1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>cctiff</title>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
<meta name="author" content="Graeme Gill">
</head>
<body>
<h2><b>imdi/cctiff</b></h2>
<h3>Summary</h3>
Color convert a TIFF or JPEG file using a sequence of compatible ICC
device profiles, abstract profiles, device link profiles and
calibration files. The sequence may be zero length, facilitating
format conversion and ICC profile embedding without otherwise
altering the pixel values.<br>
<h3>Usage<br>
</h3>
<small><span style="font-family: monospace;"></span> <span
style="font-family: monospace;"></span><span style="font-family:
monospace;">cctiff [-options] { [-i intent] <span
style="font-style: italic;">profile.icm</span> | [-d dir]
calibration.cal ...} <span style="font-style: italic;">infile.tif
outfile.tif</span></span></small><small><span
style="font-family: monospace;"></span><br style="font-family:
monospace;">
<span style="font-family: monospace;"></span><span
style="font-family: monospace;"></span><br style="font-family:
monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#v">-v</a><span
style="font-family: monospace;">
Verbose</span><br style="font-family: monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#c">-c</a><span
style="font-family: monospace;">
Combine linearisation curves into one transform</span><br
style="font-family: monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#p">-p</a><span
style="font-family: monospace;">
Use slow precise floating point conversion, rather
than fast integer routines.</span><br style="font-family:
monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#k">-k</a><span
style="font-family: monospace;">
Check fast result against precise, and report
differences.<br>
</span></small><small><span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#r">-r n<span
style="font-style: italic;"></span></a><span
style="font-family: monospace;">
Override
the default CLUT resolution</span></small><small><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"><br>
</span></small><small><span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#t">-t n<span
style="font-style: italic;"></span></a><span
style="font-family: monospace;">
Choose
output encoding from 1..n<br>
<a href="#f">-f [T|J]</a>
Set output format to Tiff or Jpeg (Default is same as input)<br>
<a href="#q">-q quality</a>
Set JPEG quality 1..100 (Default 80)<br>
</span></small><small><span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#a">-a</a><span
style="font-family: monospace;">
Read and Write planes > 4 as
alpha planes<br>
</span></small><small><span style="font-family: monospace;"> <a
href="#I">-I</a>
Ignore
any file or profile colorspace mismatches<br>
<a href="#D">-D</a>
Don't
append or set the output TIFF description<br>
<a href="#N">-N</a>
Output uncompressed TIFF (default LZW)<br>
<br>
</span></small><small><span style="font-family: monospace;"></span><span
style="font-family: monospace;"><br>
</span></small><small><a style="font-family: monospace;"
href="#e"><i>-e profile.[ic<span style="font-family: monospace;">m
| tiff | jpg]</span></i></a><span style="font-family:
monospace;"></span></small><small><span style="font-family:
monospace;"> Optionally embed a profile in the destination
TIFF or JPEG file.<br>
</span></small><small><span style="font-family: monospace;">This
may be an ICC file or TIFF or JPEG file with embedded profile.</span></small><br>
<small><span style="font-family: monospace;"><br>
Then
for each profile in the linked sequence:<br style="font-family:
monospace;">
</span></small><small><span style="font-family: monospace;"></span></small><small><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"> </span><a style="font-family: monospace;"
href="#i">-i <span style="font-style: italic;">intent</span></a><span
style="font-family: monospace;">
Profile intent</span><br
style="font-family: monospace;">
<span style="font-family: monospace;">
p =
perceptual, r = relative colorimetric,</span><br
style="font-family: monospace;">
<span style="font-family: monospace;">
s = saturation, a = absolute colorimetric<br>
</span></small><small><span style="font-family: monospace;">
</span><a style="font-family: monospace;" href="#o">-o order<span
style="font-style: italic;"></span></a><span
style="font-family: monospace;">
n = normal (priority: lut
> matrix > monochrome)<br>
r
= reverse (priority: monochrome > matrix > lut)</span></small><small><span
style="font-family: monospace;"></span><br style="font-family:
monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#p1"><i>profile.[ic<span
style="font-family: monospace;">m | tiff | jpg]</span></i></a><span
style="font-family: monospace;"> A Device, Link or
Abstract profile. This may be an ICC file<br>
(May
be embedded profile in TIFF or JPEG file)<br>
</span></small><small><span style="font-family: monospace;">
or
each calibration file in sequence:<br style="font-family:
monospace;">
</span></small><small><span style="font-family: monospace;"></span></small><small><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"> </span><a style="font-family: monospace;"
href="#d">-d <span style="font-style: italic;"><span
style="font-family: monospace;">dir</span></span></a><span
style="font-family: monospace;">
Calibration direction</span><br
style="font-family: monospace;">
<span style="font-family: monospace;">
f =
forward cal. (default), b = backwards cal.</span><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"></span></small><small><span style="font-family:
monospace;"></span><br style="font-family: monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#p2"><i>calibration.cal<span
style="font-family: monospace;"></span></i></a><span
style="font-family: monospace;">
A calibration file.</span></small><br>
<small><span style="font-family: monospace;"></span><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"></span><span style="font-family: monospace;"></span><br>
Then finally:<br style="font-family:
monospace;">
<span style="font-family: monospace;"></span><a
style="font-family: monospace;" href="#p3"><i>infile.tif</i></a><span
style="font-family: monospace;">
A </span><a style="font-family: monospace;"
href="File_Formats.html#TIFF">TIFF</a><span style="font-family:
monospace;"> or <a href="File_Formats.html#JPEG">JPEG</a>
Raster file that will be the input raster to be transformed.</span><br
style="font-family: monospace;">
<span style="font-family: monospace;"></span><a
style="font-family: monospace;" href="#p4"><i>outfile.tif</i></a><span
style="font-family: monospace;">
A </span><a style="font-family: monospace;"
href="File_Formats.html#TIFF">TIFF</a><span style="font-family:
monospace;"> or <a href="File_Formats.html#JPEG">JPEG</a>
Raster file created from the input raster, using the given color
transform.</span></small><b><br>
</b><b><br>
Examples</b><br>
<br>
Convert an RGB file to a CMYK file using perceptual intent:<br>
<br>
cctiff -ip sRGB.icm -i cmyk.icm rgbinfile.tif
cmykoutfile.tif<br>
<br>
Same as above, but use the source file embedded profile, and embed
the resulting colorspace profile in the output:<br>
<br>
cctiff -e cmyk.icm -ip rgbfile.tif -ip
cmyk.icm rgbinfile.tif cmyout.tif<br>
<br>
Convert a raster file using a device link:<br>
<br>
cctiff devicelink.icm infile.tif outfile.tif<br>
<br>
Convert an RGB source to CMYK via an abstract adjustment, and then
convert the CMYK to CMYK using a device link, also apply CMYK
calibration:<br>
<br>
cctiff -ir sRGB.icm abstract.icm -ir CMYK.icm
devlink.icm CMYKcal.cal infile.tif outfile.tif<br>
<br>
Convert an RGB source file into a CIELab raster file:<br>
<br>
cctiff -t1 -ir sRGB.icm rgbfile.tif labfile.tif<br>
<h3>Comments<br>
</h3>
<a name="v"></a> The <span style="font-weight: bold;">-v</span>
flag reports extra information about the ICC profile.<br>
<br>
<a name="c"></a><a name="p"></a><a name="k"></a><a name="r"></a> The
<span style="font-weight: bold;">-c</span>, <span
style="font-weight: bold;">-p</span>, <span style="font-weight:
bold;">-k</span> and <span style="font-weight: bold;">-r</span>
options are intended to aid debugging.<br>
<br>
<a name="t"></a><span style="font-weight: bold;"></span><span
style="font-weight: bold;">-t </span>Some colorspaces can be
encoded in more than one way. If there is a choice, the choice
should be specified the <span style="font-weight: bold;">-t</span>
parameter. If this parameter is not given, then cctiff will print
the possible choices and choose the default. For TIFF LAB output
there are two choices <span style="font-weight: bold;">1</span> for
CIELab encoding (Default), and <span style="font-weight: bold;">2</span>
for ICCLab encoding. For JPEG RGB output there are two choices: <span
style="font-weight: bold;">1</span> for YCbCr encoding with
sub-sampled Cb and Cr (Default)\n", and <span style="font-weight:
bold;">2</span> RGB encoding which does not use sub sampling. For
JPEG CMYK output there are two choices: <span style="font-weight:
bold;">1</span> for YCCK encoding with sub-sampled C and C
(Default)\n", and <span style="font-weight: bold;">2</span> CMYK
encoding which does not use sub sampling<br>
<br>
<a name="f"></a><span style="font-weight: bold;"></span> <span
style="font-weight: bold;">-f</span> By default the output raster
file format will be the same as the input, and the <span
style="font-weight: bold;">-f</span> parameter will override this.
<span style="font-weight: bold;">-f T</span> will select <span
style="font-weight: bold;">TIFF</span> format output, and <span
style="font-weight: bold;">-f J</span> will select <span
style="font-weight: bold;">JPEG</span> format output.<span
style="font-weight: bold;"> </span><br>
<br>
<a name="q"></a><span style="font-weight: bold;"></span> <span
style="font-weight: bold;">-q</span> JPEG raster files use lossy
compression, and the <span style="font-weight: bold;">-q</span>
parameter controls how much compression is used in creating a JPEG
output file. The value can be between 1 and 100, with 1 being the
lowest quality and highest compression, and 100 being the highest
quality and lowest compression. The default value is 80.<br>
<br>
<a name="a"></a><span style="font-weight: bold;"></span> Normally
colorspaces that have more than 4 channels will be read and written
as multichannel TIFF files. These are not handled well by all
applications, so the <span style="font-weight: bold;">-a</span>
option causes extra channels above 4 to be stored as alpha planes,
providing more flexibility in using such files.<br>
<br>
<a name="I"></a>The <span style="font-weight: bold;">-I</span> flag
causes any mismatch between the color spaces of the image files and
each profile in the sequence to be ignored. The results might be
unpredictable unless you know exactly what you are doing.<br>
<br>
<a name="D"></a>The <span style="font-weight: bold;">-D</span> flag
stops the description tag being set or appended to by cctiff.<br>
<br>
<a name="N"></a>By default any TIFF output file will be LZW
compressed, but the <span style="font-weight: bold;">-N</span> flag
will cause any TIFF file to be saved uncompressed.<br>
<br>
<small><a name="e"></a></small><small>The <span style="font-weight:
bold;">-e profile.[icm | tiff | jpg]</span> option allows an ICC
profile to be embedded in the </small>destination TIFF or JPEG
file. The profile may either be an <small>ICC file or a TIFF or
JPEG file with embedded profile.</small><br>
<br>
Following these global options, you should specify the chain of
profiles and calibrations you want to apply. Each link of the chain
consists of the (optional) intent to be used for device profiles and
the filename of the profile, or the optional direction to be used
for the calibration and the filename of the calibration. The first
profile or calibrations input colorspace must be compatible with the
input TIFF file, and each profile or calibration output space must
be compatible with the next profile or calibrations input space. An
error will result if this is not the case.<br>
<br>
<div style="margin-left: 40px;"><a name="i"></a>The <span
style="font-weight: bold;">-i</span> parameters selects the
intent for the following device profile. Normally the same intent
should be used for all device profiles, but other combinations
allow special uses such as mixed proofing workflows.<br>
<br>
<a name="o"></a>The <span style="font-weight: bold;">-o</span>
parameter changes the order the profiles tags are searched in. A
profile is allowed to contain more than the minimum number of
elements or table needed to describe a certain transform, and may
contain redundant descriptions. By default, lut based table
information will be used first if present, followed by
matrix/shaper information, and only using monochrome information
if it is all that is present. <b>-o r</b> reverses this order. <br>
<br>
<a name="p1"></a>The file that will be the source of the ICC
profile. This can be either an ICC profile or a TIFF or JPEG file
that contains an embedded profile. Typically the first profile in
the chain might be taken from an embedded profile from the source
TIFF or JPEG file.<br>
<br>
<a name="d"></a>The <span style="font-weight: bold;">-d</span>
parameters selects the direction for the following calibration.
The default direction is the normal forward calibration, but if
-db is used, then a backwards (inverse) calibration will be
applied.<br>
<br>
<a name="p2"></a>The file that will be the source calibration.
This will be an Argyll <a href="File_Formats.html#.cal">.cal</a>
format file.<span style="font-weight: bold;"></span><br>
</div>
<br>
<a name="p3"></a>The second last argument should be the name of the
source TIFF or JPEG file that is to be processed.<br>
<br>
<a name="p4"></a>The last argument should be the name of the
destination TIFF or JPEG file to hold the results.<br>
<br>
<span style="font-weight: bold;">cctiff</span> uses very fast
integer conversion routines to process the raster. Both 8 and 16 bit
per component files can be handled, and up to 8 color channels (The
limit can be lifted to 15 re-compiling). JPEG files with no more
than 8 bit per component can be handled.<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>
|