = i+1; j < ncomb; j++) {
if (bw[sw[j]] < bw[sw[i]]) {
int tt = sw[i]; /* Swap them */
sw[i] = sw[j];
sw[j] = tt;
}
}
}
/* Compute the nearest integer weighting out of 16 */
rem = 16;
for (i = 0; i < (ncomb-1) && rem > 0; i++) {
n = sw[i];
biw[n] = (int)(16.0 * bw[n] + 0.5);
rem -= biw[n];
if (rem <= 0)
rem = 0;
}
for (; i < ncomb; i++) {
n = sw[i];
biw[n] = rem;
}
#ifdef DIAGNOSTICS
if (vv) {
for (n = 0; n < ncomb; n++)
printf("Comb %d iweight %i rgb %f %f %f\n",bcc[n],biw[n],ressur[bcc[n]][0],ressur[bcc[n]][1],ressur[bcc[n]][2]);
}
#endif
}
/* Set the initial pattern according to the integer weighting */
for (cix = 0, n = 0; n < ncomb; n++) {
for (i = 0; i < biw[n]; i++) {
x = order[cix].x;
y = order[cix].y;
cix++;
for (k = 0; k < 3; k++) {
tpat[x][y][k] = itpat[x][y][k] = sur[bcc[n]][k];
rtpat[x][y][k] = irtpat[x][y][k] = ressur[bcc[n]][k];
}
}
}
#ifdef DIAGNOSTICS
/* Check initial pattern error */
if (vv) {
printf("Input pat:\n");
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
if (y > 0)
printf(", ");
printf("%3.0f %3.0f %3.0f",rtpat[x][y][0], rtpat[x][y][1], rtpat[x][y][2]);
}
printf("\n");
}
}
#endif
upsample(dval, rtpat);
werr = 0.0;
for (k = 0; k < 3; k++) {
err[k] = dval[k] - val[k];
if (fabs(err[k]) > werr)
werr = fabs(err[k]);
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Target %f %f %f -> %f %f %f\n", val[0], val[1], val[2], dval[0], dval[1], dval[2]);
printf("Error %f %f %f werr %f\n", err[0], err[1], err[2], werr);
}
#endif
berr = werr;
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
for (k = 0; k < 3; k++)
ipat[x][y][k] = tpat[x][y][k];
}
}
/* Improve fit if needed */
/* This is a bit stocastic */
errxs = 0.0;
for (ii = 0; ii < nitters; ii++) { /* Until we give up */
double corr[3]; /* Correction direction needed */
double bdot;
int bx, by;
double wycc, mm;
double cell[3]; /* Cell being modified value */
double ccell[3]; /* Corrected cell */
double pcell[3]; /* Proposed new cell value */
for (k = 0; k < 3; k++)
corr[k] = val[k] - dval[k];
#ifdef DIAGNOSTICS
if (vv)
printf("corr needed %f %f %f\n", corr[0], corr[1], corr[2]);
#endif
/* Scale it and limit it */
for (k = 0; k < 3; k++) {
double dd = 16.0 * corr[k];
if (dd >= 1.0)
dd = 1.0;
else if (dd <= -1.0)
dd = -1.0;
else
dd = 0.0;
corr[k] = dd;
}
if (corr[0] == 0.0 && corr[1] == 0 && corr[2] == 0.0) {
#ifdef DIAGNOSTICS
if (vv)
printf("No correction possible - done\n");
#endif
break;
}
#ifdef DIAGNOSTICS
if (vv)
printf("scaled corr %f %f %f\n", corr[0], corr[1], corr[2]);
#endif
/* Search dither cell and surrounder for a combination */
/* that is closest to the change we want to make. */
bdot = 1e6;
bx = by = n = 0;
for (x = 0; x < DISIZE; x++) {
double rlevel = rand_start + (rand_end - rand_start)
* pow((ii % rand_count)/rand_count, rand_pow);
for (y = 0; y < DISIZE; y++) {
for (i = 0; i < ncomb; i++) {
double dot = 0.0;
for (k = 0; k < 3; k++)
dot += (ressur[bcc[i]][k] - rtpat[x][y][k]) * corr[k];
/* Ramp the randomness up */
// dot += d_rand(0.0, 0.1 + (2.5-0.1) * ii/nitters);
// dot += d_rand(-rlevel, rlevel);
/* use a deterministic random element, so that */
/* the dither patterns are repeatable. */
randv = PSRAND32F(randv);
dot += rlevel * 2.0 * ((randv - 1)/4294967294.0 - 0.5);
if (dot <= 0.0)
dot = 1e7;
else {
dot = (dot - 1.0) * (dot - 1.0);
}
//printf("dot %f from sur %f %f %f to pat %f %f %f\n", dot, ressur[bcc[i]][0], ressur[bcc[i]][1], ressur[bcc[i]][2], rtpat[x][y][0], rtpat[x][y][1], rtpat[x][y][2]);
if (dot < bdot) {
bdot = dot;
bx = x;
by = y;
n = i;
}
}
}
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Changing cell [%d][%d] %f %f %f with dot %f\n",bx,by,rtpat[bx][by][0],rtpat[bx][by][1],rtpat[bx][by][2],bdot);
printf(" to sur %d: %f %f %f\n",n, ressur[bcc[n]][0], ressur[bcc[n]][1], ressur[bcc[n]][2]);
}
#endif
/* Substitute the best correction for this cell */
for (k = 0; k < 3; k++) {
tpat[bx][by][k] = sur[bcc[n]][k];
rtpat[bx][by][k] = ressur[bcc[n]][k];
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Input pat:\n");
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
if (y > 0)
printf(", ");
printf("%3.0f %3.0f %3.0f",rtpat[x][y][0], rtpat[x][y][1], rtpat[x][y][2]);
}
printf("\n");
}
}
#endif
upsample(dval, rtpat);
werr = 0.0;
for (k = 0; k < 3; k++) {
err[k] = dval[k] - val[k];
if (fabs(err[k]) > werr)
werr = fabs(err[k]);
}
if (werr > berr) {
errxs += werr - berr;
}
/* New best */
if (werr < berr) {
berr = werr;
errxs = 0.0;
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
for (k = 0; k < 3; k++) {
ipat[x][y][k] = tpat[x][y][k];
itpat[x][y][k] = tpat[x][y][k];
irtpat[x][y][k] = rtpat[x][y][k];
}
}
}
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Target %f %f %f -> %f %f %f\n", val[0], val[1], val[2], dval[0], dval[1], dval[2]);
printf("Error %f %f %f werr %f\n", err[0], err[1], err[2], werr);
}
#endif
if (berr < 0.11) {
#ifdef DIAGNOSTICS
if (vv)
printf("best error %f < 0.11 - give up\n",berr);
#endif
break;
}
/* If we're not making progress, reset to the last best */
if (errxs > mxerrxs) {
#ifdef DIAGNOSTICS
if (vv)
printf("Restarting at ii %d \n",ii);
#endif
errxs = 0.0;
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
for (k = 0; k < 3; k++) {
tpat[x][y][k] = itpat[x][y][k];
rtpat[x][y][k] = irtpat[x][y][k];
}
}
}
}
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Returning best error %f pat:\n",berr);
for (y = 0; y < DISIZE; y++) {
for (x = 0; x < DISIZE; x++) {
if (x > 0)
printf(", ");
printf("%3.0f %3.0f %3.0f",ipat[x][y][0], ipat[x][y][1], ipat[x][y][2]);
}
printf("\n");
}
}
#endif
return berr;
}
/* ====================================================================================== */
#ifdef STANDALONE_TEST
int
main(int argc,
char *argv[]
) {
double val[3], out[3], err;
double ipat[DISIZE][DISIZE][3];
double aerr, acount, xerr;
int x, y;
int i, j;
int k, nn;
printf("Hi there\n");
rand32(time(NULL));
#ifdef TEST_POINT
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
ipat[x][y][0] = 0.0;
ipat[x][y][1] = 0.0;
ipat[x][y][2] = 0.0;
}
}
ipat[5][4][0] = 255.0;
ipat[5][4][1] = 255.0;
ipat[5][4][2] = 255.0;
upsample(NULL, ipat);
#else
#ifdef NEVER
// val[0] = 201.500000;
// val[1] = 115.533403;
// val[2] = 76.300000;
// val[0] = 255.000000;
// val[1] = 115.533403;
// val[2] = 255.000000;
// val[0] = 221.689875;
// val[1] = 29.593255;
// val[2] = 140.820878;
// val[0] = 212.377797;
// val[1] = 228.338903;
// val[2] = 70.153296;
// val[0] = 231.554511;
// val[1] = 0.000000;
// val[2] = 51.958048;
// val[0] = 255.000000;
// val[1] = 144.768052;
// val[2] = 179.737212;
// val[0] = 194.854956;
// val[1] = 41.901887;
// val[2] = 20.434793;
// val[0] = 250.100121;
// val[1] = 83.484217;
// val[2] = 42.867603;
// val[0] = 255.000000;
// val[1] = 255.000000;
// val[2] = 228.534759;
// 1.71 -> 1.58, rand 2.2
// val[0] = 255.000000;
// val[1] = 176.894769;
// val[2] = 8.932806;
// 1.54 -> 0.762592, rand 0.3
// val[0] = 216.873703;
// val[1] = 250.908094;
// 1.05
// val[0] = 167.284458;
// val[1] = 248.945210;
// val[2] = 199.023452;
// 1.07
// val[0] = 211.045184;
// val[1] = 27.825141;
// val[2] = 63.883148;
// 1.928
// val[0] = 255.000000;
// val[1] = 0.439284;
// val[2] = 210.928135;
// 1.278
// val[0] = 218.693614;
// val[1] = 222.890101;
// val[2] = 174.779727;
// 1.334501
// val[0] = 253.931573;
// val[1] = 230.278945;
// val[2] = 185.677389;
// printf("In RGB %f %f %f\n",val[0],val[1],val[2]);
// ccast2YCbCr(NULL, out, val);
// printf("YCbCr %f %f %f\n",out[0],out[1],out[2]);
// YCbCr2ccast(NULL, out, out);
// printf("RGB %f %f %f\n",out[0],out[1],out[2]);
vv = 1;
err = get_ccast_dith(ipat, val);
printf("Got pat with err %f\n",err);
#else
aerr = 0.0;
acount = 0.0;
xerr = 0.0;
for (nn = 0; nn < 200000; nn++) {
for (k = 0; k < 3; k++) {
val[k] = d_rand(-5.0, 255.0 + 5.0);
if (val[k] < 0.0)
val[k] = 0.0;
else if (val[k] > 255.0)
val[k] = 255.0;
}
err = get_ccast_dith(ipat, val);
if (err >= 1.5 ||
( err >= 1.0
&& val[0] != 0.0 && val[0] != 255.0
&& val[1] != 0.0 && val[1] != 255.0
&& val[2] != 0.0 && val[2] != 255.0)) {
printf("Target RGB %f %f %f, err %f\n", val[0], val[1], val[2],err);
// vv = 1;
// comput_pat(ipat, val);
// break;
}
aerr += err;
acount++;
if (err > xerr)
xerr = err;
}
aerr /= acount;
printf("After %d trials, aerr = %f, maxerr = %f\n",nn,aerr,xerr);
#endif
#endif
return 0;
}
#endif /* STANDALONE_TEST */
|