1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
|
/*
* Argyll Gamut Mapping Library
*
* Author: Graeme W. Gill
* Date: 1/10/00
* Version: 2.00
*
* Copyright 2000 - 2006 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*
* For a discussion of gamut mapping strategy used,
* see gammap.txt
*/
/*
* TTBD:
* Improve error handling.
*
* There is a general expectation (especially in comparing products)
* that the profile colorimetric intent be not strictly minimum delta E,
* but that it correct neutral axis, luminence range and keep hue
* proportionality (i.e. clip with constant Hue and Luminance).
* Ideally there should be an intent that matches
* this, that can be selected for the colorimetric table (or perhaps be default).
* !! Maybe even the normal perceptual gamut mapping should use a !!
* !! Hue and Luminance preserving clipping ? Should this be the default !!
* !! for all inverse lookups ?? !!
*
* It might be good to offer the black mapping method as an option (icx_BPmap),
* as well as offering different profile (xicc/xlut.c) black point options
* (neutral, K hue max density, CMY max density, any max density).
* Perhaps print RGB & CMY should default to neutral black, rather than 0,0,0 ??
*
* The gamut mapping code here and the near smooth code don't actually mesh
* very well. For instance, the black point bend approach in < V1.3.4
* means that the dest gamut isn't actually contained within the source,
* messing up the guide vector mappings. Even if this is fixed, the
* actual neutral aim point within nearsmooth is Jab 0,0, while
* the mapping in gammap is from the source neutral to the chosen
* ?????? (is this fixed to some degree ?)
*/
#define VERBOSE /* [Def] Print out extra interesting information when verbose is set */
#undef PLOT_DIAG_WRL /* [Und] Always plot "gammap.wrl" */
/* What do display when user requests disgnostic VRML/X3D */
#define PLOT_SRC_GMT /* [Def] Plot the source surface to "gammap.wrl" as well */
#define PLOT_DST_GMT /* [Def] Plot the dest surface to "gammap.wrl" as well */
#undef PLOT_SRC_CUSPS /* [Und] Plot the source surface cusps to "gammap.wrl" as well */
#undef PLOT_DST_CUSPS /* [Und] Plot the dest surface cusps to "gammap.wrl" as well */
#undef PLOT_TRANSSRC_CUSPS /* [Und] Plot the gamut mapped source surface cusps to "gammap.wrl" */
#define PLOT_AXES /* [Und] Plot the axes to "gammap.wrl" as well */
#undef SHOW_VECTOR_INDEXES /* [Und] Show the mapping vector index numbers */
#define SHOW_MAP_VECTORS /* [Def] Show the mapping vectors - yellow to red, green to red */
/* if no clear direction. */
#undef SHOW_SUB_SURF /* [Und] Show the sub-surface mapping vector - grey to purple. */
#undef SHOW_SUB_PNTS /* [Und] Show the sub-surface sv2 (red), div2 (green), sd3 (yellow) pnts */
#undef SHOW_CUSPMAP /* [Und] Show the cusp mapped vectors rather than final vectors */
#undef SHOW_ACTUAL_VECTORS /* [Und] Show how the source vectors actually map thought xform */
#undef SHOW_ACTUAL_VEC_DIFF /* [Und] Show how the difference between guide and actual vectors */
/* Other diagnostics */
#undef PLOT_LMAP /* [Und] Plot L map */
#undef PLOT_GAMUTS /* [Und] Save (part mapped) input and output gamuts as */
/* src.wrl, img.wrl, dst.wrl, gmsrc.wrl */
#undef PLOT_3DKNEES /* [Und] Plot each 3D compression knee */
#undef CHECK_NEARMAP /* [Und] Check how accurately near map vectors are represented by rspl */
#undef DUMP_GREY_AXIS_POINTS /* [Und] Dump grey axis map 3d->3d points */
#undef SHOW_NEIGBORS /* [Und] Show nearsmth neigbors in gammap.wrl */
#undef PLOT_DIGAM /* [Und] Rather than DST_GMT - don't free it (#def in nearsmth.c too) */
#define XRES 100 /* [100] Res of plots */
/* Functionality */
#define USE_GLUMKNF /* [Define] Enable luminence knee function points else linear */
#define USE_GREYMAP /* [Define] Enable 3D->3D mapping points down the grey axis */
#define USE_GAMKNF /* [Define] Enable 3D knee function points */
#define USE_BOUND /* [Define] Enable grid boundary anchor points */
/* The locus.ts file can contain source locus(es) that will be plotted */
/* as cones in red, with the destination plotted in white. They can */
/* be created from .tif files using xicc/tiffgmts utility. */
/* Optional marker points for gamut mapping diagnosotic */
struct {
int type; /* 1 = src point (xlate), 2 = dst point (no xlate) */
/* 0 = end marker */
double pos[3]; /* Position, (usually in Jab space) */
double col[3]; /* RGB color */
} markers[] = {
{ 0, }, /* End marker */
{ 1, { 37.18, 17.78, 20.28 }, { 0.545, 0.357, 0.256 } }, /* Dark Baby skin */
{ 1, { 12.062, -0.87946, 0.97008 }, { 1.0, 0.3, 0.3 } }, /* Black point */
{ 1, { 67.575411, -37.555250, -36.612862 }, { 1.0, 0.3, 0.3 } }, /* bad source in red (Red) */
{ 1, { 61.003078, -44.466554, 1.922585 }, { 0.0, 1.0, 0.3 } }, /* good source in green */
{ 2, { 49.294793, 50.749543, -51.383167 }, { 1.0, 0.0, 0.0 } },
{ 2, { 42.783425, 49.089363, -37.823712 }, { 0.0, 1.0, 0.0 } },
{ 2, { 41.222695, 63.911823, 37.695310 }, { 0.0, 1.0, 0.3 } }, /* destination in green */
{ 1, { 41.951770, 60.220284, 34.788195 }, { 1.0, 0.3, 0.3 } }, /* source in red (Red) */
{ 2, { 41.222695, 63.911823, 37.695310 }, { 0.3, 1.3, 0.3 } }, /* Dest in green */
{ 1, { 85.117353, -60.807580, -22.195118 }, { 0.3, 0.3, 1 } }, /* Cyan Source (Blue) */
{ 2, { 61.661622, -38.164411, -18.090824 }, { 1.0, 0.3, 0.3 } }, /* CMYK destination (Red) */
{ 0 } /* End marker */
};
/* Optional marker rings for gamut mapping diagnosotic */
struct {
int type; /* 1 = src ring point, 2 = ignore, */
/* 0 = end marker */
double ppoint[3]; /* Location of a point on the plane in source space */
double pnorm[3]; /* Plane normal direction in source space */
int nverts; /* Number of points to make ring */
double rad; /* Relative Radius from neutral to source surface (0.0 - 1.0) */
double scol[3]; /* Source RGB color */
double dcol[3]; /* Destination RGB color */
} rings[] = {
{ 0 }, /* End marker */
{ 1,
{ 60.0, 0.0, 0.0 }, { 1.0, 0.8, 0.0 }, /* plane point and normal */
100, 1.0, /* 20 vertexes at source radius */
{ 0.0, 1.0, 0.0 }, /* Green source */
{ 1.0, 0.0, 0.0 } /* Red destination */
},
{ 1,
{ 60.0, 0.0, 0.0 }, { 1.0, 0.8, 0.0 }, /* plane point and normal */
100, 0.9, /* 20 vertexes at source radius */
{ 0.0, 1.0, 0.0 }, /* Green source */
{ 1.0, 0.0, 0.0 } /* Red destination */
},
{ 1,
{ 60.0, 0.0, 0.0 }, { 1.0, 0.8, 0.0 }, /* plane point and normal */
100, 0.8, /* 20 vertexes at source radius */
{ 0.0, 1.0, 0.0 }, /* Green source */
{ 1.0, 0.0, 0.0 } /* Red destination */
},
{ 0 } /* End marker */
};
/* Degree to which the hue & saturation of the black point axes should be aligned: */
#define GREYBPHSMF 0.0
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <fcntl.h>
#include <string.h>
#include <math.h>
#include "aconfig.h"
#include "icc.h"
#include "numlib.h"
#include "xicc.h"
#include "gamut.h"
#include "rspl.h"
#include "gammap.h"
#include "nearsmth.h"
#include "vrml.h"
#ifdef PLOT_LMAP
#include "plot.h"
#include "ui.h"
#endif
/* Callback context for enhancing the saturation of the clut values */
typedef struct {
gamut *dst; /* Destination colorspace gamut */
double wp[3], bp[3];/* Destination colorspace white and black points */
double satenh; /* Saturation engancement value */
} adjustsat;
/* Callback context for fixing 1D Lut white and black points */
typedef struct {
double twb[2], awb[2]; /* Target and Actual black, white */
} adjust1wb;
/* Callback context for making clut relative to white and black points */
typedef struct {
double mat[3][4];
} adjustwb;
static void adjust1_wb_func(void *pp, double *out, double *in);
static void inv_grey_func(void *pp, double *out, double *in);
static void adjust_wb_func(void *pp, double *out, double *in);
static void adjust_sat_func(void *pp, double *out, double *in);
#define XVRA 3.0 /* [3.0] Extra mapping vertex ratio over no. tri verts from gamut */
/* The smoothed near weighting control values. */
/* These weightings setup the detailed behaviour of the */
/* gamut mapping for the fully perceptual and saturation intents. */
/* They are ordered here by increasing priority. A -ve value is ignored */
/* Perceptual mapping weights, where smoothness and proportionality are important.. */
gammapweights pweights[] = {
{
gmm_default, /* Non hue specific defaults */
{ /* Cusp alignment control */
{
0.1, /* Cusp luminance alignment weighting 0 = none, 1 = full */
0.0, /* Cusp chroma alignment weighting 0 = none, 1 = full */
0.2 /* Cusp hue alignment weighting 0 = none, 1 = full */
},
2.0, /* Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
1.00 /* Chroma expansion 1 = none */
},
{ /* Radial weighting (currently broken - need to fix) */
0.0, /* Radial error overall weight, 0 + */
0.5, /* Radial hue dominance vs l+c, 0 - 1 */
0.5 /* Radial l dominance vs, c, 0 - 1 */
},
{ /* Weighting of absolute error of destination from source */
1.0, /* Absolute error overall weight */
0.8, /* Hue dominance vs l+c, 0 - 1 */
0.8, /* [0.8] White l dominance vs, c, 0 - 1 */
0.45, /* [0.45] Grey l dominance vs, c, 0 - 1 */
0.94, /* [0.94] Black l dominance vs, c, 0 - 1 */
0.4, /* White l blend start radius, 0 - 1, at white = 0 */
0.7, /* Black l blend power, linear = 1.0, enhance < 1.0 */
1.5, /* L error extra power with size, none = 1.0 */
10.0 /* L error extra xover threshold in DE */
},
{ /* Relative vector smoothing */
20.0, 30.0, /* Relative Smoothing radius L* H* */
0.9 /* Degree of smoothing */
},
{ /* Weighting of excessive compression error, which is */
/* the src->dst vector length over the available dst depth. */
/* The depth is half the distance to the intersection of the */
/* vector to the other side of the gamut. (doesn't get triggered much ?) */
5.0, /* [5] Compression depth weight */
5.0 /* [5] Expansion depth weight */
},
{
0.0 /* Fine tuning expansion weight, 0 - 1 */
}
},
{
gmm_light_yellow, /* Treat yellow differently, to get purer result. */
{
{
0.9, /* Cusp luminance alignment weighting 0 = none, 1 = full */
0.8, /* Cusp chroma alignment weighting 0 = none, 1 = full */
0.7 /* Cusp hue alignment weighting 0 = none, 1 = full */
},
4.0, /* Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
1.20 /* Chroma expansion 1 = none */
},
{ /* Radial weighting */
-1.0, /* Radial error overall weight, 0 + */
-1.0, /* Radial hue dominance vs l+c, 0 - 1 */
-1.0 /* Radial l dominance vs, c, 0 - 1 */
},
{ /* Weighting of absolute error of destination from source */
-1.0, /* Absolute error overall weight */
-1.0, /* Hue dominance vs l+c, 0 - 1 */
-1.0, /* White l dominance vs, c, 0 - 1 */
-1.0, /* Grey l dominance vs, c, 0 - 1 */
-1.0, /* Black l dominance vs, c, 0 - 1 */
-1.0, /* White l threshold ratio to grey distance, 0 - 1 */
-1.0, /* Black l threshold ratio to grey distance, 0 - 1 */
-1.0, /* L error extra power, none = 1.0 */
-1.0 /* L error xover threshold in DE */
},
{ /* Relative error preservation using smoothing */
20.0, 10.0, /* Relative Smoothing radius L* H* */
0.5 /* Degree of smoothing */
},
{ /* Weighting of excessive compression error, which is */
/* the src->dst vector length over the available dst depth. */
/* The depth is half the distance to the intersection of the */
/* vector to the other side of the gamut. (doesn't get triggered much ?) */
-1.0, /* Compression depth weight */
-1.0 /* Expansion depth weight */
},
{
0.5 /* Fine tuning expansion weight, 0 - 1 */
}
},
#ifdef NEVER
{
gmm_l_d_blue, /* Increase maintaining hue importance for blue */
{
{
-1.0, /* Cusp luminance alignment weighting 0 = none, 1 = full */
-1.0, /* Cusp chroma alignment weighting 0 = none, 1 = full */
0.0 /* Cusp hue alignment weighting 0 = none, 1 = full */
},
-1.0, /* 2.0 Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
-1.0 /* Chroma expansion 1 = none */
},
{ /* Radial weighting */
-1.0, /* Radial error overall weight, 0 + */
-1.0, /* Radial hue dominance vs l+c, 0 - 1 */
-1.0 /* Radial l dominance vs, c, 0 - 1 */
},
{ /* Weighting of absolute error of destination from source */
-1.0, /* Absolute error overall weight */
-1.0, /* Hue dominance vs l+c, 0 - 1 */
-1.0, /* White l dominance vs, c, 0 - 1 */
-1.0, /* Grey l dominance vs, c, 0 - 1 */
-1.0, /* Black l dominance vs, c, 0 - 1 */
-1.0, /* White l threshold ratio to grey distance, 0 - 1 */
-1.0, /* Black l threshold ratio to grey distance, 0 - 1 */
-1.0, /* L error extra power, none = 1.0 */
-1.0 /* L error xover threshold in DE */
},
{ /* Relative error preservation using smoothing */
-1.0, 15.0, /* Relative Smoothing radius L* H* */
-1.0 /* Degree of smoothing */
},
{ /* Weighting of excessive compression error, which is */
/* the src->dst vector length over the available dst depth. */
/* The depth is half the distance to the intersection of the */
/* vector to the other side of the gamut. (doesn't get triggered much ?) */
-1.0, /* Compression depth weight */
-1.0 /* Expansion depth weight */
},
{
-1.0 /* Fine tuning expansion weight, 0 - 1 */
}
},
#endif /* NEVER */
{
gmm_end,
}
};
double psmooth = 2.0; /* [2.0] Level of RSPL smoothing for perceptual, 1 = nominal */
/* Lightness Preserving Perceptual mapping weights, where preserving lightness */
/* and hue has the highest priority, followed by smoothness and proportionality. */
/* Chroma is basically sacrificed. */
gammapweights lpweights[] = {
{
gmm_default, /* Non hue specific defaults */
{ /* Cusp alignment control */
{
0.0, /* [0.2] Cusp luminance alignment weighting 0 = none, 1 = full */
0.0, /* [0.0] Cusp chroma alignment weighting 0 = none, 1 = full */
0.0 /* [0.3] Cusp hue alignment weighting 0 = none, 1 = full */
},
2.0, /* Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
1.00 /* Chroma expansion 1 = none */
},
{ /* Radial weighting (currently broken - need to fix) */
0.0, /* Radial error overall weight, 0 + */
0.1, /* Radial hue dominance vs l+c, 0 - 1 */
1.0 /* Radial l dominance vs, c, 0 - 1 */
},
{ /* Weighting of absolute error of destination from source */
1.0, /* Absolute error overall weight */
0.90, /* [0.9] Hue dominance vs l+c, 0 - 1 */
0.98, /* White l dominance vs, c, 0 - 1 */
0.95, /* Grey l dominance vs, c, 0 - 1 */
0.99, /* Black l dominance vs, c, 0 - 1 */
0.4, /* White l blend start radius, 0 - 1, at white = 0 */
0.7, /* Black l blend power, linear = 1.0, enhance < 1.0 */
1.0, /* L error extra power with size, none = 1.0 */
100.0 /* L error extra xover threshold in DE */
},
{ /* Relative vector smoothing */
6.0, 30.0, /* Relative Smoothing radius L* H* */
0.9 /* [0.9] Degree of smoothing */
},
{ /* Weighting of excessive compression error, which is */
/* the src->dst vector length over the available dst depth. */
/* (This compromizes constanl L near white and black, so minimize) */
0.0, /* Compression depth weight */
0.0 /* Expansion depth weight */
},
{
0.0 /* Fine tuning expansion weight, 0 - 1 */
}
},
{
gmm_end,
}
};
double lpsmooth = 1.0; /* [1.0] Level of RSPL smoothing for ligtness pres perc, 1 = nominal */
/* Saturation mapping weights, where saturation has priority over smoothness */
gammapweights sweights[] = {
{
gmm_default, /* Non hue specific defaults */
{ /* Cusp alignment control */
{
0.6, /* Cusp luminance alignment weighting 0 = none, 1 = full */
0.5, /* Cusp chroma alignment weighting 0 = none, 1 = full */
0.6 /* Cusp hue alignment weighting 0 = none, 1 = full */
},
1.0, /* Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
1.05 /* Chroma expansion 1 = none */
},
{ /* Radial weighting */
0.0, /* Radial error overall weight, 0 + */
0.5, /* Radial hue dominance vs l+c, 0 - 1 */
0.5 /* Radial l dominance vs, c, 0 - 1 */
},
{ /* Weighting of absolute error of destination from source */
1.0, /* Absolute error overall weight */
0.4, /* Hue dominance vs l+c, 0 - 1 */
0.6, /* White l dominance vs, c, 0 - 1 */
0.3, /* Grey l dominance vs, c, 0 - 1 */
0.7, /* Black l dominance vs, c, 0 - 1 */
0.5, /* wl blend start radius, 0 - 1 */
1.0, /* bl blend power, linear = 1.0, enhance < 1.0 */
1.5, /* L error extra power with size, none = 1.0 */
20.0 /* L error extra xover threshold in DE */
},
{ /* Relative vector smoothing */
15.0, 20.0, /* Relative Smoothing radius L* H* */
0.8 /* [0.8] Degree of smoothing */
},
{ /* Weighting of excessive compression error, which is */
/* the src->dst vector length over the available dst depth. */
/* The depth is half the distance to the intersection of the */
/* vector to the other side of the gamut. (doesn't get triggered much ?) */
5.0, /* Compression depth weight */
5.0 /* Expansion depth weight */
},
{
0.5 /* Fine tuning expansion weight, 0 - 1 */
}
},
{
gmm_light_yellow, /* Treat yellow differently, to get purer result. */
{
{
1.0, /* Cusp luminance alignment weighting 0 = none, 1 = full */
1.0, /* Cusp chroma alignment weighting 0 = none, 1 = full */
1.0 /* Cusp hue alignment weighting 0 = none, 1 = full */
},
1.0, /* Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
1.20 /* Chroma expansion 1 = none */
},
{ /* Radial weighting */
-1.0, /* Radial error overall weight, 0 + */
-1.0, /* Radial hue dominance vs l+c, 0 - 1 */
-1.0 /* Radial l dominance vs, c, 0 - 1 */
},
{ /* Weighting of absolute error of destination from source */
1.0, /* Absolute error overall weight */
0.3, /* Hue dominance vs l+c, 0 - 1 */
-1.0, /* White l dominance vs, c, 0 - 1 */
-1.0, /* Grey l dominance vs, c, 0 - 1 */
-1.0, /* Black l dominance vs, c, 0 - 1 */
-1.0, /* White l threshold ratio to grey distance, 0 - 1 */
-1.0, /* Black l threshold ratio to grey distance, 0 - 1 */
-1.0, /* L error extra power, none = 1.0 */
-1.0 /* L error xover threshold in DE */
},
{ /* Relative error preservation using smoothing */
10.0, 15.0, /* Relative smoothing radius */
0.5 /* Degree of smoothing */
},
{ /* Weighting of excessive compression error, which is */
/* the src->dst vector length over the available dst depth. */
/* The depth is half the distance to the intersection of the */
/* vector to the other side of the gamut. (doesn't get triggered much ?) */
-1.0, /* Compression depth weight */
-1.0 /* Expansion depth weight */
},
{
-1.0 /* Fine tuning expansion weight, 0 - 1 */
}
},
{
gmm_end
}
};
/* The cusp alignment tends to upset the vector smoothing (not exactly sure why), */
/* so use more rspl smoothing to compensate. */
double ssmooth = 4.0; /* [1.0] Level of RSPL smoothing for saturation */
/*
* Notes:
* The "knee" shape produced by the rspl (regular spline) code
* is not what one would expect for expansion. It is not
* symetrical with compression, and is less "sharp". This
* is due to the rspl "smoothness" criteria being based on
* grid value difference rather than smoothness being measured,
* as curvature. This means that the spline gets "stiffer" as
* it increases in slope.
* Possibly rspl could be improved in this respect ???
* (Doesn't matter for L compression now, because rspl is
* being inverted for expansion).
*/
static void del_gammap(gammap *s);
static void domap(gammap *s, double *out, double *in);
static void dopartialmap1(gammap *s, double *out, double *in);
static void dopartialmap2(gammap *s, double *out, double *in);
static gamut *parttransgamut(gammap *s, gamut *src);
static void invdomap1(gammap *s, double *out, double *in);
#ifdef PLOT_GAMUTS
static void map_trans(void *cntx, double out[3], double in[3]);
#endif
/* Return a gammap to map from the input space to the output space */
/* Return NULL on error. */
gammap *new_gammap(
int verb, /* Verbose flag */
gamut *sc_gam, /* Source colorspace gamut (L gamut if sh_gam != NULL) */
gamut *isi_gam, /* Input source image gamut (NULL if none) */
gamut *d_gam, /* Destination colorspace gamut */
icxGMappingIntent *gmi, /* Gamut mapping specification */
gamut *sh_gam, /* If not NULL, then use sc_gam for the luminence */
/* mapping, and sh_gam for the hull mapping (i.e. general compression) */
int src_kbp, /* Use K only black point as src gamut black point */
int dst_kbp, /* Use K only black point as dst gamut black point */
int dst_cmymap, /* masks C = 1, M = 2, Y = 4 to force 100% cusp map */
int rel_oride, /* 0 = normal, 1 = clip like, 2 = max relative */
int mapres, /* Gamut map resolution, typically 9 - 33 */
double *mn, /* If not NULL, set minimum mapping input range */
double *mx, /* for rspl grid. */
char *diagname /* If non-NULL, write a gamut mapping diagnostic WRL */
) {
gammap *s; /* This */
gamut *si_gam = NULL; /* Source image gamut (intersected with sc_gam), assm. NULL if sh_gam */
gamut *scl_gam = NULL; /* Source colorspace gamut with rotation and L mapping applied */
gamut *sil_gam; /* Source image gamut with rotation and L mapping applied */
double s_cs_wp[3]; /* Source colorspace white point */
double s_cs_bp[3]; /* Source colorspace black point */
double s_ga_wp[3]; /* Source (image) gamut white point */
double s_ga_bp[3]; /* Source (image) gamut black point */
double d_cs_wp[3]; /* Destination colorspace white point */
double d_cs_bp[3]; /* Destination colorspace black point */
double sr_cs_wp[3]; /* Source rotated colorspace white point */
double sr_cs_bp[3]; /* Source rotated colorspace black point */
double sr_ga_wp[3]; /* Source rotated (image) gamut white point */
double sr_ga_bp[3]; /* Source rotated (image) gamut black point */
double dr_cs_wp[3]; /* Target (gmi->greymf aligned) white point */
double dr_cs_bp[3]; /* Target (gmi->greymf aligned) black point */
double dr_be_bp[3]; /* Bend at start in source neutral axis direction */
/* Target black point (Same as dr_cs_bp[] otherwise) */
double sl_cs_wp[3]; /* Source rotated and L mapped colorspace white point */
double sl_cs_bp[3]; /* Source rotated and L mapped colorspace black point */
double s_mt_wp[3]; /* Overall source mapping target white point (used for finetune) */
double s_mt_bp[3]; /* Overall source mapping target black point (used for finetune) */
double d_mt_wp[3]; /* Overall destination mapping white point (used for finetune) */
double d_mt_bp[3]; /* Overall destination mapping black point (used for finetune) */
#ifdef USE_BOUND
int surfpnts = 1; /* Add grid surface anchor points */
#else
int surfpnts = 0; /* Don't add grid surface points */
#endif
int nres = 512; /* Neutral axis resolution */
cow lpnts[10]; /* Mapping points to create grey axis map */
int revrspl = 0; /* Reverse grey axis rspl construction */
int ngreyp = 0; /* Number of grey axis mapping points */
int ngamp = 0; /* Number of gamut mapping points */
double xvra = XVRA; /* Extra ss vertex ratio to src gamut vertex count */
int j;
#if defined(PLOT_LMAP) || defined(PLOT_GAMUTS) || defined(PLOT_3DKNEES)
# pragma message("################ A gammap.c PLOT is #defined #########################")
#endif
#ifndef USE_BOUND
# pragma message("################ gammap.c USE_BOUND not set #########################")
#endif
if (verb) {
xicc_dump_gmi(gmi);
printf("Gamut map resolution: %d\n",mapres);
if (isi_gam != NULL)
printf("Image gamut supplied\n");
}
/* Allocate the object */
if ((s = (gammap *)calloc(1, sizeof(gammap))) == NULL)
error("gammap: calloc failed on gammap object");
/* Setup methods */
s->del = del_gammap;
s->domap = domap;
s->invdomap1 = invdomap1;
/* Now create everything */
/* Grab the colorspace white and black points */
if (src_kbp) {
if (sc_gam->getwb(sc_gam, s_cs_wp, NULL, s_cs_bp, NULL, NULL, NULL)) {
fprintf(stderr,"gamut map: Unable to read source colorspace white and black points\n");
free(s);
return NULL;
}
} else {
if (sc_gam->getwb(sc_gam, s_cs_wp, s_cs_bp, NULL, NULL, NULL, NULL)) {
fprintf(stderr,"gamut map: Unable to read source colorspace white and black points\n");
free(s);
return NULL;
}
}
/* If source space is source gamut */
if (isi_gam == NULL || isi_gam == sc_gam) {
si_gam = sc_gam;
for (j = 0; j < 3; j++) {
s_ga_wp[j] = s_cs_wp[j];
s_ga_bp[j] = s_cs_bp[j];
}
/* Else have explicit image gamut */
} else {
#ifdef VERBOSE
if (verb) { /* Check that image gamut is within colorspace */
double scwp[3], scbp[3];
double imwp[3], imbp[3];
sc_gam->getwb(sc_gam, NULL, NULL, NULL, scwp, scbp, NULL);
isi_gam->getwb(isi_gam, NULL, NULL, NULL, imwp, imbp, NULL);
if (imwp[0] > (scwp[0] + 1e-4)
|| imbp[0] < (scbp[0] - 1e-4)) {
printf("Warning: image gamut is bigger than src colorspace!\n");
}
}
#endif
/* Intersect it with the source colorspace gamut in case */
/* something strange is going on. (mismatched appearance params ?) */
if ((si_gam = new_gamut(0.0, 0, 0)) == NULL) {
fprintf(stderr,"gamut map: new_gamut failed\n");
free(s);
return NULL;
}
si_gam->intersect(si_gam, isi_gam, sc_gam);
if (src_kbp) {
if (si_gam->getwb(si_gam, NULL, NULL, NULL, s_ga_wp, NULL, s_ga_bp)) {
fprintf(stderr,"gamut map: Unable to read source gamut white and black points\n");
free(s);
return NULL;
}
} else {
if (si_gam->getwb(si_gam, NULL, NULL, NULL, s_ga_wp, s_ga_bp, NULL)) {
fprintf(stderr,"gamut map: Unable to read source gamut white and black points\n");
free(s);
return NULL;
}
}
}
if (dst_kbp) {
if (d_gam->getwb(d_gam, NULL, NULL, NULL, d_cs_wp, NULL, d_cs_bp)) {
fprintf(stderr,"gamut map: Unable to read destination white and black points\n");
if (si_gam != sc_gam)
si_gam->del(si_gam);
free(s);
return NULL;
}
} else {
if (d_gam->getwb(d_gam, NULL, NULL, NULL, d_cs_wp, d_cs_bp, NULL)) {
fprintf(stderr,"gamut map: Unable to read destination white and black points\n");
if (si_gam != sc_gam)
si_gam->del(si_gam);
free(s);
return NULL;
}
}
#ifdef VERBOSE
if (verb) {
if (src_kbp)
printf("Using Src K only black point\n");
if (dst_kbp)
printf("Using Dst K only black point\n");
printf("Src colorspace white/black are %f %f %f, %f %f %f\n",
s_cs_wp[0], s_cs_wp[1], s_cs_wp[2], s_cs_bp[0], s_cs_bp[1], s_cs_bp[2]);
printf("Src gamut white/black are %f %f %f, %f %f %f\n",
s_ga_wp[0], s_ga_wp[1], s_ga_wp[2], s_ga_bp[0], s_ga_bp[1], s_ga_bp[2]);
printf("Dst colorspace white/black are %f %f %f, %f %f %f\n",
d_cs_wp[0], d_cs_wp[1], d_cs_wp[2], d_cs_bp[0], d_cs_bp[1], d_cs_bp[2]);
}
#endif /* VERBOSE */
/* ------------------------------------ */
/* Figure out the destination grey axis alignment */
/* This is all done using colorspace white & black points */
{
double t, svl, dvl;
double wrot[3][3]; /* Rotation about 0,0,0 to match white points */
double sswp[3], ssbp[3]; /* Temporary source white & black points */
double fawp[3], fabp[3]; /* Fully adapted destination white & black */
double hawp[3], habp[3]; /* Half (full white, not black) adapted destination w & b */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* The first task is to decide what our target destination */
/* white and black points are going to be. */
/* Figure out what our initial target destination white point is going to be: */
/* Compute source white and black points with same L value as the destination */
t = (d_cs_wp[0] - s_cs_bp[0])/(s_cs_wp[0] - s_cs_bp[0]);
for (j = 0; j < 3; j++)
sswp[j] = s_cs_bp[j] + t * (s_cs_wp[j] - s_cs_bp[j]);
t = (d_cs_bp[0] - s_cs_wp[0])/(s_cs_bp[0] - s_cs_wp[0]);
for (j = 0; j < 3; j++)
ssbp[j] = s_cs_wp[j] + t * (s_cs_bp[j] - s_cs_wp[j]);
/* The raw grey axis alignment target is a blend between the */
/* source colorspace (NOT gamut) and the destination */
/* colorspace. */
for (j = 0; j < 3; j++) {
dr_cs_wp[j] = gmi->greymf * d_cs_wp[j] + (1.0 - gmi->greymf) * sswp[j];
dr_cs_bp[j] = gmi->greymf * d_cs_bp[j] + (1.0 - gmi->greymf) * ssbp[j];
}
#ifdef VERBOSE
if (verb) {
printf("Target (blended) dst wp/bp = %f %f %f, %f %f %f\n",
dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
}
#endif /* VERBOSE */
/* Compute full adaptation target destinations */
for (j = 0; j < 3; j++) {
fawp[j] = dr_cs_wp[j]; /* White fully adapted */
fabp[j] = dr_cs_bp[j]; /* Black fully adapted */
}
/* Clip the target grey axis to the destination gamut */
if (d_gam->vector_isect(d_gam, fabp, fawp, fabp, fawp, NULL, NULL, NULL, NULL) == 0)
error("gamut: vector_isect failed!");
/* To work around the problem that vector_isect() is not entirely accurate, */
/* special case the situation where gmi->greymf == 1.0 */
if (gmi->greymf > 0.99) {
for (j = 0; j < 3; j++) {
fawp[j] = d_cs_wp[j];
fabp[j] = d_cs_bp[j];
}
}
/* If dst_kbp is set, then clipping to the dest gamut doesn't do what we want, */
/* since it extends the black to a full composite black point. */
/* A "K only" gamut is hard to define, so do a hack: */
/* scale fabp[] towards fawp[] so that it has the same L as */
/* the destination K only black point. */
if (dst_kbp && fabp[0] < d_cs_bp[0]) {
t = (d_cs_bp[0] - fawp[0])/(fabp[0] - fawp[0]);
for (j = 0; j < 3; j++)
fabp[j] = fawp[j] + t * (fabp[j] - fawp[j]);
}
/* Compute half adapted (full white, not black) target destinations */
for (j = 0; j < 3; j++)
hawp[j] = dr_cs_wp[j]; /* White fully adapted */
/* Compute the rotation matrix that maps the source white point */
/* onto the target white point. */
icmRotMat(wrot, sswp, dr_cs_wp);
/* Compute the target black point as the rotated source black point */
icmMulBy3x3(habp, wrot, s_cs_bp);
/* Now intersect the target white and black points with the destination */
/* colorspace gamut to arrive at the best possible in gamut values for */
/* the target white and black points. */
if (d_gam->vector_isect(d_gam, habp, hawp, habp, hawp, NULL, NULL, NULL, NULL) == 0)
error("gamut: vector_isect failed!");
/* To work around the problem that vector_isect() is not entirely accurate, */
/* special case the situation where gmi->greymf == 1.0 */
if (gmi->greymf > 0.99) {
for (j = 0; j < 3; j++) {
hawp[j] = d_cs_wp[j];
}
}
/* If dst_kbp is set, then clipping to the dest gamut doesn't do what we want, */
/* since it extends the black to a full composite black point. */
/* A "K only" gamut is hard to define, so do a hack: */
/* scale habp[] towards hawp[] so that it has the same L as */
/* the destination K only black point. */
if (dst_kbp && habp[0] < d_cs_bp[0]) {
t = (d_cs_bp[0] - hawp[0])/(habp[0] - hawp[0]);
for (j = 0; j < 3; j++)
habp[j] = hawp[j] + t * (habp[j] - hawp[j]);
}
/* Now decide the detail of the white and black alignment */
if (gmi->bph == gmm_BPadpt || gmi->bph == gmm_bendBP) {
/* Adapt to destination white and black */
/* Use the fully adapted white and black points */
for (j = 0; j < 3; j++) {
dr_cs_wp[j] = fawp[j];
dr_cs_bp[j] = fabp[j];
}
if (gmi->bph == gmm_bendBP) {
/* Extend the half adapted (white = dst, black = src) black point */
/* to the same L as the target (dst), to use as the initial (bent) black point */
t = (dr_cs_bp[0] - dr_cs_wp[0])/(habp[0] - dr_cs_wp[0]);
for (j = 0; j < 3; j++)
dr_be_bp[j] = dr_cs_wp[j] + t * (habp[j] - dr_cs_wp[j]);
} else {
/* Set bent black point target to be the same as our actual */
/* black point target, so that the "bend" code does nothing. */
for (j = 0; j < 3; j++)
dr_be_bp[j] = dr_cs_bp[j];
}
} else { /* Adapt to destination white but not black */
/* Use the half adapted (white = dst, black = src) white and black points */
for (j = 0; j < 3; j++) {
dr_cs_wp[j] = hawp[j];
dr_cs_bp[j] = habp[j];
}
#ifdef VERBOSE
if (verb) {
printf("Adapted target wp/bp = %f %f %f, %f %f %f\n",
dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
}
#endif
if (gmi->bph == gmm_clipBP) {
/* Extend the target black point to accommodate the */
/* bent or clipped destination space L* range */
if (fabp[0] < dr_cs_bp[0]) {
t = (fabp[0] - dr_cs_wp[0])/(dr_cs_bp[0] - dr_cs_wp[0]);
for (j = 0; j < 3; j++)
dr_cs_bp[j] = dr_cs_wp[j] + t * (dr_cs_bp[j] - d_cs_wp[j]);
}
}
/* Set the bent black point target to be the same as our actual */
/* black point target, so that the "bend" code does nothing. */
for (j = 0; j < 3; j++)
dr_be_bp[j] = dr_cs_bp[j];
}
#ifdef VERBOSE
if (verb) {
printf("Adapted & extended tgt wp/bp = %f %f %f, %f %f %f\n",
dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
}
#endif /* VERBOSE */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Now we need to figure out what origin alignment is needed, as well as */
/* making sure the vectors are the same length to avoid rescaling. */
/* (Scaling is meant to be done with the L curve though.) */
/* Create temporary source white point that has the same L as the */
/* target destination white point. */
t = (dr_cs_wp[0] - s_cs_bp[0])/(s_cs_wp[0] - s_cs_bp[0]);
for (j = 0; j < 3; j++)
sswp[j] = s_cs_bp[j] + t * (s_cs_wp[j] - s_cs_bp[j]);
/* Create temporary source black point that will form a vector to the src white */
/* point with same length as the target destination black->white vector. */
for (svl = dvl = 0.0, j = 0; j < 3; j++) {
double tt;
tt = sswp[j] - s_cs_bp[j];
svl += tt * tt;
tt = dr_cs_wp[j] - dr_cs_bp[j];
dvl += tt * tt;
}
svl = sqrt(svl);
dvl = sqrt(dvl);
for (j = 0; j < 3; j++)
ssbp[j] = sswp[j] + dvl/svl * (s_cs_bp[j] - sswp[j]);
#ifdef VERBOSE
if (verb) {
printf("Rotate matrix src wp/bp = %f %f %f, %f %f %f\n",
sswp[0], sswp[1], sswp[2], ssbp[0], ssbp[1], ssbp[2]);
printf("Rotate matrix dst wp/bp = %f %f %f, %f %f %f\n",
dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
}
#endif /* VERBOSE */
/* Now create the general rotation and translation to map the source grey */
/* axis to our destination grey axis. */
icmVecRotMat(s->grot, sswp, ssbp, dr_cs_wp, dr_cs_bp);
/* And create the inverse as well: */
icmVecRotMat(s->igrot, dr_cs_wp, dr_cs_bp, sswp, ssbp);
/* Create rotated versions of source colorspace & image white and */
/* black points for use from now on, given that rotation will */
/* be applied first to all source points. */
icmMul3By3x4(sr_cs_wp, s->grot, s_cs_wp);
icmMul3By3x4(sr_cs_bp, s->grot, s_cs_bp);
icmMul3By3x4(sr_ga_wp, s->grot, s_ga_wp);
icmMul3By3x4(sr_ga_bp, s->grot, s_ga_bp);
#ifdef VERBOSE
if (verb) {
printf("Bend target bp = %f %f %f\n",
dr_be_bp[0], dr_be_bp[1], dr_be_bp[2]);
printf("Rotated source grey axis wp/bp %f %f %f, %f %f %f\n",
sr_cs_wp[0], sr_cs_wp[1], sr_cs_wp[2], sr_cs_bp[0], sr_cs_bp[1], sr_cs_bp[2]);
printf("Rotated gamut grey axis wp/bp %f %f %f, %f %f %f\n",
sr_ga_wp[0], sr_ga_wp[1], sr_ga_wp[2], sr_ga_bp[0], sr_ga_bp[1], sr_ga_bp[2]);
printf("Destination axis target wp/bp %f %f %f, %f %f %f\n",
dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
}
#endif
}
#ifdef NEVER
sr_cs_wp[0] = 100.0;
sr_cs_bp[0] = 30.0;
dr_cs_wp[0] = 80.0;
dr_cs_bp[0] = 10.0;
glumknf = 1.0;
#endif /* NEVER */
/* Create the mapping points needed to build the 1D L mapping rspl. */
/* If we have a gamut (ie. image) range that is smaller than the */
/* L range of the colorspace, then use its white and black L values */
/* as the source to be compressed to the destination L range. */
/* We expand only a colorspace range, not an image gamut range. */
{
double swL, dwL; /* Source and destination white point L */
double sbL, dbL; /* Source and destination black point L */
int j;
double t;
/* Setup white point mapping */
if (sr_cs_wp[0] <= dr_cs_wp[0]) { /* Needs possible expansion */
swL = sr_cs_wp[0];
dwL = gmi->glumwexf * dr_cs_wp[0] + (1.0 - gmi->glumwexf) * sr_cs_wp[0];
} else {
if (sr_cs_wp[0] > dr_cs_wp[0]) { /* Colorspace needs compression */
swL = (1.0 - gmi->glumwcpf) * dr_cs_wp[0] + gmi->glumwcpf * sr_cs_wp[0];
dwL = dr_cs_wp[0];
} else { /* Neither needed */
swL = sr_cs_wp[0];
dwL = sr_cs_wp[0];
}
}
/* Setup black point mapping */
if (sr_cs_bp[0] >= dr_cs_bp[0]) { /* Needs possible expansion */
sbL = sr_cs_bp[0];
dbL = gmi->glumbexf * dr_cs_bp[0] + (1.0 - gmi->glumbexf) * sr_cs_bp[0];
} else {
if (sr_cs_bp[0] < dr_cs_bp[0]) { /* Colorspace needs compression */
sbL = (1.0 - gmi->glumbcpf) * dr_cs_bp[0] + gmi->glumbcpf * sr_cs_bp[0];
dbL = dr_cs_bp[0];
} else { /* Neither needed */
sbL = sr_cs_bp[0];
dbL = sr_cs_bp[0];
}
}
#ifdef PLOT_LMAP
printf("sbL = %f, swL = %f\n",sbL,swL);
printf("dbL = %f, dwL = %f\n",dbL,dwL);
#endif
/* Remember our source and destination mapping targets */
/* so that we can use them for fine tuning later. */
/* We scale the source and target white and black */
/* points to match the L values of the source and destination */
/* L curve mapping, as this is how we have chosen the */
/* white and black point mapping for the link. */
/* Put them back in pre-rotated space, so that we can */
/* check the overall transform of the white and black points. */
t = (swL - sr_cs_bp[0])/(sr_cs_wp[0] - sr_cs_bp[0]);
for (j = 0; j < 3; j++)
s_mt_wp[j] = sr_cs_bp[j] + t * (sr_cs_wp[j] - sr_cs_bp[j]);
icmMul3By3x4(s_mt_wp, s->igrot, s_mt_wp);
t = (sbL - sr_cs_wp[0])/(sr_cs_bp[0] - sr_cs_wp[0]);
for (j = 0; j < 3; j++)
s_mt_bp[j] = sr_cs_wp[j] + t * (sr_cs_bp[j] - sr_cs_wp[j]);
//printf("~1 check black point rotated = %f %f %f\n",s_mt_bp[0],s_mt_bp[1],s_mt_bp[2]);
icmMul3By3x4(s_mt_bp, s->igrot, s_mt_bp);
//printf("~1 check black point prerotated = %f %f %f\n",s_mt_bp[0],s_mt_bp[1],s_mt_bp[2]);
t = (dwL - dr_cs_bp[0])/(dr_cs_wp[0] - dr_cs_bp[0]);
for (j = 0; j < 3; j++)
d_mt_wp[j] = dr_cs_bp[j] + t * (dr_cs_wp[j] - dr_cs_bp[j]);
for (j = 0; j < 3; j++)
d_mt_bp[j] = dr_cs_wp[j] + t * (dr_cs_bp[j] - dr_cs_wp[j]);
/* To ensure symetry between compression and expansion, always create RSPL for */
/* overall compression and its inverse, and then swap grey and igrey rspl to compensate. */
/* We swap the source and desitination white and black points to achieve this. */
/* Note that we could still have expansion at one end or the other, depending */
/* on the center point location, so we need to allow for this in the rspl setup. */
if ((dwL - dbL) > (swL - sbL)) {
double tt;
tt = swL; swL = dwL; dwL = tt;
tt = sbL; sbL = dbL; dbL = tt;
revrspl = 1;
}
/* White point end */
lpnts[ngreyp].p[0] = swL;
lpnts[ngreyp].v[0] = dwL;
lpnts[ngreyp++].w = 10.0; /* Must go through here */
/* Black point end */
lpnts[ngreyp].p[0] = sbL;
lpnts[ngreyp].v[0] = dbL;
lpnts[ngreyp++].w = 10.0; /* Must go through here */
#ifndef USE_GLUMKNF
/* make sure curve is firmly anchored */
lpnts[ngreyp].p[0] = 0.3 * lpnts[ngreyp-1].p[0] + 0.7 * lpnts[ngreyp-2].p[0];
lpnts[ngreyp].v[0] = 0.3 * lpnts[ngreyp-1].v[0] + 0.7 * lpnts[ngreyp-2].v[0];
lpnts[ngreyp++].w = 1.0;
lpnts[ngreyp].p[0] = 0.7 * lpnts[ngreyp-2].p[0] + 0.3 * lpnts[ngreyp-3].p[0];
lpnts[ngreyp].v[0] = 0.7 * lpnts[ngreyp-2].v[0] + 0.3 * lpnts[ngreyp-3].v[0];
lpnts[ngreyp++].w = 1.0;
#else /* USE_GLUMKNF */
{
double cppos = 0.50; /* [0.50] Center point ratio between black and white */
double cpll, cplv; /* Center point location and value */
double kpwpos = 0.30; /* [0.30] White knee point location prop. towards center */
double kpbpos = 0.15; /* [0.15] Black knee point location prop. towards center */
double kwl, kbl, kwv, kbv; /* Knee point values and locations */
double kwx, kbx; /* Knee point extra */
#ifdef PLOT_LMAP
printf("%ssbL = %f, swL = %f\n", revrspl ? "(swapped) ": "", sbL,swL);
printf("%sdbL = %f, dwL = %f\n", revrspl ? "(swapped) ": "", dbL,dwL);
#endif
/* Center point location. Make lightly weighted */
/* center the perceptual source, to try and maintain */
/* the absolute source grey in the output, while */
/* still allowing some of the knee compression/expansion to creep */
/* into the other half. */
cpll = cppos * (swL - sbL) + sbL;
cplv = cppos * (swL - sbL) + sbL;
#ifdef PLOT_LMAP
printf("cpll = %f, cplv = %f\n",cpll, cplv);
#endif
/* Add weakish center point */
lpnts[ngreyp].p[0] = cpll;
lpnts[ngreyp].v[0] = cplv;
lpnts[ngreyp++].w = 0.5;
//printf("~1 black half diff = %f\n",dbL - sbL);
//printf("~1 white half diff = %f\n",dwL - swL);
/* Knee point locations */
kwl = kpwpos * (cplv - swL) + swL;
kbl = kpbpos * (cplv - sbL) + sbL;
/* Extra compression for white and black knees */
// ~~ ie move knee point level beyond 45 degree line
// ~~ weigting of black point and white point differences
kwx = 0.6 * (dbL - sbL) + 1.0 * (swL - dwL);
kbx = 1.0 * (dbL - sbL) + 0.6 * (swL - dwL);
//kwx = 0.0;
//kbx = 0.0;
//glumknf = 0.0;
/* Knee point values */
kwv = (dwL + kwx - cplv) * (kwl - cplv)/(swL - cplv) + cplv;
if (kwv > dwL) /* Sanity check */
kwv = dwL;
kbv = (dbL - kbx - cplv) * (kbl - cplv)/(sbL - cplv) + cplv;
if (kbv < dbL) /* Sanity check */
kbv = dbL;
#ifdef PLOT_LMAP
printf("using kbl = %f, kbv = %f\n",kbl, kbv);
printf("using kwl = %f, kwv = %f\n",kwl, kwv);
#endif
/* Emphasise points to cause white "knee" curve */
lpnts[ngreyp].p[0] = kwl;
lpnts[ngreyp].v[0] = kwv;
lpnts[ngreyp++].w = gmi->glumknf * gmi->glumknf;
/* Emphasise points to cause black "knee" curve */
lpnts[ngreyp].p[0] = kbl;
lpnts[ngreyp].v[0] = kbv;
lpnts[ngreyp++].w = 1.5 * gmi->glumknf * 1.5 * gmi->glumknf;
}
#endif /* USE_GLUMKNF */
/* Create RSPL */
{
datai il, ih;
datao ol, oh;
double avgdev[MXDO];
int gres = 256;
/* Create a 1D rspl, that is used to */
/* form the overall L compression mapping. */
if ((s->grey = new_rspl(RSPL_NOFLAGS, 1, 1)) == NULL) /* Allocate 1D -> 1D */
error("gamut: grey new_rspl failed");
il[0] = -1.0; /* Set possible input range */
ih[0] = 101.0;
ol[0] = 0.0; /* Set normalisation output range */
oh[0] = 100.0;
#ifdef NEVER /* Dump out the L mapping points */
{
int i;
printf("1D rspl L mapping points:\n");
for (i = 0; i < ngreyp; i++)
printf("%d %f -> %f (w %f)\n",i,lpnts[i].p[0],lpnts[i].v[0],lpnts[i].w);
}
#endif
/* Create spline from the data points, with appropriate smoothness. */
avgdev[0] = GAMMAP_RSPLAVGDEV;
if (s->grey->fit_rspl_w(s->grey, GAMMAP_RSPLFLAGS, lpnts, ngreyp, il, ih, &gres, ol, oh, 5.0, avgdev, NULL)) {
fprintf(stderr,"Warning: Grey axis mapping is non-monotonic - may not be very smooth ?\n");
}
/* Fine tune the rspl, to make sure that the white and black */
/* point mapping is precise */
{
co cp;
adjust1wb cx; /* Adjustment context */
/* Lookup actual black & white */
cp.p[0] = sbL;
s->grey->interp(s->grey, &cp);
cx.awb[0] = cp.v[0];
cp.p[0] = swL;
s->grey->interp(s->grey, &cp);
cx.awb[1] = cp.v[0];
/* Set target black and white */
cx.twb[0] = dbL;
cx.twb[1] = dwL;
/* Fine tune the 3D->3D mapping */
s->grey->re_set_rspl(
s->grey, /* this */
0, /* Combination of flags */
(void *)&cx, /* Opaque function context */
adjust1_wb_func /* Function to set from */
);
#ifdef VERBOSE
if (verb) {
printf("Before tuning, L map White/Black is %f %f, should be %f %f\n",
cx.awb[1], cx.awb[0], dwL, dbL);
/* Lookup fine tuned black & white */
cp.p[0] = sbL;
s->grey->interp(s->grey, &cp);
cx.awb[0] = cp.v[0];
cp.p[0] = swL;
s->grey->interp(s->grey, &cp);
cx.awb[1] = cp.v[0];
printf("After tuning, L map White/Black is %f %f, should be %f %f\n",
cx.awb[1], cx.awb[0], dwL, dbL);
}
#endif /* VERBOSE */
}
/* Create an inverse mapping too, for reverse gamut and/or expansion. */
il[0] = -1.0; /* Set possible input range */
ih[0] = 101.0;
ol[0] = 0.0; /* Set normalisation output range */
oh[0] = 100.0;
if ((s->igrey = new_rspl(RSPL_NOFLAGS, 1, 1)) == NULL) /* Allocate 1D -> 1D */
error("gamut: igrey new_rspl failed");
/* Create it from inverse lookups of s->grey */
s->igrey->set_rspl(s->igrey, 0, (void *)s->grey, inv_grey_func, il, ih, &gres, ol, oh);
if (revrspl) { /* Swap to compensate for swapping of white and black points */
rspl *tt = s->grey;
s->grey = s->igrey;
s->igrey = tt;
}
}
}
#ifdef PLOT_LMAP
{ /* Plot the 1D mapping */
double xx[XRES];
double y1[XRES];
int i;
for (i = 0; i < XRES; i++) {
double x;
co cp; /* Conversion point */
x = sr_cs_bp[0] + (i/(double)(XRES-1)) * (sr_cs_wp[0] - sr_cs_bp[0]);
xx[i] = x;
cp.p[0] = x;
s->grey->interp(s->grey, &cp);
y1[i] = cp.v[0];
}
do_plot(xx,y1,NULL,NULL,XRES);
}
#endif /* PLOT_LMAP */
{
/* We want to rotate and then map L independently of everything else, */
/* so transform source cs & image gamuts through the rotation and L mapping */
/* before we create the surface 3D mapping from them */
/* Create L mapped versions of rotated src colorspace white/black points */
dopartialmap1(s, sl_cs_wp, s_cs_wp);
dopartialmap1(s, sl_cs_bp, s_cs_bp);
#ifdef VERBOSE
if (verb) {
printf("Mapped source grey axis wp/bp %f %f %f, %f %f %f\n",
sl_cs_wp[0], sl_cs_wp[1], sl_cs_wp[2], sl_cs_bp[0], sl_cs_bp[1], sl_cs_bp[2]);
}
#endif
/* If we were provided with a distinct source gamut hull, i.e. because */
/* we are doing a general compression/expansion, and sh_gam is an expanded/compressed */
/* destination gamut, use it for creating the nearsmth vectors */
if (sh_gam != NULL) {
scl_gam = sh_gam;
/* Map the source colorspace gamut through the L mapping */
} else {
if ((scl_gam = parttransgamut(s, sc_gam)) == NULL) {
fprintf(stderr,"gamut map: parttransgamut failed\n");
if (si_gam != sc_gam)
si_gam->del(si_gam);
free(s);
return NULL;
}
}
if (sc_gam == si_gam)
sil_gam = scl_gam;
else {
/* Map the source image gamut through the L mapping */
if ((sil_gam = parttransgamut(s, si_gam)) == NULL) {
fprintf(stderr,"gamut map: parttransgamut failed\n");
if (si_gam != sc_gam)
si_gam->del(si_gam);
free(s);
return NULL;
}
}
}
/* Create all the 3D->3D gamut mapping points and 3D rspl, */
/* if there is any compression or expansion to do. */
if (gmi->gamcpf > 1e-6 || gmi->gamexf > 1e-6) {
cow *gpnts = NULL; /* Mapping points to create gamut mapping */
int max_gpnts;
int nspts; /* Number of source gamut surface points */
int i, j;
datai il, ih;
datao ol, oh;
int gres[MXDI];
double avgdev[MXDO];
nearsmth *nsm = NULL; /* Returned list of near smooth points */
int nnsm; /* Number of near smoothed points */
double brad = 0.0; /* Black bend radius */
gammapweights xpweights[14], xlpweights[14], xsweights[14];
/* Explicit perceptial, lightnes pp. and sat. weights */
gammapweights xwh[14]; /* Structure holding blended weights */
double smooth = 1.0; /* Level of 3D RSPL smoothing, blend of psmooth and ssmooth */
vrml *wrl = NULL; /* Gamut mapping illustration (hulls + guide vectors) */
cgats *locus = NULL; /* Diagnostic locus to plot in wrl, NULL if none */
#ifdef PLOT_3DKNEES
typedef struct {
double v0[3], v1[3];
} p3dk_lpoint;
p3dk_lpoint *p3dk_locus;
int p3dk_ix = 0;
#endif /* PLOT_3DKNEES */
/* Get the maximum number of points that will be created */
nspts = near_smooth_np(NULL, scl_gam, sil_gam, d_gam, xvra, 4, surfpnts ? mapres : 0);
max_gpnts = nres + nspts;
if ((gpnts = (cow *)malloc(max_gpnts * sizeof(cow))) == NULL) {
fprintf(stderr,"gamut map: Malloc of mapping setup points failed\n");
s->grey->del(s->grey);
s->igrey->del(s->igrey);
if (sil_gam != scl_gam)
sil_gam->del(sil_gam);
if (scl_gam != sh_gam)
scl_gam->del(scl_gam);
if (si_gam != sc_gam)
si_gam->del(si_gam);
free(s);
return NULL;
}
#ifdef PLOT_3DKNEES
if ((p3dk_locus = (p3dk_lpoint *)malloc((2 * nspts) * sizeof(p3dk_lpoint))) == NULL)
error("gamut: Diagnostic array p3dk_locus malloc failed");
#endif /* PLOT_3DKNEES */
/* ------------------------------------------- */
/* Finish off the grey axis mapping by creating the */
/* grey axis 3D->3D mapping points */
/* We use 4 times the grid density, and create */
/* points that span the source colorspace (this may exceed) */
/* the source image gamut, and map to points outside the */
/* destination gamut) */
/* See how much to bend the black - compute the color difference. */
/* We start out in the direction of dr_be_bp at white, and at */
/* the end we bend towards the overall bp dr_cs_bp. */
/* (brad will be 0 for non gmm_bendBP because dr_be_bp dr_cs_bp */
/* Smaller brad = tighter, more obvious bend, but less black */
/* hue leaking into neutrals. */
for (brad = 0.0, i = 1; i < 3; i++) {
double tt = dr_be_bp[i] - dr_cs_bp[i];
brad += tt * tt;
}
brad = sqrt(brad);
//printf("~1 brad = %f, Bend target = %f %f %f, straight = %f %f %f\n",
//brad, dr_be_bp[0], dr_be_bp[1], dr_be_bp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
#ifdef USE_GREYMAP
for (i = 0; i < nres; i++) { /* From black to white */
double t;
double bv[3]; /* Bent (initial) destination value */
double dv[3]; /* Straight (final) destination value */
double wt = 1.0; /* Default grey axis point weighting */
/* Create source grey axis point */
t = i/(nres - 1.0);
#ifdef NEVER
/* Cover L = 0.0 to 100.0 */
t = ((100.0 * t) - sl_cs_bp[0])/(sl_cs_wp[0] - sl_cs_bp[0]);
#endif
for (j = 0; j < 3; j++)
gpnts[ngamp].p[j] = sl_cs_bp[j] + t * (sl_cs_wp[j] - sl_cs_bp[j]);
/* L values are the same, as they have been mapped prior to 3D */
gpnts[ngamp].v[0] = gpnts[ngamp].p[0];
/* Figure destination point on initial bent grey axis */
t = (gpnts[ngamp].v[0] - dr_cs_wp[0])/(dr_be_bp[0] - dr_cs_wp[0]);
for (j = 0; j < 3; j++)
bv[j] = dr_cs_wp[j] + t * (dr_be_bp[j] - dr_cs_wp[j]);
//printf("~1 t = %f, bent dest %f %f %f\n",t, bv[0], bv[1],bv[2]);
/* Figure destination point on final straight grey axis */
t = (gpnts[ngamp].v[0] - dr_cs_wp[0])/(dr_cs_bp[0] - dr_cs_wp[0]);
for (j = 0; j < 3; j++)
dv[j] = dr_cs_wp[j] + t * (dr_cs_bp[j] - dr_cs_wp[j]);
//printf("~1 t = %f, straight dest %f %f %f\n",t, dv[0], dv[1],dv[2]);
/* Figure out a blend value between the bent value */
/* and the straight value, so that it curves smoothly from */
/* one to the other. */
if (brad > 0.001) {
double ty;
t = ((dr_cs_bp[0] + brad) - gpnts[ngamp].v[0])/brad;
if (t < 0.0)
t = 0.0;
else if (t > 1.0)
t = 1.0;
/* Make it a spline ? */
t = t * t * (3.0 - 2.0 * t);
ty = t * t * (3.0 - 2.0 * t); /* spline blend value */
t = (1.0 - t) * ty + t * t; /* spline at t == 0, linear at t == 1 */
wt *= (1.0 + t * brad); /* Increase weighting with the bend */
} else {
t = 0.0; /* stick to straight, it will be close anyway. */
}
for (j = 0; j < 3; j++) /* full straight when t == 1 */
gpnts[ngamp].v[j] = t * dv[j] + (1.0 - t) * bv[j];
gpnts[ngamp].w = wt;
//printf("~1 t = %f, blended %f %f %f\n",t, gpnts[ngamp].v[0], gpnts[ngamp].v[1],gpnts[ngamp].v[2]);
#ifdef DUMP_GREY_AXIS_POINTS
printf("Grey axis %d maps %f %f %f -> %f %f %f wit %f\n",ngamp,
gpnts[ngamp].p[0], gpnts[ngamp].p[1], gpnts[ngamp].p[2],
gpnts[ngamp].v[0], gpnts[ngamp].v[1], gpnts[ngamp].v[2],
gpnts[ngamp].w);
#endif
ngamp++;
if (ngamp >= max_gpnts)
error("gammap: internal, not enough space for mapping points A (%d > %d)\n",ngamp, max_gpnts);
}
#endif /* USE_GREYMAP */
/* ---------------------------------------------------- */
/* Do preliminary computation of the rspl input and output bounding values */
for (j = 0; j < 3; j++) {
il[j] = ol[j] = 1e60;
ih[j] = oh[j] = -1e60;
}
/* From grey axis points */
for (i = 0; i < ngamp; i++) {
for (j = 0; j < 3; j++) {
if (gpnts[i].p[j] < il[j])
il[j] = gpnts[i].p[j];
if (gpnts[i].p[j] > ih[j])
ih[j] = gpnts[i].p[j];
}
}
/* From the source gamut */
{
double tmx[3], tmn[3];
scl_gam->getrange(scl_gam, tmn, tmx);
for (j = 0; j < 3; j++) {
if (tmn[j] < il[j])
il[j] = tmn[j];
if (tmx[j] > ih[j])
ih[j] = tmx[j];
}
}
/* from input arguments override */
if (mn != NULL && mx != NULL) {
for (j = 0; j < 3; j++) {
if (mn[j] < il[j])
il[j] = mn[j];
if (mx[j] > ih[j])
ih[j] = mx[j];
}
}
/* From the destination gamut */
{
double tmx[3], tmn[3];
d_gam->getrange(d_gam, tmn, tmx);
for (j = 0; j < 3; j++) {
if (tmn[j] < ol[j])
ol[j] = tmn[j];
if (tmx[j] > oh[j])
oh[j] = tmx[j];
}
}
/* ---------------------------------------------------- */
/* Deal with gamut hull guide vector creation. */
/* For compression, create a mapping for each vertex of */
/* the source gamut (image) surface towards the destination gamut */
/* For expansion, do the opposite. */
/* Convert from compact to explicit hextant weightings */
if (expand_weights(xpweights, pweights)
|| expand_weights(xlpweights, lpweights)
|| expand_weights(xsweights, sweights)) {
fprintf(stderr,"gamut map: expand_weights() failed\n");
s->grey->del(s->grey);
s->igrey->del(s->igrey);
if (sil_gam != scl_gam)
sil_gam->del(sil_gam);
if (scl_gam != sh_gam)
scl_gam->del(scl_gam);
if (si_gam != sc_gam)
si_gam->del(si_gam);
free(s);
return NULL;
}
/* Create weights as blend between perceptual, lightness pp. and saturation */
near_xwblend3(xwh, xpweights, gmi->gampwf, xlpweights, gmi->gamlpwf,
xsweights, gmi->gamswf);
if ((gmi->gampwf + gmi->gamlpwf + gmi->gamswf) > 0.1)
smooth = (gmi->gampwf * psmooth) + (gmi->gamlpwf * lpsmooth) + (gmi->gamswf * ssmooth);
/* Tweak gamut mappings according to extra cmy cusp flags or rel override */
if (dst_cmymap != 0 || rel_oride != 0) {
tweak_weights(xwh, dst_cmymap, rel_oride);
}
/* Create the near point mapping, which is our fundamental gamut */
/* hull to gamut hull mapping. */
nsm = near_smooth(verb, &nnsm, scl_gam, sil_gam, d_gam, src_kbp, dst_kbp,
dr_cs_bp, xwh, gmi->gamcknf, gmi->gamxknf,
gmi->gamcpf > 1e-6, gmi->gamexf > 1e-6,
xvra, mapres, smooth, 1.10, surfpnts, il, ih, ol, oh);
if (nsm == NULL) {
fprintf(stderr,"Creating smoothed near points failed\n");
s->grey->del(s->grey);
s->igrey->del(s->igrey);
if (sil_gam != scl_gam)
sil_gam->del(sil_gam);
if (scl_gam != sh_gam)
scl_gam->del(scl_gam);
if (si_gam != sc_gam)
si_gam->del(si_gam);
free(s);
return NULL;
}
/* ---------------------------------------------------- */
/* Setup for diagnostic plot, that will have elements added */
/* as we create the final 3D gamut mapping rspl */
/* (The plot is of the already rotated and L mapped source space) */
{
int doaxes = 0;
#ifdef PLOT_AXES
doaxes = 1;
#endif
if (diagname != NULL)
wrl = new_vrml(diagname, doaxes, vrml_lab);
#ifdef PLOT_DIAG_WRL
else
wrl = new_vrml("gammap", doaxes, vrml_lab);
#endif
}
if (wrl != NULL) {
/* See if there is a diagnostic locus to plot too */
if ((locus = new_cgats()) == NULL)
error("Failed to create cgats object");
locus->add_other(locus, "TS");
if (locus->read_name(locus, "locus.ts")) {
locus->del(locus);
locus = NULL;
} else {
if (verb)
printf("!! Found diagnostic locus.ts file !!\n");
/* locus will be added later */
}
/* Add diagnostic markers from markers structure */
for (i = 0; ; i++) {
double pp[3];
co cp;
if (markers[i].type == 0)
break;
if (markers[i].type == 1) { /* Src point - do luminance mapping */
dopartialmap1(s, pp, markers[i].pos);
} else {
pp[0] = markers[i].pos[0];
pp[1] = markers[i].pos[1];
pp[2] = markers[i].pos[2];
}
wrl->add_marker(wrl, pp, markers[i].col, 1.0);
}
}
/* --------------------------- */
/* Now computue our 3D mapping points from the near point mapping. */
for (i = 0; i < nnsm; i++) {
double cpexf; /* The effective compression or expansion factor */
/* Grid surface point */
if (nsm[i].uflag != 0) {
cpexf = gmi->gamcpf; /* Assume compression */
/* Guide vector */
} else {
if (nsm[i].vflag == 0) { /* Unclear whether compression or expansion */
/* Use larger to the the two factors */
cpexf = gmi->gamcpf > gmi->gamexf ? gmi->gamcpf : gmi->gamexf;
} else if (nsm[i].vflag == 1) { /* Compression */
cpexf = gmi->gamcpf;
} else if (nsm[i].vflag == 2) { /* Expansion */
cpexf = gmi->gamexf;
} else {
error("gammap: internal, unknown guide point flag");
}
}
/* Compute destination value which is a blend */
/* between the source value and the fully mapped destination value. */
icmBlend3(nsm[i].div, nsm[i].sv, nsm[i].dv, cpexf);
#ifdef NEVER
printf("%s mapping:\n",nsm[i].vflag == 0 ? "Unclear" : nsm[i].vflag == 1 ? "Compression" : "Expansion");
printf("Src point = %f %f %f radius %f\n",nsm[i].sv[0], nsm[i].sv[1], nsm[i].sv[2], nsm[i].sr);
printf("Dst point = %f %f %f radius %f\n",nsm[i].dv[0], nsm[i].dv[1], nsm[i].dv[2], nsm[i].dr);
printf("Blended dst point = %f %f %f\n",nsm[i].div[0], nsm[i].div[1], nsm[i].div[2]);
#endif /* NEVER */
/* Set the main gamut hull mapping point */
for (j = 0; j < 3; j++) {
gpnts[ngamp].p[j] = nsm[i].sv[j];
gpnts[ngamp].v[j] = nsm[i].div[j];
}
gpnts[ngamp++].w = nsm[i].w1; /* 1.01 for guide vectors, less for grid surface */
if (ngamp >= max_gpnts)
error("gammap: internal, not enough space for mapping points B (%d > %d)\n",ngamp, max_gpnts);
#ifdef USE_GAMKNF
/* Add sub surface mapping point if available */
if (nsm[i].uflag == 0 && nsm[i].vflag != 0) { /* Sub surface point is available */
/* Compute destination value which is a blend */
/* between the source value and the knee adjusted destination */
icmBlend3(nsm[i].div2, nsm[i].sv2, nsm[i].dv2, cpexf);
#ifdef NEVER
printf("Src2 point = %f %f %f radius %f\n",nsm[i].sv2[0], nsm[i].sv2[1], nsm[i].sv2[2], nsm[i].sr);
printf("Dst2 point = %f %f %f radius %f\n",nsm[i].dv2[0], nsm[i].dv2[1], nsm[i].dv2[2], nsm[i].dr);
printf("Blended dst2 point = %f %f %f\n",nsm[i].div2[0], nsm[i].div2[1], nsm[i].div2[2]);
printf("Src/Dst3 point = %f %f %f w %f\n",nsm[i].sd2[0], nsm[i].sd2[1], nsm[i].sd2[2]);
printf("\n");
#endif /* NEVER */
/* Set the sub-surface gamut hull mapping point */
for (j = 0; j < 3; j++) {
gpnts[ngamp].p[j] = nsm[i].sv2[j];
gpnts[ngamp].v[j] = nsm[i].div2[j];
}
gpnts[ngamp++].w = nsm[i].w2; /* Sub-suface mapping points */
if (ngamp >= max_gpnts)
error("gammap: internal, not enough space for mapping points C (%d > %d)\n",ngamp, max_gpnts);
/* Set the sub-surface gamut hull mapping point */
for (j = 0; j < 3; j++) {
gpnts[ngamp].p[j] = nsm[i].sd3[j];
gpnts[ngamp].v[j] = nsm[i].sd3[j];
}
gpnts[ngamp++].w = nsm[i].w3; /* Sub-suface mapping points */
if (ngamp >= max_gpnts)
error("gammap: internal, not enough space for mapping points D (%d > %d)\n",ngamp, max_gpnts);
}
#endif /* USE_GAMKNF */
}
if (ngamp >= max_gpnts)
error("gammap: internal, not enough space for mapping points (%d > %d)\n",ngamp, max_gpnts);
/* --------------------------- */
/* Compute the output bounding values, and check input range hasn't changed */
for (i = 0; i < ngamp; i++) {
for (j = 0; j < 3; j++) {
if (gpnts[i].p[j] < (il[j]-1e-5) || gpnts[i].p[j] > (ih[j]+1e-5))
warning("gammap internal: input bounds has changed! %f <> %f <> %f",il[j],gpnts[i].p[j],ih[j]);
if (gpnts[i].v[j] < ol[j])
ol[j] = gpnts[i].v[j];
if (gpnts[i].v[j] > oh[j])
oh[j] = gpnts[i].v[j];
}
}
/* --------------------------- */
#ifdef NEVER /* Dump out all the mapping points */
{
for (i = 0; i < ngamp; i++) {
printf("%d: %f %f %f -> %f %f %f\n",i,
gpnts[i].p[0], gpnts[i].p[1], gpnts[i].p[2],
gpnts[i].v[0], gpnts[i].v[1], gpnts[i].v[2]);
}
}
#endif
/* Create the final gamut mapping rspl. */
/* [ How about converting to a delta filer ? ie. */
/* create current filter, then create point list of delta from */
/* smoothed value, filtering that and then un-deltering it ?? ] */
if (s->map != NULL)
s->map->del(s->map);
if (verb)
printf("Creating rspl..\n");
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
gres[j] = mapres;
avgdev[j] = GAMMAP_RSPLAVGDEV;
}
s->map = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */
if (s->map->fit_rspl_w(s->map, GAMMAP_RSPLFLAGS, gpnts, ngamp, il, ih, gres, ol, oh, smooth, avgdev, NULL)) {
if (verb)
fprintf(stderr,"Warning: Gamut mapping is non-monotonic - may not be very smooth !\n");
}
/* return the min and max of the input values valid in the grid */
s->map->get_in_range(s->map, s->imin, s->imax);
#ifdef CHECK_NEARMAP
/* Check how accurate gamut shell mapping is against nsm */
/* (This isn't a good indication now that vectors have been adjusted */
/* to counteract the rspl smoothing at the edges.) */
if (verb) {
double de, avgde = 0.0, maxde = 0.0, num = 0.0; /* DE stats */
for (i = 0; i < nnsm; i++) {
double av[3];
if (nsm[i].uflag != 0) /* Ignore grid boundary points */
continue;
/* Compute the mapping error */
dopartialmap2(s, av, nsm[i].sv); /* Just the rspl */
de = icmLabDE(nsm[i].div, av);
avgde += de;
num++;
if (de > maxde)
maxde = de;
}
printf("Gamut hull fit to guides: = avg %f, max %f\n",avgde/num,maxde);
}
#endif /* CHECK_NEARMAP */
/* If requested, enhance the saturation of the output values. */
if (gmi->satenh > 0.0) {
adjustsat cx; /* Adjustment context */
/* Compute what our source white and black points actually maps to */
s->domap(s, cx.wp, s_mt_wp);
s->domap(s, cx.bp, s_mt_bp);
cx.dst = d_gam;
cx.satenh = gmi->satenh;
/* Saturation enhance the output values */
s->map->re_set_rspl(
s->map, /* this */
0, /* Combination of flags */
(void *)&cx, /* Opaque function context */
adjust_sat_func /* Function to set from */
);
}
/* Test the gamut white and black point mapping, and "fine tune" */
/* the mapping, to ensure an accurate transform of the white */
/* and black points to the destination colorspace. */
/* This compensates for any inacuracy introduced in the */
/* various rspl mappings. */
{
adjustwb cx; /* Adjustment context */
double a_wp[3]; /* actual white point */
double a_bp[3]; /* actual black point */
if (verb)
printf("Fine tuning white and black point mapping\n");
/* Check what the source white and black points actually maps to */
s->domap(s, a_wp, s_mt_wp);
s->domap(s, a_bp, s_mt_bp);
#ifdef VERBOSE
if (verb) {
printf("White is %f %f %f, should be %f %f %f\n",
a_wp[0], a_wp[1], a_wp[2], d_mt_wp[0], d_mt_wp[1], d_mt_wp[2]);
printf("Black is %f %f %f, should be %f %f %f\n",
a_bp[0], a_bp[1], a_bp[2], d_mt_bp[0], d_mt_bp[1], d_mt_bp[2]);
}
#endif /* VERBOSE */
/* Setup the fine tune transform */
/* We've decided not to fine tune the black point if we're */
/* bending to the destination black, as the bend is not */
/* followed perfectly (too sharp, or in conflict with */
/* the surface mapping ?) and we don't want to shift */
/* mid neutrals due to this. */
/* We do fine tune it if dst_kbp is set though, since */
/* we would like perfect K only out. */
/* Compute rotation/scale relative white point matrix */
icmVecRotMat(cx.mat, a_wp, a_bp, d_mt_wp, d_mt_bp); /* wp & bp */
/* Fine tune the 3D->3D mapping */
s->map->re_set_rspl(
s->map, /* this */
0, /* Combination of flags */
(void *)&cx, /* Opaque function context */
adjust_wb_func /* Function to set from */
);
#ifdef VERBOSE
if (verb) {
/* Check what the source white and black points actually maps to */
s->domap(s, a_wp, s_mt_wp);
s->domap(s, a_bp, s_mt_bp);
printf("After fine tuning:\n");
printf("White is %f %f %f, should be %f %f %f\n",
a_wp[0], a_wp[1], a_wp[2], d_mt_wp[0], d_mt_wp[1], d_mt_wp[2]);
printf("Black is %f %f %f, should be %f %f %f\n",
a_bp[0], a_bp[1], a_bp[2], d_mt_bp[0], d_mt_bp[1], d_mt_bp[2]);
}
#endif /* VERBOSE */
}
if (wrl != NULL) {
int arerings = 0;
double cc[3] = { 0.7, 0.7, 0.7 };
double nc[3] = { 1.0, 0.4, 0.7 }; /* Pink for neighbors */
int nix = -1; /* Index of point to show neighbour */
#ifdef SHOW_NEIGBORS
#ifdef NEVER
/* Show all neighbours */
wrl->start_line_set(wrl, 0);
for (i = 0; i < nnsm; i++) {
if (nsm[i].uflag != 0) /* Ignore grid boundary points */
continue;
for (j = 0; j < XNNB; j++) {
nearsmth *np = nsm[i].n[j]; /* Pointer to neighbor */
if (np == NULL)
break;
wrl->add_col_vertex(wrl, 0, nsm[i].sv, nc); /* Source value */
wrl->add_col_vertex(wrl, 0, np->sv, nc); /* Neighbpor value */
}
}
wrl->make_lines(wrl, 0, 2);
#else
/* Show neighbours of points near source markers */
for (i = 0; ; i++) { /* Add diagnostic markers */
double pp[3];
co cp;
int ix, bix;
double bdist = 1e6;
if (markers[i].type == 0)
break;
if (markers[i].type != 1)
continue;
/* Rotate and map marker point the same as the src gamuts */
icmMul3By3x4(pp, s->grot, markers[i].pos);
cp.p[0] = pp[0]; /* L value */
s->grey->interp(s->grey, &cp);
pp[0] = cp.v[0];
//printf("~1 looking for closest point to marker %d at %f %f %f\n",i,pp[0],pp[1],pp[2]);
/* Locate the nearest source point */
for (ix = 0; ix < nnsm; ix++) {
double dist = icmNorm33(pp, nsm[ix].sv);
if (nsm[i].uflag != 0) /* Ignore grid boundary points */
continue;
if (dist < bdist) {
bdist = dist;
bix = ix;
}
}
//printf("~1 closest src point ix %d at %f %f %f\n",bix,nsm[bix].sv[0],nsm[bix].sv[1],nsm[bix].sv[2]);
//printf("~1 there are %d neighbours\n",nsm[bix].nnb);
wrl->start_line_set(wrl, 0);
for (j = 0; j < nsm[bix].nnb; j++) {
nearsmth *np = nsm[bix].n[j].n; /* Pointer to neighbor */
wrl->add_col_vertex(wrl, 0, nsm[bix].sv, nc); /* Source value */
wrl->add_col_vertex(wrl, 0, np->sv, nc); /* Neighbpor value */
}
wrl->make_lines(wrl, 0, 2);
}
#endif
#endif /* SHOW_NEIGBORS */
/* Add the source and dest gamut surfaces */
#ifdef PLOT_SRC_GMT
wrl->make_gamut_surface_2(wrl, sil_gam, 0.6, 0, cc); /* Grey */
#endif /* PLOT_SRC_GMT */
#ifdef PLOT_DST_GMT
cc[0] = -1.0;
wrl->make_gamut_surface(wrl, d_gam, 0.3, cc); /* Natural color */
#endif /* PLOT_DST_GMT */
#ifdef PLOT_DIGAM
if (nsm[0].dgam == NULL)
error("Need to #define PLOT_DIGAM in nearsmth.c!");
cc[0] = -1.0;
wrl->make_gamut_surface(wrl, nsm[0].dgam, 0.2, cc);
#endif /* PLOT_DIGAM */
#ifdef PLOT_SRC_CUSPS
wrl->add_cusps(wrl, sil_gam, 0.6, NULL);
#endif /* PLOT_SRC_CUSPS */
#ifdef PLOT_DST_CUSPS
wrl->add_cusps(wrl, d_gam, 0.3, NULL);
#endif /* PLOT_DST_CUSPS */
#ifdef PLOT_TRANSSRC_CUSPS
/* Add transformed source cusp markers */
{
int i;
double cusps[6][3];
double ccolors[6][3] = {
{ 1.0, 0.1, 0.1 }, /* Red */
{ 1.0, 1.0, 0.1 }, /* Yellow */
{ 0.1, 1.0, 0.1 }, /* Green */
{ 0.1, 1.0, 1.0 }, /* Cyan */
{ 0.1, 0.1, 1.0 }, /* Blue */
{ 1.0, 0.1, 1.0 } /* Magenta */
};
if (sc_gam->getcusps(sc_gam, cusps) == 0) {
for (i = 0; i < 6; i++) {
double val[3];
s->domap(s, val, cusps[i]);
wrl->add_marker(wrl, val, ccolors[i], 2.5);
}
}
}
#endif
#if defined(SHOW_MAP_VECTORS) || defined(SHOW_SUB_SURF) || defined(SHOW_ACTUAL_VECTORS) || defined(SHOW_ACTUAL_VEC_DIFF)
/* Start of guide vector plot */
wrl->start_line_set(wrl, 0);
for (i = 0; i < nnsm; i++) {
double cpexf; /* The effective compression or expansion factor */
double yellow[3] = { 1.0, 1.0, 0.0 };
double red[3] = { 1.0, 0.0, 0.0 };
double green[3] = { 0.0, 1.0, 0.0 };
double lgrey[3] = { 0.8, 0.8, 0.8 };
double purp[3] = { 0.6, 0.0, 1.0 };
double blue[3] = { 0.2, 0.2, 1.0 };
double *ccc;
double mdst[3];
if (nsm[i].uflag != 0) /* Ignore grid boundary points */
continue;
#if defined(SHOW_ACTUAL_VECTORS) || defined(SHOW_ACTUAL_VEC_DIFF)
# ifdef SHOW_ACTUAL_VECTORS
wrl->add_col_vertex(wrl, 0, nsm[i].sv, yellow);
# else /* SHOW_ACTUAL_VEC_DIFF */
wrl->add_col_vertex(wrl, 0, nsm[i].div, yellow);
# endif
dopartialmap2(s, mdst, nsm[i].sv);
wrl->add_col_vertex(wrl, 0, mdst, red);
#else
# ifdef SHOW_MAP_VECTORS
ccc = yellow;
if (nsm[i].gflag == 0)
ccc = green; /* Mark "no clear direction" vectors in green->red */
# ifdef SHOW_CUSPMAP
wrl->add_col_vertex(wrl, 0, nsm[i].csv, ccc); /* Cusp mapped source value */
# else
wrl->add_col_vertex(wrl, 0, nsm[i].sv, ccc); /* Source value */
# endif
wrl->add_col_vertex(wrl, 0, nsm[i].div, red); /* Blended destination value */
# endif /* SHOW_MAP_VECTORS */
# ifdef SHOW_SUB_SURF
if (nsm[i].vflag != 0) { /* Sub surface point is available */
wrl->add_col_vertex(wrl, 0, nsm[i].sv2, lgrey); /* Subs-surf Source value */
wrl->add_col_vertex(wrl, 0, nsm[i].div2, purp); /* Blended destination value */
}
# endif /* SHOW_SUB_SURF */
#endif /* !SHOW_ACTUAL_VECTORS */
}
wrl->make_lines(wrl, 0, 2); /* Guide vectors */
#endif /* Show vectors */
#if defined(SHOW_VECTOR_INDEXES) || defined(SHOW_SUB_PNTS)
for (i = 0; i < nnsm; i++) {
if (nsm[i].uflag != 0) /* Ignore grid boundary points */
continue;
#ifdef SHOW_VECTOR_INDEXES
{
double cream[3] = { 0.7, 0.7, 0.5 };
char buf[100];
sprintf(buf, "%d", i);
wrl->add_text(wrl, buf, nsm[i].sv, cream, 0.5);
}
#endif /* SHOW_VECTOR_INDEXES */
# ifdef SHOW_SUB_PNTS
if (nsm[i].vflag != 0) { /* Sub surface point is available */
double red[3] = { 1.0, 0.0, 0.0 };
double green[3] = { 0.0, 1.0, 0.0 };
double yellow[3] = { 1.0, 1.0, 0.0 };
wrl->add_marker(wrl, nsm[i].sv2, red, 1.0); /* Subs-surf Source value */
wrl->add_marker(wrl, nsm[i].div2, green, 1.0); /* Blended destination value */
wrl->add_marker(wrl, nsm[i].sd3, yellow, 1.0); /* Deep sub-surface point */
}
# endif /* SHOW_SUB_PNTS */
}
#endif
/* add the locus from locus.ts file */
if (locus != NULL) {
int table, npoints;
char *fnames[3] = { "LAB_L", "LAB_A", "LAB_B" };
int ix[3];
double v0[3], v1[3];
double rgb[3];
/* Each table holds a separate locus */
for (table = 0; table < locus->ntables; table++) {
if ((npoints = locus->t[table].nsets) <= 0)
error("No sets of data in diagnostic locus");
for (j = 0; j < 3; j++) {
if ((ix[j] = locus->find_field(locus, 0, fnames[j])) < 0)
error ("Locus file doesn't contain field %s",fnames[j]);
if (locus->t[table].ftype[ix[j]] != r_t)
error ("Field %s is wrong type",fnames[j]);
}
/* Source locus */
rgb[0] = 1.0;
rgb[1] = 0.5;
rgb[2] = 0.5;
for (i = 0; i < npoints; i++) {
co cp;
for (j = 0; j < 3; j++)
v1[j] = *((double *)locus->t[table].fdata[i][ix[j]]);
/* Rotate and locus verticies the same as the src gamuts */
dopartialmap1(s, v1, v1);
if (i > 0 )
wrl->add_cone(wrl, v0, v1, rgb, 0.5);
icmAry2Ary(v0,v1);
}
/* Gamut mapped locus */
rgb[0] = 1.0;
rgb[1] = 1.0;
rgb[2] = 1.0;
for (i = 0; i < npoints; i++) {
co cp;
for (j = 0; j < 3; j++)
v1[j] = *((double *)locus->t[table].fdata[i][ix[j]]);
s->domap(s, v1, v1);
if (i > 0 )
wrl->add_cone(wrl, v0, v1, rgb, 0.5);
icmAry2Ary(v0,v1);
}
}
locus->del(locus);
locus = NULL;
}
/* Add any ring mapping diagnostics */
for (i = 0; ; i++) {
if (rings[i].type == 0)
break;
if (rings[i].type == 2)
continue;
if (rings[i].type == 1) {
double pconst;
double cpoint[3];
double mat[3][4]; /* translate to our plane */
double imat[3][4]; /* translate from our plane */
double s1[3], s0[3], t1[3];
int j;
double maxa, mina;
double maxb, minb;
if (arerings == 0) {
arerings = 1;
wrl->start_line_set(wrl, 1); /* Source ring */
wrl->start_line_set(wrl, 2); /* Destination ring */
}
if (icmNormalize3(rings[i].pnorm, rings[i].pnorm, 1.0))
error("Ring %d diagnostic plane normal failed",i);
pconst = -icmDot3(rings[i].ppoint, rings[i].pnorm);
/* Locate intersection of source neautral axis and plane */
if (icmVecPlaneIsect(cpoint, pconst, rings[i].pnorm, s_cs_wp, s_cs_bp))
error("Ring %d diagnostic center point intersection failed",i);
/* Compute the rotation and translation between */
/* a plane in ab and the plane we are using */
s0[0] = s0[1] = s0[2] = 0.0;
s1[0] = 1.0, s1[1] = s1[2] = 0.0;
t1[0] = cpoint[0] + rings[i].pnorm[0];
t1[1] = cpoint[1] + rings[i].pnorm[1];
t1[2] = cpoint[2] + rings[i].pnorm[2];
icmVecRotMat(mat, s1, s0, t1, cpoint);
icmVecRotMat(imat, t1, cpoint, s1, s0);
/* Do a min/max of a circle of vectors so as to */
/* establish an offset to the centroid for this slice */
maxa = maxb = -1e60;
mina = minb = 1e60;
for (j = 0; j < 20; j++) {
double ang = 2 * 3.1415926 * j/(20 - 1.0);
double vec[3], isect[3];
double pp[3];
co cp;
int k;
vec[0] = 0.0;
vec[1] = sin(ang);
vec[2] = cos(ang);
icmMul3By3x4(vec, mat, vec);
/* Intersect it with the source gamut */
if (sil_gam->vector_isect(sil_gam, vec, cpoint, isect,
NULL, NULL, NULL, NULL, NULL) == 0) {
continue;
}
/* Translate back to plane */
icmMul3By3x4(pp, imat, isect);
if (pp[1] > maxa)
maxa = pp[1];
if (pp[1] < mina)
mina = pp[1];
if (pp[2] > maxb)
maxb = pp[2];
if (pp[2] < minb)
minb = pp[2];
}
/* Move center to centroid of min/max box */
t1[0] = 0.0;
t1[1] = (maxa + mina) * 0.5;
t1[2] = (maxb + minb) * 0.5;
if (t1[1] < -200.0 || t1[1] > 200.0
|| t1[2] < -200.0 || t1[2] > 200.0)
error("Failed to locate centroid of slice");
icmMul3By3x4(cpoint, mat, t1);
//printf("~1 ring centroid point = %f %f %f\n", cpoint[0],cpoint[1],cpoint[2]);
/* Recompute the rotation and translation between */
/* a plane in ab and the plane we are using */
s0[0] = s0[1] = s0[2] = 0.0;
s1[0] = 1.0, s1[1] = s1[2] = 0.0;
t1[0] = cpoint[0] + rings[i].pnorm[0];
t1[1] = cpoint[1] + rings[i].pnorm[1];
t1[2] = cpoint[2] + rings[i].pnorm[2];
icmVecRotMat(mat, s1, s0, t1, cpoint);
icmVecRotMat(imat, t1, cpoint, s1, s0);
//printf("~1 generating %d ring verts\n",rings[i].nverts);
/* Create a circle of vectors in the plane from the center */
/* point, to intersect with the source gamut surface. */
/* (Duplicate start and end vertex) */
for (j = 0; j <= rings[i].nverts; j++) {
double ang = 2 * 3.1415926 * j/((double) rings[i].nverts);
double vec[3], isect[3];
double pp[3];
co cp;
int k;
vec[0] = 0.0;
vec[1] = sin(ang);
vec[2] = cos(ang);
icmMul3By3x4(vec, mat, vec);
/* Intersect it with the source gamut */
if (sil_gam->vector_isect(sil_gam, vec, cpoint, isect,
NULL, NULL, NULL, NULL, NULL) == 0) {
warning("Ring %d vect %d diagnostic vector intersect failed",i,j);
continue;
}
//printf("~1 vec %d = %f %f %f\n",j,isect[0],isect[1],isect[2]);
/* Scale them to the ratio */
for (k = 0; k < 3; k++)
vec[k] = isect[k] * rings[i].rad + (1.0 - rings[i].rad) * cpoint[k];
//printf("~1 rad vec %d = %f %f %f\n",j,vec[0],vec[1],vec[2]);
/* Transform them into rotated and scaled destination space */
dopartialmap1(s, vec, vec);
//printf("~1 trans vec %d = %f %f %f\n",j,vec[0],vec[1],vec[2]);
/* Add to plot */
wrl->add_col_vertex(wrl, 1, vec, rings[i].scol);
//printf("~1 src vec %d = %f %f %f\n",j,vec[0],vec[1],vec[2]);
/* Gamut map and add to plot */
s->domap(s, vec, vec);
//printf("~1 dst vec %d = %f %f %f\n",j,vec[0],vec[1],vec[2]);
wrl->add_col_vertex(wrl, 2, vec, rings[i].dcol);
}
wrl->make_last_vertex(wrl, 1); /* Source ring */
wrl->make_last_vertex(wrl, 2); /* Destination ring */
}
if (arerings) {
wrl->make_lines(wrl, 1, 1000000); /* Source ring */
wrl->make_lines(wrl, 2, 1000000); /* Destination ring */
}
}
wrl->del(wrl); /* Write and delete */
wrl = NULL;
}
#ifdef PLOT_3DKNEES
/* Plot one graph per 3D gamut boundary mapping point */
for (j = 0; j < p3dk_ix; j++) {
double xx[XRES];
double yy[XRES];
printf("Vector %f %f %f -> %f %f %f\n", p3dk_locus[j].v0[0], p3dk_locus[j].v0[1], p3dk_locus[j].v0[2], p3dk_locus[j].v1[0], p3dk_locus[j].v1[1], p3dk_locus[j].v1[2]);
for (i = 0; i < XRES; i++) {
double v;
co cp; /* Conversion point */
v = (i/(double)(XRES-1.0));
cp.p[0] = p3dk_locus[j].v0[0] + v * (p3dk_locus[j].v1[0] - p3dk_locus[j].v0[0]);
cp.p[1] = p3dk_locus[j].v0[1] + v * (p3dk_locus[j].v1[1] - p3dk_locus[j].v0[1]);
cp.p[2] = p3dk_locus[j].v0[2] + v * (p3dk_locus[j].v1[2] - p3dk_locus[j].v0[2]);
xx[i] = sqrt(cp.p[1] * cp.p[1] + cp.p[2] * cp.p[2]);
s->map->interp(s->map, &cp);
yy[i] = sqrt(cp.v[1] * cp.v[1] + cp.v[2] * cp.v[2]);
}
do_plot(xx,yy,NULL,NULL,XRES);
}
free(p3dk_locus);
#endif /* PLOT_3DKNEES */
free(gpnts);
free_nearsmth(nsm, nnsm);
} else if (diagname != NULL && verb) {
printf("Warning: Won't create '%s' because there is no 3D gamut mapping\n",diagname);
}
#ifdef PLOT_GAMUTS
scl_gam->write_vrml(scl_gam, "src", 1, 0);
sil_gam->write_vrml(sil_gam, "img", 1, 0);
d_gam->write_vrml(d_gam, "dst", 1, 0);
sc_gam->write_trans_vrml(sc_gam, "gmsrc", 1, 0, map_trans, s);
#endif
if (sil_gam != scl_gam)
sil_gam->del(sil_gam);
if (scl_gam != sh_gam)
scl_gam->del(scl_gam);
if (si_gam != sc_gam)
si_gam->del(si_gam);
return s;
}
#ifdef PLOT_GAMUTS
/* Debug */
static void map_trans(void *cntx, double out[3], double in[3]) {
gammap *map = (gammap *)cntx;
map->domap(map, out, in);
}
#endif
/* Object methods */
static void del_gammap(
gammap *s
) {
if (s->grey != NULL)
s->grey->del(s->grey);
if (s->igrey != NULL)
s->igrey->del(s->igrey);
if (s->map != NULL)
s->map->del(s->map);
free(s);
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Apply the gamut mapping to the given color value */
static void domap(
gammap *s,
double *out,
double *in
) {
double rin[3];
co cp;
if (s->dbg) printf("domap: got input %f %f %f\n",in[0],in[1],in[2]);
icmMul3By3x4(rin, s->grot, in); /* Rotate */
if (s->dbg) printf("domap: after rotate %f %f %f\n",rin[0],rin[1],rin[2]);
cp.p[0] = rin[0];
s->grey->interp(s->grey, &cp); /* L map */
if (s->dbg) printf("domap: after L map %f %f %f\n",cp.v[0],rin[1],rin[2]);
/* If there is a 3D->3D mapping */
if (s->map != NULL) {
int e;
/* Clip out of range a, b proportionately */
if (rin[1] < s->imin[1] || rin[1] > s->imax[1]
|| rin[2] < s->imin[2] || rin[2] > s->imax[2]) {
double as = 1.0, bs = 1.0;
if (rin[1] < s->imin[1])
as = s->imin[1]/rin[1];
else if (rin[1] > s->imax[1])
as = s->imax[1]/rin[1];
if (rin[2] < s->imin[2])
bs = s->imin[2]/rin[2];
else if (rin[2] > s->imax[2])
bs = s->imax[2]/rin[2];
if (bs < as)
as = bs;
rin[1] *= as;
rin[2] *= as;
}
cp.p[0] = cp.v[0]; /* 3D map */
cp.p[1] = rin[1];
cp.p[2] = rin[2];
s->map->interp(s->map, &cp);
for (e = 0; e < s->map->fdi; e++)
out[e] = cp.v[e];
if (s->dbg) printf("domap: after 3D map %s\n\n",icmPdv(s->map->fdi, out));
} else {
out[0] = cp.v[0];
out[1] = rin[1];
out[2] = rin[2];
}
}
/* Apply the matrix and grey mapping to the given color value */
static void dopartialmap1(
gammap *s,
double *out,
double *in
) {
double rin[3];
co cp;
icmMul3By3x4(rin, s->grot, in); /* Rotate */
cp.p[0] = rin[0];
s->grey->interp(s->grey, &cp); /* L map */
out[0] = cp.v[0];
out[1] = rin[1];
out[2] = rin[2];
}
/* Apply just the rspl mapping to the given color value */
/* (ie. to a color already rotated and L mapped) */
static void dopartialmap2(
gammap *s,
double *out,
double *in
) {
co cp;
/* If there is a 3D->3D mapping */
if (s->map != NULL) {
int e;
icmCpy3(cp.p, in);
/* Clip out of range a, b proportionately */
if (cp.p[1] < s->imin[1] || cp.p[1] > s->imax[1]
|| cp.p[2] < s->imin[2] || cp.p[2] > s->imax[2]) {
double as = 1.0, bs = 1.0;
if (cp.p[1] < s->imin[1])
as = s->imin[1]/cp.p[1];
else if (cp.p[1] > s->imax[1])
as = s->imax[1]/cp.p[1];
if (cp.p[2] < s->imin[2])
bs = s->imin[2]/cp.p[2];
else if (cp.p[2] > s->imax[2])
bs = s->imax[2]/cp.p[2];
if (bs < as)
as = bs;
cp.p[1] *= as;
cp.p[2] *= as;
}
s->map->interp(s->map, &cp);
icmCpy3(out, cp.v);
} else {
icmCpy3(out, in);
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* powell function - minimise error to target */
static double invgmfunc(
void *fdata,
double *tp
) {
gammap *s = (gammap *)fdata;
int i;
double gmv[3];
double tt, rv = 0.0;
domap(s, gmv, tp);
for (i = 0; i < 3; i++) {
double tt = gmv[i] - s->tv[i];
rv += tt * tt;
}
return rv;
}
/* Invert a gamut mapping using powell */
static void invdomap1(
gammap *s,
double *out,
double *in
) {
double ss[3] = { 20.0, 20.0, 20.0 }; /* search area */
double tp[3], rv;
s->tv[0] = tp[0] = in[0];
s->tv[1] = tp[1] = in[1];
s->tv[2] = tp[2] = in[2];
if (powell(&rv, 3, tp, ss, 1e-7, 5000, invgmfunc, (void *)s, NULL, NULL) != 0) {
warning("gamut invdomap1 failed on %f %f %f\n", in[0], in[1], in[2]);
}
out[0] = tp[0];
out[1] = tp[1];
out[2] = tp[2];
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Function to pass to rspl to re-set output values, */
/* to adjust the 1D white and black points */
static void
adjust1_wb_func(
void *pp, /* adjust1wb structure */
double *out, /* output value to be adjusted */
double *in /* corresponding input value */
) {
adjust1wb *p = (adjust1wb *)pp;
/* Do a linear re-mapping from actual to target */
out[0] = (out[0] - p->awb[0]) * (p->twb[1] - p->twb[0])/(p->awb[1] - p->awb[0]) + p->twb[0];
}
/* Function to pass to rspl to invert grey curve */
static void inv_grey_func(
void *cntx,
double *out,
double *in
) {
rspl *fwd = (rspl *)cntx;
int nsoln; /* Number of solutions found */
co pp[2]; /* Room for all the solutions found */
pp[0].p[0] =
pp[0].v[0] = in[0];
nsoln = fwd->rev_interp(
fwd,
RSPL_NEARCLIP, /* Clip to nearest (faster than vector) */
2, /* Maximum number of solutions allowed for */
NULL, /* No auxiliary input targets */
NULL, /* Clip vector direction and length */
pp); /* Input and output values */
nsoln &= RSPL_NOSOLNS; /* Get number of solutions */
if (nsoln != 1)
error("gammap: Unexpected failure to find reverse solution for grey axis lookup");
out[0] = pp[0].p[0];
}
/* Function to pass to rspl to alter output values, */
/* to enhance the saturation. */
static void
adjust_sat_func(
void *pp, /* adjustsat structure */
double *out, /* output value to be adjusted */
double *in /* corresponding input value */
) {
adjustsat *p = (adjustsat *)pp;
double cp[3]; /* Center point */
double rr, t1[3], p1;
double t2[3], p2;
/* Locate center point on the white/black axis corresponding to this color */
cp[0] = out[0];
rr = (out[0] - p->bp[0])/(p->wp[0] - p->bp[0]); /* Relative location on the white/black axis */
cp[1] = p->bp[1] + rr * (p->wp[1] - p->bp[1]);
cp[2] = p->bp[2] + rr * (p->wp[2] - p->bp[2]);
/* Locate the point on the destination gamut surface in the direction */
/* from the center point to the point being processed. */
if (p->dst->vector_isect(p->dst, cp, out, t2, t1, &p2, &p1, NULL, NULL) != 0) {
if (p1 > 1.0) { /* If this point is within gamut */
double ep1, bf;
//printf("\n");
//printf("~1 cp %f %f %f input %f %f %f\n",cp[0],cp[1],cp[2], out[0], out[1], out[2]);
//printf("~1 min %f %f %f mint %f\n",t2[0],t2[1],t2[2],p2);
//printf("~1 max %f %f %f maxt %f\n",t1[0],t1[1],t1[2],p1);
p1 = 1.0/p1; /* Position of out from cp to t1 */
#ifdef NEVER
/* Enhanced parameter value */
ep1 = (p1 + p->satenh * p1)/(1.0 + p->satenh * p1);
/* Make blend between linear p1 and enhanced p1, */
/* to reduce effects on near neutrals. */
p1 = (1.0 - p1) * p1 + p1 * ep1;
#else
/* Compute Enhanced p1 */
ep1 = (p1 + p->satenh * p1)/(1.0 + p->satenh * p1);
/* Make blend factor between linear p1 and enhanced p1, */
/* to reduce effects on near neutrals. */
{
double pp = 4.0; /* Sets where the 50% transition is */
double g = 2.0; /* Sets rate of transition */
double sec, vv = p1;
vv = vv/(pp - pp * vv + 1.0);
vv *= 2.0;
sec = floor(vv);
if (((int)sec) & 1)
g = -g; /* Alternate action in each section */
vv -= sec;
if (g >= 0.0) {
vv = vv/(g - g * vv + 1.0);
} else {
vv = (vv - g * vv)/(1.0 - g * vv);
}
vv += sec;
vv *= 0.5;
bf = (vv + pp * vv)/(1.0 + pp * vv);
}
/* Do the blend */
p1 = (1.0 - bf) * p1 + bf * ep1;
#endif
/* Compute enhanced values position */
out[0] = cp[0] + (t1[0] - cp[0]) * p1;
out[1] = cp[1] + (t1[1] - cp[1]) * p1;
out[2] = cp[2] + (t1[2] - cp[2]) * p1;
//printf("~1 output %f %f %f, param %f\n",out[0],out[1],out[2],p1);
}
}
}
/* Function to pass to rspl to re-set output values, */
/* to adjust the white and black points */
static void
adjust_wb_func(
void *pp, /* adjustwb structure */
double *out, /* output value to be adjusted */
double *in /* corresponding input value */
) {
adjustwb *p = (adjustwb *)pp;
/* Do a linear mapping from swp -> dwp and sbp -> dbp, */
/* to compute the adjusted value. */
icmMul3By3x4(out, p->mat, out);
}
/* Create a new gamut that the the given gamut transformed by the */
/* gamut mappings rotation and grey curve mapping. Return NULL on error. */
static gamut *parttransgamut(gammap *s, gamut *src) {
gamut *dst;
double cusps[6][3];
double wp[3], bp[3], kp[3];
double p[3];
int i;
if ((dst = new_gamut(src->getsres(src), src->getisjab(src), src->getisrast(src))) == NULL)
return NULL;
dst->setnofilt(dst);
/* Translate all the surface nodes */
for (i = 0;;) {
if ((i = src->getrawvert(src, p, i)) < 0)
break;
dopartialmap1(s, p, p);
dst->expand(dst, p);
}
/* Translate cusps */
if (src->getcusps(src, cusps) == 0) {
dst->setcusps(dst, 0, NULL);
for (i = 0; i < 6; i++) {
dopartialmap1(s, p, cusps[i]);
dst->setcusps(dst, 1, p);
}
dst->setcusps(dst, 2, NULL);
}
/* Translate white and black points */
if (src->getwb(src, wp, bp, kp, NULL, NULL, NULL) == 0) {
dopartialmap1(s, wp, wp);
dopartialmap1(s, bp, bp);
dopartialmap1(s, kp, kp);
dst->setwb(dst, wp, bp, kp);
}
return dst;
}
|