1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
|
/*
* nearsmth
*
* Gamut mapping support routine that creates a list of
* guide vectors that map from a source to destination
* gamut, smoothed to retain reasonably even spacing.
*
* Author: Graeme W. Gill
* Date: 17/1/2002
* Version: 1.00
*
* Copyright 2002 - 2006 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/*
Description:
We create a set of "guide vectors" that map the source gamut to
the destination, for use by the gammap code in creating
a 3D gamut mapping.
(See gammap.txt for a more detailed descrition)
*/
/*
* TTBD:
*
* It might work better if the cusp mapping had separate control
* over the L and h degree of map, as well as the L and h effective radius ?
* That way, saturation hue distortions with L might be reduced.
*
* Improve error handling.
*
* Major defect with some gamut combinations is "button" around
* cusps. Not sure what the mechanism is, since it's not obvious
* from the 3D vector plots what the cause is. (fixed ?)
* Due to poor internal control ?
*
* Mapping to very small, odd shaped gamuts (ie. Bonet) is poor -
* there are various bugs and artefacts to be figured out.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <fcntl.h>
#include <string.h>
#include <math.h>
#include "counters.h"
#include "icc.h"
#include "numlib.h"
#include "rspl.h"
#include "gamut.h"
#include "nearsmth.h"
#include "vrml.h"
#undef SAVE_VRMLS /* [Und] Save various vrml's */
#undef PLOT_SMOOTHING_CHANGE /* [Und] Dest point change due to smoothing in "dst_smvec.wrl" */
#undef PLOT_MAPPING_INFLUENCE /* [Und] Plot sci_gam colored by dominant guide influence: */
/* Absolute = red, Relative = yellow, Radial = blue, Depth = green */
#undef PLOT_AXES /* [Und] */
#undef PLOT_EVECTS /* [Und] Create VRML of error correction vectors */
#undef VERB /* [Und] [0] If <= 1, print progress headings */
/* if > 1, print information about everything */
#undef SHOW_NEIGB /* [Und] Show the neighborhood point group in src */
#undef SHOW_NEIGB_WEIGHTS /* [Und] Show the weighting for each point of neighbours in turn */
#undef DIAG_POINTS /* [Und] Short circuite mapping and show vectors of various */
/* intermediate points (see #ifdef DIAG_POINTS) */
#undef PLOT_DIGAM /* [Und] Rather than DST_GMT - don't free it (#def in gammap.c too) */
#define SUM_POW 2.0 /* Delta's are sum of component deltas ^ SUM_POW */
#define LIGHT_L 70.0 /* "light" L/J value */
#define DARK_L 5.0 /* "dark" L/J value */
#define NEUTRAL_C 20.0 /* "neutral" C value */
#define NO_TRIALS 6 /* [6] Number of random trials */
#define VECADJPASSES 8 /* [8] Vector smoothing and adjust passes. */
#define RSPLPASSES 4 /* [4] Number of rspl smoothing & adjustment passes */
#define RSPLSCALE 1.8 /* [1.8] Offset within gamut for rspl smoothing to aim for */
#define SHRINK 5.0 /* [5.0] Shrunk destination evect surface factor */
#define CYLIN_SUBVEC /* [Def] Make sub-vectors always cylindrical direction */
#define SUBVEC_SMOOTHING /* [Def] Smooth the sub-vectors */
/* Experimental - not used: */
/* This has similar effects to lowering SUM_POW without the side effects */
/* and improves hue detail for small destination gamuts. */
/* (This and lxpow are pretty hacky. Is there a better way ?) */
#undef EMPH_NEUTRAL //0.5 /* Emphasis strength near neutral */
#undef EMPH_THR //10.0 /* delta C threshold above which it kicks in */
#undef LINEAR_HUE_SUM /* Make delta^2 = (sqrt(l^2 + c^2) + h)^2 */
#undef DEBUG_POWELL_FAILS /* [Und] On a powell fail, re-run it with debug on */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
#if defined(VERB)
# define VA(xxxx) printf xxxx
# if VERB > 1
# define VB(xxxx) printf xxxx
# else
# define VB(xxxx)
# endif
#else
# define VA(xxxx)
# define VB(xxxx)
#endif
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
#if defined(SAVE_VRMLS) && defined(PLOT_MAPPING_INFLUENCE)
static void create_influence_plot(nearsmth *smp, int nmpts, int mapres);
#endif
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Compute the weighted delta E squared of in1 - in2 */
/* (This is like the CIE DE94) */
static double wdesq(
double in1[3], /* Destination location */
double in2[3], /* Source location */
double lweight,
double cweight,
double hweight,
double sumpow /* Sum power. 0.0 == 2.0 */
) {
double desq, dhsq;
double dlsq, dcsq;
double vv;
double dc, c1, c2;
//printf("~1 wdesq got %f %f %f and %f %f %f\n", in1[0], in1[1], in1[2], in2[0], in2[1], in2[2]);
/* Compute delta L squared and delta E squared */
{
double dl, da, db;
dl = in1[0] - in2[0];
dlsq = dl * dl; /* dl squared */
da = in1[1] - in2[1];
db = in1[2] - in2[2];
desq = dlsq + da * da + db * db;
}
/* compute delta chromanance squared */
{
/* Compute chromanance for the two colors */
c1 = sqrt(in1[1] * in1[1] + in1[2] * in1[2]);
c2 = sqrt(in2[1] * in2[1] + in2[2] * in2[2]);
dc = c1 - c2;
dcsq = dc * dc;
/* [ Making dcsq = sqrt(dcsq) here seemes */
/* to improve the saturation result. Subsumed by a.xl ? ] */
}
/* Compute delta hue squared */
if ((dhsq = desq - dlsq - dcsq) < 0.0)
dhsq = 0.0;
#ifdef EMPH_NEUTRAL /* Emphasise hue differences whenc dc is large and we are */
/* close to the neutral axis */
vv = 3.0 / (1.0 + 0.03 * c1); /* Full strength scale factor from dest location */
vv = 1.0 + EMPH_NEUTRAL * (vv - 1.0); /* Reduced strength scale factor */
vv *= (dc + EMPH_THR)/EMPH_THR;
dhsq *= vv * vv; /* Scale squared hue delta */
#endif
if (sumpow == 0.0 || sumpow == 2.0) { /* Normal sum of squares */
#ifdef HACK
vv = sqrt(lweight * dlsq + cweight * dcsq) + sqrt(hweight * dhsq);
vv *= vv;
vv = fabs(vv); /* Avoid -0.0 */
#else
vv = lweight * dlsq + cweight * dcsq + hweight * dhsq;
vv = fabs(vv); /* Avoid -0.0 */
#endif
} else {
sumpow *= 0.5;
vv = lweight * pow(dlsq, sumpow) + cweight * pow(dcsq,sumpow) + hweight * pow(dhsq,sumpow);
vv = fabs(vv); /* Avoid -0.0 */
vv = pow(vv, 1.0/sumpow);
}
//printf("~1 returning wdesq %f from %f * %f + %f * %f + %f * %f\n", fabs(vv),lweight, dlsq, cweight, dcsq, hweight, dhsq);
return vv;
}
/* Compute the LCh differences squared of in1 - in2 */
/* (This is like the CIE DE94) */
static void diffLChsq(
double out[3],
double in1[3], /* Destination location */
double in2[3] /* Source location */
) {
double desq, dhsq;
double dlsq, dcsq;
double vv;
double dc, c1, c2;
/* Compute delta L squared and delta E squared */
{
double dl, da, db;
dl = in1[0] - in2[0];
dlsq = dl * dl; /* dl squared */
da = in1[1] - in2[1];
db = in1[2] - in2[2];
desq = dlsq + da * da + db * db;
}
/* compute delta chromanance squared */
{
/* Compute chromanance for the two colors */
c1 = sqrt(in1[1] * in1[1] + in1[2] * in1[2]);
c2 = sqrt(in2[1] * in2[1] + in2[2] * in2[2]);
dc = c1 - c2;
dcsq = dc * dc;
/* [ Making dcsq = sqrt(dcsq) here seemes */
/* to improve the saturation result. Subsumed by a.xl ? ] */
}
/* Compute delta hue squared */
if ((dhsq = desq - dlsq - dcsq) < 0.0)
dhsq = 0.0;
#ifdef EMPH_NEUTRAL /* Emphasise hue differences whenc dc is large and we are */
/* close to the neutral axis */
vv = 3.0 / (1.0 + 0.03 * c1); /* Full strength scale factor from dest location */
vv = 1.0 + EMPH_NEUTRAL * (vv - 1.0); /* Reduced strength scale factor */
vv *= (dc + EMPH_THR)/EMPH_THR;
dhsq *= vv * vv; /* Scale squared hue delta */
#endif
out[0] = dlsq;
out[1] = dcsq;
out[2] = dhsq;
}
/* Given the weighting structure and the relevant point locations */
/* return the total weighted error squared. */
static double comperr(
nearsmth *p, /* Guide point data */
gammapweights *w, /* weightings */
double dtp[3], /* Dest test point being evaluated */
double aodv[3], /* Weighted destination closest value to source */
double drv[3], /* Source mapped radially to dest */
double dcratio, /* Depth compression ratio of mapping */
double dxratio /* Depth expansion ratio of mapping */
) {
double a_o;
double va, vr, vd, vv = 0.0;
/* Absolute, Delta E^2 between test point and destination closest */
/* aodv is already positioned according to the LCh weights, */
/* so weight as per average of these */
a_o = w->a.o;
va = wdesq(dtp, aodv, a_o, a_o, a_o, SUM_POW);
/* Radial. Delta E^2 between test point and source mapped radially to dest gamut */
vr = wdesq(dtp, drv, w->rl.l, w->rl.c, w->rl.h, SUM_POW);
/* Depth ratio error^2. */
vd = w->d.co * dcratio * dcratio
+ w->d.xo * dxratio * dxratio;
/* Diagnostic values */
p->dbgv[0] = va;
p->dbgv[1] = vr;
p->dbgv[2] = vd;
vv = va + vr + vd; /* Sum of squares */
// vv = sqrt(va) + sqrt(vr) + sqrt(vd); /* Linear sum is better ? */
// vv = pow(va, 0.7) + pow(vr, 0.7) + pow(vd, 0.7); /* Linear sum is better ? */
#ifdef NEVER
printf("~1 dtp %f %f %f\n", dtp[0], dtp[1], dtp[2]);
printf("~1 va = %f from aodv %f %f %f, weight %f\n", va, aodv[0], aodv[1], aodv[2], a_o);
printf("~1 vr = %f from drv %f %f %f, weights %f %f %f\n", vr, drv[0], drv[1], drv[2], w->rl.l, w->rl.c, w->rl.h);
printf("~1 vd = %f from d.co %f d.xo %f, weights %f %f\n", vd, w->d.co,w->d.xo,dcratio * dcratio,dxratio * dxratio);
printf("~1 return vv = %f\n", vv);
#endif /* NEVER */
return vv;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Structure to hold context for powell optimisation */
/* and cusp mapping function. */
struct _smthopt {
/* optimisation */
int debug; /* debug flag */
int pass; /* Itteration round */
int ix; /* Index of point being optimized */
nearsmth *p; /* Point being optimised */
int useexp; /* Flag indicating whether expansion is permitted */
double *wn; /* Target of weighted nearest */
gamut *wngam; /* for optfunc1 and optfunc1a */
/* Setup state */
int isJab; /* Flag indicating Jab rather than Lab space */
int donaxis; /* Flag indicating whether neutral axis information is real */
int docusp; /* Flag indicating whether cusp information is present */
gammapweights *xwh; /* Structure holding expanded hextant weightings */
gamut *sgam; /* Source colorspace gamut */
/* Cusp alignment mapping */
/* [2] 0 = src, 1 = dst, then cusp then value(s) */
double cusps[2][9][3]; /* raw cusp values - R Y G C B M, white [6], black [7] & grey [8] */
double rot[2][3][4]; /* Rotation to align to black/white center */
double irot[2][3][4]; /* Inverse rotation */
double cusp_lab[2][9][3]; /* Cusp + B&W + grey rotated Lab value */
double cusp_lch[2][6][3]; /* Cusp LCH value */
double cusp_pe[2][6][4]; /* L direction plane equations per segment */
double cusp_bc[2][6][2][3][3]; /* [light/dark][Hex][to/from] 3x3 baricentic transform matrix */
/* Inversion support */
double tv[3];
gammapweights *wt; /* Weights for this inversion */
double mm[3][4]; /* Direction alignment rotation */
double m2[2][2]; /* Additional matrix to alight a with L axis */
double manv[3]; /* anv[] transformed by mm and m2 */
}; typedef struct _smthopt smthopt;
static void init_ce(smthopt *s, gamut *sc_gam, gamut *si_gam, gamut *d_gam, int src_kbp, int dst_kbp, double d_bp[3]);
static void comp_ce(smthopt *s, double out[3], double in[3], gammapweights *wt);
static void inv_comp_ce(smthopt *s, double out[3], double in[3], gammapweights *wt);
static double comp_naxbf(smthopt *s, double in[3]);
static double comp_lvc(smthopt *s, double in[3]);
static double spow(double arg, double ex) {
if (arg < 0.0)
return -pow(-arg, ex);
else
return pow(arg, ex);
}
static void spow3(double *out, double *in, double ex) {
int j;
for (j = 0; j < 3; j++) {
if (in[j] < 0.0)
out[j] = -pow(-in[j], ex);
else
out[j] = pow(in[j], ex);
}
}
/* Absolute error function, used by optfunc1() & optfunc1a() */
static double aerrf(
nearsmth *p,
double *dv,
double *sv
) {
double delch[3], rv;
#ifdef NEVER
/* Absolute weighted delta E between source and dest test point */
rv = wdesq(dv, sv, p->wt.ra.l, p->wt.ra.c, p->wt.ra.h, SUM_POW);
#else
{
double ppp = p->wt.a.lxpow; /* Extra power when L de is over thr */
double thr = p->wt.a.lxthr; /* Xover between normal and power */
double sumpow = SUM_POW;
double del;
diffLChsq(delch, dv, sv);
del = sqrt(delch[0]); /* delta L */
if (sumpow == 0.0 || sumpow == 2.0) { /* Normal sum of squares */
#ifdef LINEAR_HUE_SUM
double ll, cc, hh;
ll = p->wt.ra.l * pow(delch[0], 1.0 + (ppp - 1.0) * del/(del + thr));
cc = p->wt.ra.c * delch[1];
hh = p->wt.ra.h * delch[2];
rv = sqrt(ll + cc) + sqrt(hh);
rv *= rv;
#else
rv = p->wt.ra.l * pow(delch[0], 1.0 + (ppp - 1.0) * del/(del + thr))
+ p->wt.ra.c * delch[1]
+ p->wt.ra.h * delch[2];
#endif
} else {
sumpow *= 0.5;
rv = p->wt.ra.l * pow(delch[0], (1.0 + (ppp - 1.0) * del/(del + thr)) * sumpow)
+ p->wt.ra.c * pow(delch[1], sumpow)
+ p->wt.ra.h * pow(delch[2], sumpow);
}
}
#endif
return rv;
}
/* Powell optimisation function for setting minimal absolute error target point, */
/* with a correction for swap. */
/* We get a 2D plane in the 3D space, of the destination point, */
/* who's location we are optimizing to wngam. */
static double optfunc1(
void *fdata,
double *_dv
) {
smthopt *s = (smthopt *)fdata;
nearsmth *p = s->p; /* Point being optimised */
int i, j, k;
double dv[3]; /* 3D point in question */
double ddv[3]; /* Point in question mapped to wngam surface */
double rv; /* Out of gamut, return value */
/* Convert from 2D to 3D. */
dv[2] = _dv[1];
dv[1] = _dv[0];
dv[0] = 50.0;
icmMul3By3x4(dv, p->m3d, dv);
//printf("~1 optfunc1 got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]);
s->wngam->radial(s->wngam, ddv, dv); /* Map to dst surface to check current location */
//printf("~1 optfunc1 got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]);
if (p->swap) {
/* This is actually a point on the real source gamut, so */
/* convert to cusp mapped rotated source gamut value */
comp_ce(s, ddv, ddv, &p->wt);
//printf("~1 after cusp rot got %f %f %f\n",ddv[0],ddv[1],ddv[2]);
}
rv = aerrf(p, ddv, s->wn);
if (s->debug)
printf("debug: rv = %f from %f %f %f -> %f %f %f\n",rv, s->wn[0], s->wn[1], s->wn[2], ddv[0], ddv[1], ddv[2]);
//printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->wm[0], p->wm[1], p->wm[2], ddv[0], ddv[1], ddv[2]);
//printf("~1 rv = %f\n",rv);
return rv;
}
/* Powell optimisation function for setting minimal absolute error target point, */
/* with no correction for swap. */
/* We get a 2D plane in the 3D space, of the destination point, */
/* who's location we are optimizing to wngam. */
static double optfunc1a(
void *fdata,
double *_dv
) {
smthopt *s = (smthopt *)fdata;
nearsmth *p = s->p; /* Point being optimised */
int i, j, k;
double dv[3]; /* 3D point in question */
double ddv[3]; /* Point in question mapped to wngam surface */
double rv; /* Out of gamut, return value */
/* Convert from 2D to 3D. */
dv[2] = _dv[1];
dv[1] = _dv[0];
dv[0] = 50.0;
icmMul3By3x4(dv, p->m3d, dv);
//if (s->debug) printf("~1 optfunc1a got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]);
s->wngam->radial(s->wngam, ddv, dv); /* Map to shgam surface to check current location */
//if (s->debug) printf("~1 optfunc1a got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]);
rv = aerrf(p, ddv, s->wn);
if (s->debug)
printf("debug: rv = %f from %f %f %f -> %f %f %f\n",rv, s->wn[0], s->wn[1], s->wn[2], ddv[0], ddv[1], ddv[2]);
//if (s->debug) printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->wm[0], p->wm[1], p->wm[2], ddv[0], ddv[1], ddv[2]);
//printf("~1 rv = %f\n",rv);
return rv;
}
/* Compute available depth errors p->dcratio and p->dxratio */
static void comp_depth(
smthopt *s,
nearsmth *p, /* Point being optimized */
double *dv /* 3D Location being evaluated */
) {
double *sv, nv[3], nl; /* Source, dest points, normalized vector between them */
double mint, maxt;
gtri *mintri = NULL, *maxtri = NULL;
sv = p->_sv;
p->dcratio = p->dxratio = 0.0; /* default, no depth error */
icmSub3(nv, dv, sv); /* Mapping vector */
nl = icmNorm3(nv); /* It's length */
if (nl > 0.1) { /* If mapping is non trivial */
icmScale3(nv, nv, 1.0/nl); /* Make mapping vector normal */
/* Compute actual depth of ray into destination (norm) or from source (expansion) gamut */
if (p->dgam->vector_isect(p->dgam, sv, dv, NULL, NULL, &mint, &maxt, &mintri, &maxtri) != 0) {
double angle;
/* The scale factor discounts the depth ratio as the mapping */
/* vector gets more angled. It has a sin^2 characteristic */
/* This is so that the depth error has some continuity if it */
/* gets closer to being parallel to the destination gamut surface. */
//printf("\n~1 ix %d: %f %f %f -> %f %f %f\n isect at t %f and %f\n", s->ix, sv[0], sv[1], sv[2], dv[0], dv[1], dv[2], mint, maxt);
p->gflag = p->vflag = 0;
if (mint < -1e-8 && maxt < -1e-8) {
p->gflag = 1; /* Gamut compression but */
p->vflag = 2; /* vector is expanding */
} else if (mint > 1e-8 && maxt > -1e-8) {
p->gflag = 1; /* Gamut compression and */
p->vflag = 1; /* vector compression */
angle = icmDot3(nv, mintri->pe);
angle *= angle; /* sin squared */
p->dcratio = angle * 2.0/(maxt + mint - 2.0);
//printf("~1 %d: comp depth ratio %f, angle %f\n", s->ix, p->dratio, angle);
} else if (mint < -1e-8 && maxt > -1e-8) {
if (fabs(mint) < (fabs(maxt) - 1e-8)) {
p->gflag = 2; /* Gamut expansion but */
p->vflag = 1; /* vector is compressing */
} else if (fabs(mint) > (fabs(maxt) + 1e-8)) {
p->gflag = 2; /* Gamut expansion and */
p->vflag = 2; /* vector is expanding */
angle = icmDot3(nv, maxtri->pe);
angle *= angle; /* sin squared */
p->dxratio = angle * 2.0/-mint;
//printf("~1 %d: exp depth ratio %f, angle %f\n", s->ix, p->dratio, angle);
}
}
}
}
}
/* Powell optimisation function for overall non-relative smoothed error optimization. */
/* We get a 2D point in the 3D space. */
static double optfunc2(
void *fdata,
double *_dv
) {
smthopt *s = (smthopt *)fdata;
nearsmth *p = s->p; /* Point being optimised */
double dv[3], ddv[3]; /* Dest point */
double rv; /* Return value */
/* Convert from 2D to 3D. */
dv[2] = _dv[1];
dv[1] = _dv[0];
dv[0] = 50.0;
icmMul3By3x4(dv, p->m3d, dv);
//printf("~1 optfunc2 got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]);
p->dgam->radial(p->dgam, ddv, dv); /* Map to dst surface to check current location */
//printf("~1 optfunc2 got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]);
//printf("~1 optfunc2 sv %4.2f %4.2f %4.2f, dv %4.2f %4.2f %4.2f\n", p->sv[0], p->sv[1], p->sv[2], ddv[0], ddv[1], ddv[2]);
/* Compute available depth errors p->dcratio and p->dxratio */
comp_depth(s, p, ddv);
/* Compute weighted delta E being minimised. */
rv = comperr(p, &p->wt, ddv, p->aodv, p->drv, p->dcratio, p->dxratio);
if (s->debug) {
printf("~1 sv = %f %f %f\n", p->sv[0], p->sv[1], p->sv[2]);
printf("~1 dv = %f %f %f\n", ddv[0], ddv[1], ddv[2]);
printf("~1 aodv = %f %f %f\n", p->aodv[0], p->aodv[1], p->aodv[2]);
printf("~1 drv = %f %f %f\n", p->drv[0], p->drv[1], p->drv[2]);
printf("~1 va = %f, vr = %f, vd = %f\n", p->dbgv[0], p->dbgv[1], p->dbgv[2]);
printf("debug:%d: rv = %f from %f %f %f\n",s->ix, rv, dv[0], dv[1], dv[2]);
}
//printf("~1 rv = %f from %f %f\n",rv, _dv[0], _dv[1]);
//printf("~1 rv = %f\n\n",rv);
return rv;
}
/* -------------------------------------------- */
/* Setup the neutral axis and cusp mapping structure information */
static void init_ce(
smthopt *s, /* Context for cusp mapping being set. */
gamut *sc_gam, /* Source colorspace gamut */
gamut *si_gam, /* Source image gamut */
gamut *d_gam, /* Destination colorspace gamut */
int src_kbp, /* Use K only black point as src gamut black point */
int dst_kbp, /* Use K only black point as dst gamut black point */
double d_bp[3] /* Override destination target black point (may be NULL) */
) {
double src_adj[] = {
1.1639766020018968e+224, 1.0605092189369252e-153, 3.5252483622572622e+257,
1.3051549117649167e+214, 3.2984590678749676e-033, 1.8786244212510033e-153,
1.2018790902224465e+049, 1.0618629743651763e-153, 5.5513445545255624e+233,
3.3509081077514219e+242, 2.0076462988863408e-139, 3.2823498214286135e-318,
7.7791723264448801e-260, 9.5956158769288055e+281, 2.5912667577703660e+161,
5.2030128643503829e-085, 5.8235640814905865e+180, 4.0784546104861075e-033,
3.6621812661291286e+098, 1.6417826055515754e-086, 8.2656018530749330e+097,
9.3028116527073026e+242, 2.9127574654725916e+180, 1.9984697356129145e-139,
-2.1117351731638832e+003 };
double saval;
int sd;
int i, j, k;
VA(("init_ce called\n"));
s->donaxis = 1; /* Assume real neutral axis info */
s->docusp = 1; /* Assume real cusp info */
s->isJab = sc_gam->isJab;
/* Set some default values for src white/black/grey */
/* Get the colorspace white and black point info */
if (src_kbp) {
if (sc_gam->getwb(sc_gam, s->cusps[0][6], NULL, s->cusps[0][7], NULL, NULL, NULL) != 0) {
VB(("getting src wb points failed\n"));
s->cusps[0][6][0] = 100.0;
s->cusps[0][7][0] = 0.0;
s->cusps[0][8][0] = 50.0;
s->donaxis = 0;
}
} else {
if (sc_gam->getwb(sc_gam, s->cusps[0][6], s->cusps[0][7], NULL, NULL, NULL, NULL) != 0) {
VB(("getting src wb points failed\n"));
s->cusps[0][6][0] = 100.0;
s->cusps[0][7][0] = 0.0;
s->cusps[0][8][0] = 50.0;
s->donaxis = 0;
}
}
if (dst_kbp) {
if (d_gam->getwb(d_gam, s->cusps[1][6], NULL, s->cusps[1][7], NULL, NULL, NULL) != 0) {
VB(("getting dest wb points failed\n"));
s->cusps[1][6][0] = 100.0;
s->cusps[1][7][0] = 0.0;
s->cusps[1][8][0] = 50.0;
s->donaxis = 0;
}
} else {
if (d_gam->getwb(d_gam, s->cusps[1][6], s->cusps[1][7], NULL, NULL, NULL, NULL) != 0) {
VB(("getting dest wb points failed\n"));
s->cusps[1][6][0] = 100.0;
s->cusps[1][7][0] = 0.0;
s->cusps[1][8][0] = 50.0;
s->donaxis = 0;
}
}
if (d_bp != NULL) { /* Use override destination black point */
icmCpy3(s->cusps[1][7], d_bp);
}
#ifdef NEVER
{
double iwp[3] = { -1, -1, -1}, ibp[3] = { -1, -1, -1};
if (src_kbp) {
si_gam->getwb(si_gam, NULL, NULL, NULL, iwp, NULL, ibp);
} else {
si_gam->getwb(si_gam, NULL, NULL, NULL, iwp, ibp, NULL);
}
printf("~1 src white = %f, black = %f\n",s->cusps[0][6][0],s->cusps[0][7][0]);
printf("~1 img white = %f, black = %f\n",s->cusps[0][6][0],s->cusps[0][7][0]);
printf("~1 dst white = %f, black = %f\n",s->cusps[1][6][0],s->cusps[1][7][0]);
}
#endif /* NEVER */
/* Get the cusp info */
if (sc_gam->getcusps(sc_gam, s->cusps[0]) != 0 || d_gam->getcusps(d_gam, s->cusps[1]) != 0) {
int isJab;
VB(("getting cusp info failed\n"));
s->docusp = 0;
/* ????? Should we use generic cusp information as a fallback ?????? */
}
/* Compute source adjustment value */
for (saval = 0.0, i = 0; i < (sizeof(src_adj)/sizeof(double)-1); i++)
saval += log(src_adj[i]);
saval += src_adj[i];
/* For source and dest */
for (sd = 0; sd < 2; sd++) {
double ta[3] = { 100.0, 0.0, 0.0 };
double tc[3] = { 0.0, 0.0, 0.0 };
/* Compute rotation to rotate/translate so that */
/* black -> white becomes 0 -> 100 */
ta[0] *= saval; /* Make source adjustment */
icmVecRotMat(s->rot[sd], s->cusps[sd][6], s->cusps[sd][7], ta, tc);
/* And inverse */
icmVecRotMat(s->irot[sd], ta, tc, s->cusps[sd][6], s->cusps[sd][7]);
/* Compute a grey */
if (s->docusp) {
double aL = 0.0;
/* Compute cusp average L value as grey */
for (k = 0; k < 6; k++)
aL += s->cusps[sd][k][0];
aL /= 6.0;
//printf("~1 src/dst %d cusp average L %f\n",sd, aL);
aL = (aL - s->cusps[sd][7][0])/(s->cusps[sd][6][0] - s->cusps[sd][7][0]); /* Param */
if (aL < 0.0)
aL = 0.0;
else if (aL > 1.0)
aL = 1.0;
//printf("~1 src/dst %d grey param %f\n",sd,aL);
icmBlend3(s->cusps[sd][8], s->cusps[sd][6], s->cusps[sd][7], aL);
} else {
icmBlend3(s->cusps[sd][8], s->cusps[sd][6], s->cusps[sd][7], 0.5);
}
/* For white, black and grey */
icmMul3By3x4(s->cusp_lab[sd][6], s->rot[sd], s->cusps[sd][6]);
icmMul3By3x4(s->cusp_lab[sd][7], s->rot[sd], s->cusps[sd][7]);
icmMul3By3x4(s->cusp_lab[sd][8], s->rot[sd], s->cusps[sd][8]);
if (!s->docusp)
continue; /* No cusp information */
/* For each cusp */
for (k = 0; k < 6; k++) {
/* Black/white normalized value */
icmMul3By3x4(s->cusp_lab[sd][k], s->rot[sd], s->cusps[sd][k]);
/* Compute LCh value */
icmLab2LCh(s->cusp_lch[sd][k], s->cusp_lab[sd][k]);
VB(("cusp[%d][%d] %f %f %f LCh %f %f %ff\n", sd, k, s->cusps[sd][k][0], s->cusps[sd][k][1], s->cusps[sd][k][2], s->cusp_lch[sd][k][0], s->cusp_lch[sd][k][1], s->cusp_lch[sd][k][2]));
}
/* For each pair of cusps */
for (k = 0; k < 6; k++) {
int m = k < 5 ? k + 1 : 0;
int n;
/* Plane of grey & 2 cusp points, so as to be able to decide light/dark cone. */
if (icmPlaneEqn3(s->cusp_pe[sd][k], s->cusp_lab[sd][8], s->cusp_lab[sd][m],
s->cusp_lab[sd][k]))
error("gamut, init_ce: failed to compute plane equation between cusps\n");
VB(("dist to white = %f\n",icmPlaneDist3(s->cusp_pe[sd][k], s->cusp_lab[sd][6])));
VB(("dist to black = %f\n",icmPlaneDist3(s->cusp_pe[sd][k], s->cusp_lab[sd][7])));
VB(("dist to grey = %f\n",icmPlaneDist3(s->cusp_pe[sd][k], s->cusp_lab[sd][8])));
VB(("dist to c0 = %f\n",icmPlaneDist3(s->cusp_pe[sd][k], s->cusp_lab[sd][m])));
VB(("dist to c1 = %f\n",icmPlaneDist3(s->cusp_pe[sd][k], s->cusp_lab[sd][k])));
/* For light and dark, create transformation matrix to (src) */
/* or from (dst) the Baricentric values. The base is always */
/* the grey point. */
for (n = 0; n < 2; n++) {
/* Create from Baricentric matrix */
icmCpy3(s->cusp_bc[sd][k][n][0], s->cusp_lab[sd][k]);
icmCpy3(s->cusp_bc[sd][k][n][1], s->cusp_lab[sd][m]);
icmCpy3(s->cusp_bc[sd][k][n][2], s->cusp_lab[sd][6 + n]); /* [7] & [8] */
for (j = 0; j < 3; j++) /* Subtract grey base */
icmSub3(s->cusp_bc[sd][k][n][j], s->cusp_bc[sd][k][n][j], s->cusp_lab[sd][8]);
/* Compute matrix transform */
icmTranspose3x3(s->cusp_bc[sd][k][n], s->cusp_bc[sd][k][n]);
if (sd == 0) { /* If src, invert matrix */
if (icmInverse3x3(s->cusp_bc[sd][k][n], s->cusp_bc[sd][k][n]) != 0)
error("gamut, init_ce: failed to invert baricentric matrix\n");
}
}
}
}
#ifdef NEVER /* Sanity check */
for (k = 0; k < 6; k++) {
double tt[3];
comp_ce(s, tt, s->cusps[0][k], NULL);
VB(("cusp %d, %f %f %f -> %f %f %f, de %f\n", k, cusps[0][k][0], cusps[0][k][1], cusps[0][k][2], tt[0], tt[1], tt[2], icmNorm33(tt, cusps[1][k])));
}
#endif /* NEVER */
#ifdef NEVER /* Sanity check */
{
for (k = 0; k < 9; k++) {
double tt;
tt = comp_lvc(s, s->cusps[0][k]);
printf("cusp %d, %f %f %f -> %f\n\n", k, s->cusps[0][k][0], s->cusps[0][k][1], s->cusps[0][k][2], tt);
}
/* For light and dark */
for (sd = 0; sd < 2; sd++) {
/* for each segment */
for (k = 0; k < 6; k++) {
int m = k < 5 ? k + 1 : 0;
double pos[3], tt;
pos[0] = pos[1] = pos[2] = 0.0;
icmAdd3(pos, pos, s->cusps[0][k]);
icmAdd3(pos, pos, s->cusps[0][m]);
icmAdd3(pos, pos, s->cusps[0][6 + sd]);
icmAdd3(pos, pos, s->cusps[0][8]);
icmScale3(pos, pos, 1.0/4.0);
tt = comp_lvc(s, pos);
printf("cusps %d & %d, grey %d, %f %f %f -> %f\n\n", k, m, sd, pos[0], pos[1], pos[2], tt);
}
}
}
#endif /* NEVER */
}
/* Compute cusp mapping value */
static void comp_ce(
smthopt *s, /* Context for cusp mapping */
double out[3],
double in[3],
gammapweights *wt /* If NULL, assume 100% */
) {
double cw_l = 1.0; /* Cusp adapation weighting */
double cw_c = 1.0;
double cw_h = 1.0;
double ctw = 1.0; /* Twist power */
double ccx = 1.0; /* Expansion ratio */
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
if (wt != NULL) {
cw_l = wt->c.w.l;
cw_c = wt->c.w.c;
cw_h = wt->c.w.h;
ctw = wt->c.tw;
ccx = wt->c.cx;
}
/* Compute source changes due to any cusp mapping */
if (s->docusp && (cw_l > 0.0 || cw_c > 0.0 || cw_h > 0.0 || ccx > 0.0)) {
double lab[3], lch[3]; /* Normalized source values */
double bb[3]; /* Baricentric coords: cusp0, cusp1, w/b weight. */
double olch[3]; /* Destination transformed LCh source value */
double mlab[3], mlch[3]; /* Fully mapped value */
int c0, c1; /* Cusp indexes */
int ld; /* light/dark index */
double tww, tpw; /* Base twist weighting, twist power weightign */
//printf("\n~1 in = %f %f %f, cw_l %f, cw_c %f cw_h %f ctw %f ccx %f\n",in[0],in[1],in[2], cw_l, cw_c, cw_h, ctw, ccx);
/* Compute src white/black aligned input Lab & LCh */
icmMul3By3x4(lab, s->rot[0], in);
icmLab2LCh(lch, lab);
//printf("~1 aligned lab = %f %f %f\n",lab[0],lab[1],lab[2]);
//printf("~1 aligned lch = %f %f %f\n",lch[0],lch[1],lch[2]);
/* Locate the source cusps that this point lies between */
for (c0 = 0; c0 < 6; c0++) {
double sh, h0, h1;
sh = lch[2];
c1 = c0 < 5 ? c0 + 1 : 0;
h0 = s->cusp_lch[0][c0][2];
h1 = s->cusp_lch[0][c1][2];
if (h1 < h0) {
if (sh < h1)
sh += 360.0;
h1 += 360.0;
}
if (sh >= (h0 - 1e-12) && sh < (h1 + 1e-12))
break;
}
if (c0 >= 6) /* Assert */
error("gamut, comp_ce: unable to locate hue %f cusps\n",lch[2]);
/* See whether this is light or dark */
ld = icmPlaneDist3(s->cusp_pe[0][c0], lab) >= 0 ? 0 : 1;
//printf("~1 cusp %d, ld %d (dist %f)\n",c0,ld,icmPlaneDist3(s->cusp_pe[0][c0], lab));
/* Compute baricentric for input point in simplex */
icmSub3(bb, lab, s->cusp_lab[0][8]);
icmMulBy3x3(bb, s->cusp_bc[0][c0][ld], bb);
//printf("~1 bb %f %f %f sum %f\n",bb[0],bb[1],bb[2], bb[0] + bb[1]);
/* bb[0] + bb[1] is close to C value */
tww = fabs(bb[0] + bb[1]);
if (tww > 1.0)
tww = 1.0;
ccx = 1.0 + ((ccx - 1.0) * tww); /* Scale expansion by C anyway */
/* Twist power weighting */
if (ctw <= 0.0)
tpw = 1.0; /* Linear cusp alignmen mapping */
else
tpw = pow(tww, ctw); /* Less mapping near neutral, full at cusps */
//printf("~1 ccx %f, tww %f, tpw %f\n", ccx, tww, tpw);
/* Scale size of mapping down near neutral with higher twist power */
cw_l *= tpw;
cw_h *= tpw;
cw_c *= tpw;
/* Then compute value for output from baricentric */
icmMulBy3x3(mlab, s->cusp_bc[1][c0][ld], bb);
icmAdd3(mlab, mlab, s->cusp_lab[1][8]);
icmLab2LCh(mlch, mlab);
//printf("~1 full mapped point lch %f %f %f\n", mlch[0], mlch[1], mlch[2]);
/* Compute the unchanged source in dest black/white aligned space */
icmMul3By3x4(olch, s->rot[1], in);
icmLab2LCh(olch, olch);
//printf("~1 un mappedpoint lch %f %f %f\n", olch[0], olch[1], olch[2]);
/* Then compute weighted output */
mlch[0] = cw_l * mlch[0] + (1.0 - cw_l) * olch[0];
mlch[1] = cw_c * mlch[1] + (1.0 - cw_c) * olch[1];
if (fabs(olch[2] - mlch[2]) > 180.0) { /* Put them on the same side */
if (olch[2] < mlch[2])
olch[2] += 360.0;
else
mlch[2] += 360.0;
}
mlch[2] = cw_c * mlch[2] + (1.0 - cw_c) * olch[2];
if (mlch[2] >= 360.0)
mlch[2] -= 360.0;
mlch[1] *= ccx; /* Add chroma expansion */
//printf("~1 weighted cusp mapped lch %f %f %f\n", mlch[0], mlch[1], mlch[2]);
/* Align to destination white/black axis */
icmLCh2Lab(mlch, mlch);
icmMul3By3x4(out, s->irot[1], mlch);
//printf("~1 returning %f %f %f\n", out[0], out[1], out[2]);
}
}
/* Return a blend factor that measures how close to the white or */
/* black point the location is. Return 1.0 if as far from the */
/* point as is grey, 0.0 when at the white or black points. */
static double comp_naxbf(
smthopt *s, /* Context for cusp mapping */
double in[3] /* Non-cusp mapped source value */
) {
double rin[3]; /* Rotated/scaled to neutral axis 0 to 100 */
double ll;
//printf("~1 comp_naxbf, %d: in = %f %f %f\n",s->ix, in[0],in[1],in[2]);
/* Convert to neutral axis 0 to 100 */
icmMul3By3x4(rin, s->rot[0], in);
//printf("~1 rotate L %f, white %f grey %f black %f\n",rin[0],s->cusp_lab[0][6][0],s->cusp_lab[0][8][0],s->cusp_lab[0][7][0]);
if (rin[0] >= s->cusp_lab[0][8][0]) { /* Closer to white */
ll = icmNorm33(s->cusp_lab[0][6], rin); /* Distance to white */
ll = 1.0 - ll/(100.0 - s->cusp_lab[0][8][0]); /* Normalized to grey distance */
} else { /* Closer to black */
ll = icmNorm33(s->cusp_lab[0][7], rin); /* Distance to black */
ll = 1.0 - ll/s->cusp_lab[0][8][0]; /* Normalized to grey distance */
}
if (ll < 0.0)
ll = 0.0;
else if (ll > 1.0)
ll = 1.0;
/* Weight so that it goes to 0.0 close to W & B */
ll = sqrt(1.0 - ll);
//printf("~1 returning ll %f\n",ll);
return ll;
}
/* Return a value suitable for blending between the wl, gl and bl L dominance values. */
/* The value is a linear blend value, 0.0 at cusp local grey, 1.0 at white L value */
/* and -1.0 at black L value. */
static double comp_lvc(
smthopt *s, /* Context for cusp mapping */
double in[3] /* Non-cusp mapped source value */
) {
double Lg;
double ll;
//printf("~1 comp_lvc, %d: in = %f %f %f\n",s->ix, in[0],in[1],in[2]);
/* Compute the cusp local grey value. */
if (s->docusp) {
double lab[3], lch[3]; /* Normalized source values */
double bb[3]; /* Baricentric coords */
int c0, c1; /* Cusp indexes */
int ld; /* light/dark index */
/* Compute src cusp normalized LCh */
icmMul3By3x4(lab, s->rot[0], in);
icmLab2LCh(lch, lab);
//printf("~1 lab = %f %f %f, lch = %f %f %f\n",lab[0],lab[1],lab[2],lch[0],lch[1],lch[2]);
/* Locate the source cusps that this point lies between */
for (c0 = 0; c0 < 6; c0++) {
double sh, h0, h1;
sh = lch[2];
c1 = c0 < 5 ? c0 + 1 : 0;
h0 = s->cusp_lch[0][c0][2];
h1 = s->cusp_lch[0][c1][2];
if (h1 < h0) {
if (sh < h1)
sh += 360.0;
h1 += 360.0;
}
if (sh >= (h0 - 1e-12) && sh < (h1 + 1e-12))
break;
}
if (c0 >= 6) /* Assert */
error("gamut, comp_lvc: unable to locate hue %f cusps\n",lch[2]);
/* See whether this is light or dark */
ld = icmPlaneDist3(s->cusp_pe[0][c0], lab) >= 0 ? 0 : 1;
//printf("~1 cusp %d, ld %d (dist %f)\n",c0,ld,icmPlaneDist3(s->cusp_pe[0][c0], lab));
/* Compute baricentric for input point in simplex */
icmSub3(bb, lab, s->cusp_lab[0][8]);
icmMulBy3x3(bb, s->cusp_bc[0][c0][ld], bb);
//printf("~1 baricentric %f %f %f\n",bb[0],bb[1],bb[2]);
/* Compute the grey level */
Lg = s->cusps[0][8][0]
+ bb[0] * (s->cusps[0][c0][0] - s->cusps[0][8][0])
+ bb[1] * (s->cusps[0][c1][0] - s->cusps[0][8][0]);
} else {
/* Non-cusp sensitive grey L */
Lg = s->cusps[0][8][0];
}
//printf("~1 grey = %f\n",Lg);
if (in[0] > Lg) {
ll = (in[0] - Lg)/(s->cusps[0][6][0] - Lg);
} else {
ll = -(in[0] - Lg)/(s->cusps[0][7][0] - Lg);
}
//printf("~1 returnin ll %f\n",ll);
return ll;
}
static double invfunc(
void *fdata,
double *tp
) {
smthopt *s = (smthopt *)fdata;
double cv[3]; /* Converted value */
double tt, rv = 0.0;
comp_ce(s, cv, tp, s->wt);
tt = s->tv[0] - cv[0];
rv += tt * tt;
tt = s->tv[1] - cv[1];
rv += tt * tt;
tt = s->tv[2] - cv[2];
rv += tt * tt;
//printf("~1 rv %f from %f %f %f -> %f %f %f\n",rv,tp[0],tp[1],tp[2],cv[0],cv[1],cv[2]);
return rv;
}
/* Inverse of com_ce. We do this by inverting com_ce numerically (slow) */
static void inv_comp_ce(
smthopt *s, /* Context for cusp mapping */
double out[3],
double in[3],
gammapweights *wt /* If NULL, assume 100% */
) {
double ss[3] = { 20.0, 20.0, 20.0 }; /* search area */
double tp[3], rv;
s->tv[0] = tp[0] = in[0];
s->tv[1] = tp[1] = in[1];
s->tv[2] = tp[2] = in[2];
s->wt = wt;
/* Optimise the point */
if (powell(&rv, 3, tp, ss, 0.001, 1000, invfunc, (void *)s, NULL, NULL) != 0) {
error("gammap::nearsmth: inv_comp_ce powell failed on %f %f %f\n", in[0], in[1], in[2]);
}
//printf("~1 inv_comp_ce: %f %f %f -> %f %f %f\n", s->tv[0], s->tv[1], s->tv[2], tp[0], tp[1], tp[2]);
//comp_ce(s, out, tp, wt);
//printf("~1 check: %f %f %f, DE %f\n", out[0], out[1], out[2], icmNorm33(s->tv,out));
out[0] = tp[0];
out[1] = tp[1];
out[2] = tp[2];
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* A set of functions to help handle the weighting configuration */
/* Copy non-negative values from one set of weights to another */
void near_wcopy(
gammapweights *dst,
gammapweights *src
) {
#define NSCOPY(xxx) dst->xxx = src->xxx >= 0.0 ? src->xxx : dst->xxx
//#define NSCOPY(xxx) if (src->xxx >= 0.0) { \
// printf("Setting %s to %f\n",#xxx, src->xxx); \
// dst->xxx = src->xxx; \
// }
NSCOPY(c.w.l);
NSCOPY(c.w.c);
NSCOPY(c.w.h);
NSCOPY(c.tw);
NSCOPY(c.cx);
NSCOPY(l.o);
NSCOPY(l.h);
NSCOPY(l.l);
NSCOPY(a.o);
NSCOPY(a.h);
NSCOPY(a.wl);
NSCOPY(a.gl);
NSCOPY(a.bl);
NSCOPY(a.wlth);
NSCOPY(a.blpow);
NSCOPY(a.lxpow);
NSCOPY(a.lxthr);
NSCOPY(r.rdl);
NSCOPY(r.rdh);
NSCOPY(r.dsm);
NSCOPY(d.co);
NSCOPY(d.xo);
NSCOPY(f.x);
#undef NSCOPY
}
/* Blend a two groups of individual weights into one, given two weightings */
void near_wblend(
gammapweights *dst,
gammapweights *src1, double wgt1,
gammapweights *src2, double wgt2
) {
#define NSBLEND(xxx) dst->xxx = wgt1 * src1->xxx + wgt2 * src2->xxx
NSBLEND(c.w.l);
NSBLEND(c.w.c);
NSBLEND(c.w.h);
NSBLEND(c.tw);
NSBLEND(c.cx);
NSBLEND(l.o);
NSBLEND(l.h);
NSBLEND(l.l);
NSBLEND(a.o);
NSBLEND(a.h);
NSBLEND(a.wl);
NSBLEND(a.gl);
NSBLEND(a.bl);
NSBLEND(a.wlth);
NSBLEND(a.blpow);
NSBLEND(a.lxpow);
NSBLEND(a.lxthr);
NSBLEND(r.rdl);
NSBLEND(r.rdh);
NSBLEND(r.dsm);
NSBLEND(d.co);
NSBLEND(d.xo);
NSBLEND(f.x);
#undef NSBLEND
}
/* Blend a three groups of individual weights into one, given three weightings */
void near_wblend3(
gammapweights *dst,
gammapweights *src1, double wgt1,
gammapweights *src2, double wgt2,
gammapweights *src3, double wgt3
) {
#define NSBLEND(xxx) dst->xxx = wgt1 * src1->xxx + wgt2 * src2->xxx + wgt3 * src3->xxx
NSBLEND(c.w.l);
NSBLEND(c.w.c);
NSBLEND(c.w.h);
NSBLEND(c.tw);
NSBLEND(c.cx);
NSBLEND(l.o);
NSBLEND(l.h);
NSBLEND(l.l);
NSBLEND(a.o);
NSBLEND(a.h);
NSBLEND(a.wl);
NSBLEND(a.gl);
NSBLEND(a.bl);
NSBLEND(a.wlth);
NSBLEND(a.blpow);
NSBLEND(a.lxpow);
NSBLEND(a.lxthr);
NSBLEND(r.rdl);
NSBLEND(r.rdh);
NSBLEND(r.dsm);
NSBLEND(d.co);
NSBLEND(d.xo);
NSBLEND(f.x);
#undef NSBLEND
}
/* Expand the compact form of weights into the explicit form. */
/* The explicit form is light and dark of red, yellow, green, cyan, blue, magenta & neutral */
/* Return nz on error */
int expand_weights(gammapweights out[14], gammapweights *in) {
int i, j;
/* Set the usage of each slot */
out[0].ch = gmm_light_red;
out[1].ch = gmm_light_yellow;
out[2].ch = gmm_light_green;
out[3].ch = gmm_light_cyan;
out[4].ch = gmm_light_blue;
out[5].ch = gmm_light_magenta;
out[6].ch = gmm_light_neutral;
out[7].ch = gmm_dark_red;
out[8].ch = gmm_dark_yellow;
out[9].ch = gmm_dark_green;
out[10].ch = gmm_dark_cyan;
out[11].ch = gmm_dark_blue;
out[12].ch = gmm_dark_magenta;
out[13].ch = gmm_dark_neutral;
//printf("\n~1 expand weights called\n");
/* mark output so we can recognise having been set or not */
for (i = 0; i < 14; i++)
out[i].set = 0;
/* Expand the compact form to explicit. */
/* First is default */
for (i = 0; in[i].ch != gmm_end; i++) {
if (in[i].ch == gmm_end)
break;
if (in[i].ch == gmm_ignore)
continue;
if (in[i].ch == gmm_default) {
for (j = 0; j < 14; j++) {
//printf("~1 Setting %d 0x%x with 0x%x (default)\n",j,out[j].ch,in[i].ch);
if ((in[i].ch & out[j].ch) == out[j].ch) {
near_wcopy(&out[j], &in[i]);
out[j].set = 1;
}
}
}
}
/* Then light or dark */
for (i = 0; in[i].ch != gmm_end; i++) {
if (in[i].ch == gmm_end)
break;
if (in[i].ch == gmm_ignore)
continue;
if (in[i].ch == gmm_light_colors
|| in[i].ch == gmm_dark_colors) {
for (j = 0; j < 14; j++) {
if ((in[i].ch & out[j].ch) == out[j].ch) {
//printf("~1 Setting %d 0x%x with 0x%x (light or dark)\n",j,out[j].ch,in[i].ch);
near_wcopy(&out[j], &in[i]);
out[j].set = 1;
}
}
}
}
/* Then light and dark colors */
for (i = 0; in[i].ch != gmm_end; i++) {
if (in[i].ch == gmm_end)
break;
if (in[i].ch == gmm_ignore)
continue;
if ((in[i].ch & gmc_l_d) == gmc_l_d
&& (in[i].ch & gmc_colors) != gmc_colors) {
for (j = 0; j < 14; j++) {
if ((in[i].ch & out[j].ch) == out[j].ch) {
//printf("~1 Setting %d 0x%x with 0x%x (light and dark color)\n",j,out[j].ch,in[i].ch);
near_wcopy(&out[j], &in[i]);
out[j].set = 1;
}
}
}
}
/* Last pass is light or dark colors */
for (i = 0; in[i].ch != gmm_end; i++) {
if (in[i].ch == gmm_end)
break;
if (in[i].ch == gmm_ignore)
continue;
if (((in[i].ch & gmc_l_d) == gmc_light
|| (in[i].ch & gmc_l_d) == gmc_dark)
&& (in[i].ch & gmc_colors) != gmc_colors) {
for (j = 0; j < 14; j++) {
if ((in[i].ch & out[j].ch) == out[j].ch) {
//printf("~1 Setting %d 0x%x with 0x%x (light or dark color)\n",j,out[j].ch,in[i].ch);
near_wcopy(&out[j], &in[i]);
out[j].set = 1;
}
}
}
}
/* Check every slot has been set */
for (i = 0; i < 14; i++) {
if (out[i].set == 0) {
//printf("~1 set %d hasn't been initialized\n",i);
return 1;
}
}
return 0;
}
/* Tweak weights acording to extra cmy cusp mapping flags or rel override */
void tweak_weights(gammapweights out[14], int dst_cmymap, int rel_oride) {
int i;
for (i = 0; i < 14; i++) {
if (((dst_cmymap & 0x1) && (out[i].ch & gmc_cyan))
|| ((dst_cmymap & 0x2) && (out[i].ch & gmc_magenta))
|| ((dst_cmymap & 0x4) && (out[i].ch & gmc_yellow))) {
//printf("~1 Setting %d 0x%x to 100% cusp map\n",i,out[i].ch);
out[i].c.w.l = 1.0; /* 100% mapping */
out[i].c.w.c = 1.0;
out[i].c.w.h = 1.0;
out[i].c.tw = 1.0; /* Moderate twist */
out[i].c.cx = 1.0; /* No expansion */
}
if (rel_oride == 1) { /* A high saturation "clip" like mapping */
out[i].r.rdl = 1.0; /* No relative neighbourhood/smoothing */
out[i].r.rdh = 1.0; /* No relative neighbourhood/smoothing */
out[i].r.dsm = 0.0; /* No relative neighbourhood/smoothing */
out[i].d.co = 0.0; /* No depth weighting */
out[i].d.xo = 0.0; /* No depth weighting */
} else if (rel_oride == 2) { /* A maximal feature preserving mapping */
out[i].r.rdl *= 1.6; /* Extra neighbourhood size */
out[i].r.rdh *= 1.6; /* Extra neighbourhood size */
}
}
}
/* Blend two expanded groups of individual weights into one */
void near_xwblend(
gammapweights *dst,
gammapweights *src1, double wgt1,
gammapweights *src2, double wgt2
) {
int i;
for (i = 0; i < 14; i++)
near_wblend(&dst[i], &src1[i], wgt1, &src2[i], wgt2);
}
/* Blend three expanded groups of individual weights into one */
void near_xwblend3(
gammapweights *dst,
gammapweights *src1, double wgt1,
gammapweights *src2, double wgt2,
gammapweights *src3, double wgt3
) {
int i;
for (i = 0; i < 14; i++)
near_wblend3(&dst[i], &src1[i], wgt1, &src2[i], wgt2, &src3[i], wgt3);
}
/* Convert overall, hue dom & l dom to iweight */
static void comp_iweight(iweight *iw, double o, double h, double l) {
double c, lc;
if (h < 0.0)
h = 0.0;
else if (h > 1.0)
h = 1.0;
if (l < 0.0)
l = 0.0;
else if (l > 1.0)
l = 1.0;
lc = 1.0 - h;
c = (1.0 - l) * lc;
l = l * lc;
o /= sqrt(l * l + c * c + h * h);
iw->l = o * l;
iw->c = o * c;
iw->h = o * h;
}
/* Given a point location, return the interpolated weighting values at that point. */
/* (Typically non-cusp mapped source location assumed, and source gamut cusps used.) */
/* (Assume init_ce() has been called to setip smthopt!) */
void interp_xweights(gamut *gam, gammapweights *out, double pos[3],
gammapweights in[14], smthopt *s, int cvec) {
double h, JCh[3], tmp[3];
int li, ui; /* The two hue indexes the color is between */
double lh, uh; /* Lower/upper hue of two colors */
double lw, uw; /* Lower/upper blend values */
double cusps[6][3];
gammapweights light, dark;
/* Convert to polar */
icmLab2LCh(JCh, pos);
if (gam->getcusps(gam, cusps) != 0) { /* Failed */
int isJab = gam->isJab ? 1 : 0;
/* Figure out what hextant we're between using generic cusps */
for (li = 0; li < 6; li++) {
ui = li < 5 ? li + 1 : 0;
h = JCh[2];
lh = gam_hues[isJab][li]; /* use generic ones */
uh = gam_hues[isJab][ui];
if (uh < lh) {
if (h < uh)
h += 360.0;
uh += 360.0;
}
if (h >= (lh - 1e-12) && h < (uh + 1e-12))
break;
}
} else {
/* Locate the source cusps that this point lies between */
for (li = 0; li < 6; li++) {
double tt[3];
ui = li < 5 ? li + 1 : 0;
h = JCh[2];
icmLab2LCh(tt, cusps[li]);
lh = tt[2];
icmLab2LCh(tt, cusps[ui]);
uh = tt[2];
if (uh < lh) {
if (h < uh)
h += 360.0;
uh += 360.0;
}
if (h >= (lh - 1e-12) && h < (uh + 1e-12))
break;
}
}
if (li >= 6) /* Assert */
error("gamut, interp_xweights: unable to locate hue %f cusps\n",JCh[2]);
/* Compute hue angle blend weights */
uw = (h - lh)/(uh - lh);
if (uw < 0.0)
uw = 0.0;
else if (uw > 1.0)
uw = 1.0;
uw = uw * uw * (3.0 - 2.0 * uw); /* Apply spline to smooth interpolation */
lw = (1.0 - uw);
/* Blend weights at the two hues */
near_wblend(&light, &in[li], lw, &in[ui], uw);
near_wblend(&dark, &in[7 + li], lw, &in[7 + ui], uw);
/* If we're close to the center, blend to the neutral weight */
if (JCh[1] < NEUTRAL_C) {
lw = (NEUTRAL_C - JCh[1])/NEUTRAL_C;
uw = (1.0 - lw);
near_wblend(&light, &in[6], lw, &light, uw);
near_wblend(&dark, &in[7 + 6], lw, &dark, uw);
}
/* Figure out where we are between light and dark, */
/* and create blend between their weightings */
uw = (JCh[0] - DARK_L)/(LIGHT_L - DARK_L);
if (uw > 1.0)
uw = 1.0;
else if (uw < 0.0)
uw = 0.0;
uw = uw * uw * (3.0 - 2.0 * uw); /* Apply spline to smooth interpolation */
lw = (1.0 - uw);
near_wblend(out, &dark, lw, &light, uw);
/* Convert radial dominance weights into raw weights */
comp_iweight(&out->rl, out->l.o, out->l.h, out->l.l);
//printf("~1 %d: src %f %f %f (cvec %d)\n",s->ix, pos[0],pos[1],pos[2],cvec);
/* Compute l dominance value vs. closness to white or black point */
{
double wl, gl, bl, uw, l;
/* Closness to white and black points */
uw = comp_lvc(s, pos);
//printf("~1 uw = %f\n",uw);
if (uw >= 0) {
/* Scale to threshold */
if (uw > (1.0 - out->a.wlth))
uw = (uw - 1.0 + out->a.wlth)/out->a.wlth;
else
uw = 0.0;
//printf("~1 white, thresholded uw %f\n",uw);
/* Blend in log ratio space */
wl = log((1.0 - out->a.wl + 1e-5)/(out->a.wl + 1e-5));
gl = log((1.0 - out->a.gl + 1e-5)/(out->a.gl + 1e-5));
l = exp(uw * wl + (1.0 - uw) * gl);
l = ((1.0 - l) * 1e-5 + 1.0)/(l + 1.0);
} else {
uw = -uw;
/* Apply power */
uw = pow(uw, out->a.blpow);
//printf("~1 black with power uw %f\n",uw);
/* Blend in log ratio space */
gl = log((1.0 - out->a.gl + 1e-5)/(out->a.gl + 1e-5));
bl = log((1.0 - out->a.bl + 1e-5)/(out->a.bl + 1e-5));
l = exp(uw * bl + (1.0 - uw) * gl);
l = ((1.0 - l) * 1e-5 + 1.0)/(l + 1.0);
}
//printf("~1 wl %f, gl %f, bl %f -> %f\n",out->a.wl,out->a.gl,out->a.bl,l);
/* Convert absolute dominance weights into raw weights */
comp_iweight(&out->ra, out->a.o, out->a.h, l);
//printf("~1 l %f, h %f, ra l %f c %f h %f\n\n", l, out->a.h, out->ra.l, out->ra.c, out->ra.h);
}
}
/* Callback used by expdstbysrcmdst() to establish the expected compression */
/* mapping direction. p2 should be the center point, so depth from the center */
/* can be computed. We return a point on the neutral axis. */
static void cvect(
void *cntx, /* smthopt * */
double *p2, /* Return point displaced from p1 in desired direction */
double *p1 /* Given point */
) {
double vv, lv[3];
smthopt *s = (smthopt *)cntx;
gammapweights out;
interp_xweights(s->sgam, &out, p1, s->xwh, s, 1);
//printf("~1 at %f %f %f, lch weight %f %f %f\n", p1[0], p1[1], p1[2], out.ra.l, out.ra.c, out.ra.h);
/* Now we need to convert the absolute weighting out.ra into a vector */
/* We do this in a very simple minded fashion. The hue weighting is ignored, */
/* because we assume a direction towards the neutral axis. The C weight is */
/* assumed to be the weight towards the grey point, while the L weight */
/* assumed to be the weight towards the point on the neutral axis with */
/* the same L value. */
/* Parameter along neutral axis black to white */
vv = (p1[0] - s->cusps[0][7][0])/(s->cusps[0][6][0] - s->cusps[0][7][0]);
/* lv is point at same L on neutral axis */
lv[0] = p1[0];
lv[1] = vv * (s->cusps[0][6][1] - s->cusps[0][7][1]) + s->cusps[0][7][1];
lv[2] = vv * (s->cusps[0][6][2] - s->cusps[0][7][2]) + s->cusps[0][7][2];
/* Normalise l * c weight to sum to 1.0 */
vv = fabs(out.ra.l + out.ra.c);
if (vv < 1e-7) { /* Hmm. */
out.ra.l = out.ra.c = 0.5;
} else {
out.ra.l /= vv;
out.ra.c /= vv;
}
/* Make p2 the weighted sum of equivalent L value and grey value on */
/* the neutral axis. */
icmScale3(lv, lv, out.ra.l);
icmScale3(p2, s->cusps[0][8], out.ra.c);
icmAdd3(p2, p2, lv);
//printf("~1 p2 %f %f %f\n", p2[0], p2[1], p2[2]);
}
/* Shrink function */
static void doshrink(smthopt *s, double *out, double *in, double shrink) {
double rad, len, p2[3];
cvect((void *)s, p2, in); /* Get shrink direction */
/* Conservative radius of point */
rad = sqrt(in[1] * in[1] + in[2] * in[2]);
len = shrink;
if (rad < (2.0 * shrink))
len = rad * 0.5;
icmNormalize33(out, p2, in, len);
}
/* Convenience function. Given a mapping vector, return the */
/* intersection with the given gamut that is in the mapping */
/* direction. Return NZ if no intersection */
static int vintersect(
gamut *g,
int *p1out, /* Return nz if p1 is outside the gamut */
double isec[3], /* Return intersection point */
double p1[3], /* First point */
double p2[3] /* Second point */
) {
gispnt lp[40];
int ll, i, bi;
if ((ll = g->vector_isectns(g, p1, p2, lp, 40)) == 0)
return 1;
/* Locate the segment or non-segment the source lies in */
for (bi = -1, i = 0; i < ll; i += 2) {
if ((i == 0 || lp[i-1].pv < 0.0) /* p1 is outside gamut */
&& lp[i].pv >= -1e-2) {
bi = i;
if (p1out != NULL)
*p1out = 1;
break;
}
if (lp[i].pv <= 0.0 /* p1 is inside gamut */
&& lp[i+1].pv >= -1e-2) {
bi = i+1;
if (p1out != NULL)
*p1out = 0;
break;
}
}
if (bi < 0)
return 1;
if (isec != NULL)
icmCpy3(isec, lp[bi].ip);
return 0;
}
/* Convenience function. Given a point and an inwards mapping vector, */
/* if the point is within the gamut, return the first intersection in */
/* the opposite to vector direction. If the point is outside the gamut, */
/* return the first intersction in the vector direction. */
/* Return NZ if no intersection */
static int vintersect2(
gamut *g,
int *p1out, /* Return nz if p1 is outside the gamut */
double isec[3], /* Return intersection point */
double vec[3], /* Vector */
double p1[3] /* Point */
) {
gispnt lp[40];
double p2[3];
int ll, i, bi;
icmAdd3(p2, p1, vec);
if ((ll = g->vector_isectns(g, p1, p2, lp, 40)) == 0)
return 1;
/* Locate the segment or non-segment the source lies in */
for (bi = -1, i = 0; i < ll; i += 2) {
if ((i == 0 || lp[i-1].pv < 0.0) /* p1 is outside gamut, */
&& lp[i].pv >= 0.0) { /* so look in +ve pv direction. */
bi = i;
if (p1out != NULL)
*p1out = 1;
break;
}
if (lp[i].pv <= 0.0 /* p1 is inside gamut, */
&& lp[i+1].pv >= 0.0) { /* so look in -ve pv direction. */
bi = i;
if (p1out != NULL)
*p1out = 0;
break;
}
}
if (bi < 0)
return 1;
if (isec != NULL)
icmCpy3(isec, lp[bi].ip);
return 0;
}
/* ============================================ */
/* Return the maximum number of points that will be generated */
/* (This isn't accurate due to manipulation of the gamuts in nearsmth!) */
int near_smooth_np(
gamut **pp_gam, /* Return gamut that was used for points */
gamut *sc_gam, /* Source colorspace gamut */
gamut *si_gam, /* Source image gamut (== sc_gam if none) */
gamut *dc_gam, /* Destination colorspace gamut */
double xvra, /* Extra vertex ratio */
int gmult, /* Guide point multiplier, typically 4 */
int surfgres /* surface grid point resolution, 0 for none */
) {
gamut *p_gam; /* Gamut used for points - either source colorspace or image */
int ntpts, nmpts, nspts, nipts, ndpts;
int hsurfgres = (surfgres + 1)/2; /* near_smooth uses half */
nspts = sc_gam->nverts(sc_gam);
nipts = si_gam->nverts(si_gam);
ndpts = dc_gam->nverts(dc_gam);
p_gam = sc_gam;
/* Target number of points is max of any gamut */
ntpts = nspts > nipts ? nspts : nipts;
ntpts = ntpts > ndpts ? ntpts : ndpts;
ntpts = (int)(ntpts * xvra + 0.5);
/* Use image gamut if it exists */
if (nspts < nipts || si_gam != sc_gam) {
nspts = nipts; /* Use image gamut instead */
p_gam = si_gam;
}
xvra = ntpts/(double)nspts;
nmpts = p_gam->nssverts(p_gam, xvra); /* Stratified Sampling source points */
nmpts *= gmult; /* Allow for sub-surface points etc. */
if (hsurfgres >= 4) {
nmpts += hsurfgres * hsurfgres * hsurfgres
- (hsurfgres -4) * (hsurfgres -4) * (hsurfgres -4);
}
if (pp_gam != NULL)
*pp_gam = p_gam;
return nmpts;
}
/* ============================================ */
/* Return a list of points. Free list after use */
/* Return NULL on error */
nearsmth *near_smooth(
int verb, /* Verbose flag */
int *npp, /* Return the actual number of points returned */
gamut *sc_gam, /* Source colorspace gamut - uses cusp info if availablle */
gamut *si_gam, /* Source image gamut (== sc_gam if none), just used for surface. */
gamut *dc_gam, /* Destination colorspace gamut */
int src_kbp, /* Use K only black point as src gamut black point */
int dst_kbp, /* Use K only black point as dst gamut black point */
double d_bp[3], /* Override destination target black point - may be NULL */
gammapweights xwh[14],/* Structure holding expanded hextant weightings */
double gamcknf, /* Gamut compression knee factor, 0.0 - 1.0 */
double gamxknf, /* Gamut expansion knee factor, 0.0 - 1.0 */
int usecomp, /* Flag indicating whether smoothed compressed value will be used */
int useexp, /* Flag indicating whether smoothed expanded value will be used */
double xvra, /* Extra number of vertexes ratio */
int mapres, /* Grid res for 3D RSPL */
double mapsmooth, /* Target smoothing for 3D RSPL */
double gexp, /* Grid expansion ratio, none = 1.0 */
int surfpnts, /* Flag - add surface grid points */
datai map_il, /* Return expanded input range */
datai map_ih,
datao map_ol, /* Return expanded output range */
datao map_oh
) {
smthopt opts; /* optimisation and cusp mapping context */
int ix, i, j, k;
gamut *p_gam; /* Gamut used for points == either source colorspace or image */
gamut *src_gam; /* Intersection of src and img gamut gamut */
gamut *dst_gam; /* Modified destination gamut suitable for mapping from src_gam. */
/* If compression, this is the intersection of src_gam and dc_gam. */
/* If expansion, this is the src_gam expanded by dc_gam - sc_gam. */
gamut *nedst_gam;/* Same as above, but not expanded. */
int mxnmpts; /* Allocated number of mapping points */
int nmpts; /* Number of mapping gamut points */
nearsmth *smp; /* Absolute delta E weighting */
int pass;
int it;
rspl *evectmap = NULL; /* evector map */
double codf; /* Itteration overshoot/damping factor */
double mxmv; /* Maximum a point gets moved */
int nmxmv; /* Number of maxmoves less than stopping threshold */
int dmapres = 1; /* Change in mapres when applying gexp */
int hmapres; /* Half mapres */
int hdmapres; /* Half change in mapres */
rspl *lastmap = NULL; /* Last gamut mapping map created, if any */
/* Check gamuts are compatible */
if (sc_gam->compatible(sc_gam, dc_gam) == 0
|| (si_gam != NULL && sc_gam->compatible(sc_gam, si_gam) == 0)) {
fprintf(stderr,"gamut map: Gamuts aren't compatible\n");
*npp = 0;
return NULL;
}
mxnmpts = near_smooth_np(&p_gam, sc_gam, si_gam, dc_gam, xvra, 1, surfpnts ? mapres : 0);
nmpts = 0;
/* Setup opts structure */
opts.useexp = useexp; /* Expansion used ? */
opts.debug = 0; /* No debug powell() failure */
opts.xwh = xwh; /* Weightings */
opts.sgam = sc_gam; /* Source colorspace gamut */
/* Setup source & dest neutral axis transform if white/black available. */
/* If cusps are available, also figure out the transformations */
/* needed to map source cusps to destination cusps */
init_ce(&opts, sc_gam, si_gam, dc_gam, src_kbp, dst_kbp, d_bp);
/* Allocate our guide points */
if ((smp = (nearsmth *)calloc(mxnmpts, sizeof(nearsmth))) == NULL) {
fprintf(stderr,"gamut map: Malloc of near smooth points failed\n");
*npp = 0;
return NULL;
}
/* Create a source gamut surface that is the image gamut intersected */
/* with the source colorspace gamut, in case something strange with the */
/* image gamut. (gammap.c may have already done this) */
src_gam = sc_gam; /* Alias to source space gamut */
if (si_gam != sc_gam) {
if ((src_gam = new_gamut(0.0, 0, 0)) == NULL) {
fprintf(stderr,"gamut map: new_gamut failed\n");
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
src_gam->intersect(src_gam, si_gam, sc_gam);
#ifdef SAVE_VRMLS
{
char src_gam_name[40] = "si_gam";
printf("###### gamut/nearsmth.c: writing diagnostic si_gam%s, src_gam%s\n",vrml_ext(),vrml_ext());
strcat(src_gam_name, vrml_ext());
src_gam->write_vrml(si_gam, src_gam_name, 1, 0);
strcpy(src_gam_name, "src_gam");
strcat(src_gam_name, vrml_ext());
src_gam->write_vrml(src_gam, src_gam_name, 1, 0);
}
#endif
}
dst_gam = src_gam; /* Default no compress or expand */
/* non-expanded dst_gam for testing double back img points against: */
nedst_gam = src_gam; /* Default same as dst_gam */
/* Convert dst_gam to compress and/or expand target for mapping src_gam to. */
if (usecomp || useexp) {
if ((nedst_gam = dst_gam = new_gamut(0.0, 0, 0)) == NULL) {
fprintf(stderr,"gamut map: new_gamut failed\n");
if (src_gam != sc_gam)
src_gam->del(src_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
/* For compression only, nedst_gam and dst_gam are smaller of src_gam and dc_gam space. */
/* Augment the dst_gam with neutral axis points in case the source gamut */
/* has a "spike" that separates it from the neutral axis, allowing */
/* mapping. */
nedst_gam->nexpintersect(nedst_gam, dc_gam, src_gam);
if (useexp) {
/* No image gamut - dest colorspace is target */
if (si_gam == sc_gam) {
dst_gam = dc_gam; /* Expanded dest is colorspace dest */
/* There is an image gamut, so */
/* Expand nedst_gam to create dst_gam expanded in proportion to where */
/* dc_gam is outside sc_gam */
} else {
if ((dst_gam = new_gamut(0.0, 0, 0)) == NULL) {
fprintf(stderr,"gamut map: new_gamut failed\n");
if (src_gam != sc_gam)
src_gam->del(src_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
/* Initialise this gamut with the nedst_gam expanded by ((dc_gam - sc_gam) > 0) */
dst_gam->expdstbysrcmdst(dst_gam, nedst_gam, sc_gam, dc_gam, cvect, &opts);
}
}
}
#ifdef SAVE_VRMLS
{
char dst_gam_name[30] = "dst_gam";
printf("###### gamut/nearsmth.c: writing diagnostic dst_gam%s, nedst_gam%s\n",vrml_ext(),vrml_ext());
strcat(dst_gam_name, vrml_ext());
dst_gam->write_vrml(dst_gam, dst_gam_name, 1, 0);
strcpy(dst_gam_name, "nedst_gam");
strcat(dst_gam_name, vrml_ext());
nedst_gam->write_vrml(nedst_gam, dst_gam_name, 1, 0);
}
#endif
/* Create a list of the mapping guide points, setup for a null mapping */
VA(("Creating the mapping guide point list\n"));
for (ix = i = 0; i < mxnmpts; i++) {
double imv[3], imr; /* Image gamut source point and radius */
double inorm[3]; /* Normal of image gamut surface at src point */
/* Get the source color/image space vertex value we are going */
/* to use as a sample point. */
if ((ix = p_gam->getssvert(p_gam, &imr, imv, inorm, ix)) < 0) {
break;
}
//printf("~1 got point %d out of %d\n",i+1,nmpts);
if (p_gam != sc_gam) { /* If src colorspace point, map to img gamut surface */
imr = src_gam->radial(src_gam, imv, imv);
}
/* If point is within non-expanded modified destination gamut, */
/* then it is a "double back"/convex image point, and should be ignored. */
if (nedst_gam->radial(nedst_gam, NULL, imv) > (imr + 1e-4)) {
VB(("Rejecting point %d because it's inside destination\n",i));
i--;
continue;
}
/* Lookup radialy equivalent point on modified destination gamut, */
/* in case we need it for compression or expansion */
smp[i].drr = dst_gam->radial(dst_gam, smp[i].drv, imv);
/* Default setup a null mapping of source image space point to source image point */
smp[i].uflag = smp[i].vflag = smp[i].gflag = 0;
smp[i].dr = smp[i].sr = smp[i]._sr = imr;
smp[i].dv[0] = smp[i].sv[0] = smp[i]._sv[0] = imv[0];
smp[i].dv[1] = smp[i].sv[1] = smp[i]._sv[1] = imv[1];
smp[i].dv[2] = smp[i].sv[2] = smp[i]._sv[2] = imv[2];
smp[i].w1 = 1.0;
smp[i].sgam = src_gam;
smp[i].dgam = src_gam;
smp[i].dcgam = dc_gam;
VB(("In Src %d = %f %f %f\n",i,smp[i].sv[0],smp[i].sv[1],smp[i].sv[2]));
/* If we're going to comp. or exp., check that the guide vertex is not */
/* on the wrong side of the image gamut, due to the it being */
/* a small subset of the source colorspace, displaced to one side. */
/* Because of the gamut convexity limitations, this amounts */
/* to the source surface at the vertex being in the direction */
/* of the center. */
if (usecomp != 0 || useexp != 0) {
double mv[3], ml; /* Radial inward mapping vector */
double dir;
icmSub3(mv, src_gam->cent, smp[i].sv); /* Vector to center */
ml = icmNorm3(mv); /* It's length */
if (ml > 0.001) {
dir = icmDot3(mv, inorm); /* Compare to normal of src triangle */
//printf("~1 ix %d, dir = %f, dir/len = %f\n",i,dir, dir/ml);
dir /= ml;
if (dir < 0.02) { /* If very shallow */
//printf("~1 rejecting point %d because it's oblique\n",i);
VB(("Rejecting point %d because it's oblique\n",i));
i--;
continue;
}
}
}
/* Set some default extra guide point values */
smp[i].anv[0] = smp[i].aodv[0] = smp[i].dv[0];
smp[i].anv[1] = smp[i].aodv[1] = smp[i].dv[1];
smp[i].anv[2] = smp[i].aodv[2] = smp[i].dv[2];
smp[i].w1 = 1.01; /* Use 1.01 as marker value */
VB(("Src %d = %f %f %f\n",i,smp[i].sv[0],smp[i].sv[1],smp[i].sv[2]));
VB(("Dst %d = %f %f %f\n",i,smp[i].dv[0],smp[i].dv[1],smp[i].dv[2]));
}
nmpts = i; /* Number of points after rejecting any */
*npp = nmpts;
/* Don't need this anymore */
if (nedst_gam != src_gam && nedst_gam != dst_gam)
nedst_gam->del(nedst_gam);
nedst_gam = NULL;
/* If nothing to be compressed or expanded, then return */
if (usecomp == 0 && useexp == 0) {
VB(("Neither compression nor expansion defined\n"));
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
return smp;
}
/* Set the parameter weights for each point */
for (i = 0; i < nmpts; i++) {
opts.ix = i; /* Point in question */
opts.p = &smp[i];
/* Determine the parameter weighting for this point */
interp_xweights(opts.sgam, &smp[i].wt, smp[i]._sv, opts.xwh, &opts, 0);
}
/* ~~ would be nice to eliminate the need for dst_gam that is the intersection
* of dc_gam and sc/img_gam here. Problem is determining expansion vector
* direction in a way that is consistent with the absolute error weighting.
*
* For the moment leave the current appoach of using the dst_gam that has been
* expanded in proportion to dc_gam - sc_gam in cvec() direction, since
* the absolute error weighting is use to map the sv to that surface.
*/
VA(("Setting up cusp rotated compression or expansion mappings\n"));
VB(("rimv = Cusp rotated cspace/image gamut source point\n"));
VB(("imv = cspace/image gamut source point\n"));
VB(("drv = Destination space radial point and radius \n"));
/* Setup the cusp rotated compression or expansion mappings */
for (i = 0; i < nmpts; i++) {
double imv[3], imr; /* cspace/image gamut source point and radius */
double rimv[3], rimr; /* Cusp rotated cspace/image gamut source point and radius */
opts.ix = i; /* Point in question */
opts.p = &smp[i];
/* Grab the source image point */
imr = smp[i]._sr;
imv[0] = smp[i]._sv[0];
imv[1] = smp[i]._sv[1];
imv[2] = smp[i]._sv[2];
/* Compute the cusp rotated version of the cspace/image points */
comp_ce(&opts, rimv, imv, &smp[i].wt);
VB(("%f de, ix %d: cusp mapped %f %f %f -> %f %f %f\n", icmNorm33(rimv,imv), i, imv[0], imv[1], imv[2], rimv[0], rimv[1], rimv[2]));
rimr = icmNorm33(rimv, src_gam->cent);
/* Default setup a no compress or expand mapping of */
/* source space/image point to modified destination gamut. */
smp[i].sr = rimr;
smp[i].sv[0] = rimv[0]; /* Temporary rotated src point */
smp[i].sv[1] = rimv[1];
smp[i].sv[2] = rimv[2];
smp[i].sgam = src_gam;
smp[i].dgam = dst_gam;
VB(("\n"));
VB(("point %d:, rimv = %f %f %f, rimr = %f\n",i,rimv[0],rimv[1],rimv[2],rimr));
VB(("point %d:, imv = %f %f %f, imr = %f\n",i,imv[0],imv[1],imv[2],imr));
VB(("point %d:, drv = %f %f %f, drr = %f\n",i,smp[i].drv[0],smp[i].drv[1],smp[i].drv[2],smp[i].drr));
/* Set a starting point for the optimisation */
smp[i].dgam->nearest(smp[i].dgam, smp[i].dv, smp[i].sv);
smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent);
/* Re-lookup radialy equivalent point on destination gamut, */
/* to match rotated source */
smp[i].drr = smp[i].dgam->radial(smp[i].dgam, smp[i].drv, smp[i].sv);
/* A default average neighbour value */
smp[i].anv[0] = smp[i].drv[0];
smp[i].anv[1] = smp[i].drv[1];
smp[i].anv[2] = smp[i].drv[2];
}
/* Setup the white & black point blend factor, that makes sure the white and black */
/* points are not displaced. */
for (i = 0; i < nmpts; i++) {
smp[i].naxbf = comp_naxbf(&opts, smp[i]._sv);
//printf("~1 point %d, comp_lvc = %f, naxbf = %f\n",i,comp_lvc(&opts, smp[i]._sv),smp[i].naxbf);
}
/* Setup the 3D -> 2D tangent conversion ready for guide vector optimization */
{
double ta[3] = { 50.0, 0.0, 0.0 };
double tc[3] = { 0.0, 0.0, 0.0 };
for (ix = 0; ix < nmpts; ix++) {
/* Compute a rotation that brings the target point location to 50,0,0 */
icmVecRotMat(smp[ix].m2d, smp[ix].sv, sc_gam->cent, ta, tc);
/* And inverse */
icmVecRotMat(smp[ix].m3d, ta, tc, smp[ix].sv, sc_gam->cent);
}
}
/* Figure out which neighbors of the source values to use */
/* for the relative error & smoothing calculations. */
/* Locate the neighbor within the radius for this point, */
/* and weight them with a Gausian filter weight. */
/* The radius is computed on the normalised surface for this point. */
VA(("Establishing filter neighbourhoods\n"));
{
double avgnd = 0.0; /* Total the average number of neighbours */
int minnd = 1e6; /* Minimum number of neighbours */
for (ix = 0; ix < nmpts; ix++) {
int sit;
double rr;
double rrdl, rrdh;
//printf("~1 computing neigbourhood for point %d at %f %f %f\n",ix, smp[ix].sv[0], smp[ix].sv[1], smp[ix].sv[2]);
rrdl = smp[ix].wt.r.rdl;
rrdh = smp[ix].wt.r.rdh;
//printf("~1 rdl %f, rdh %f\n",rrdl, rrdh);
if (rrdl < 1e-3) rrdl = 1e-3;
if (rrdh < 1e-3) rrdh = 1e-3;
rr = sqrt(smp[ix].sv[1] * smp[ix].sv[1] + smp[ix].sv[2] * smp[ix].sv[2]);
if (rr < 5.0)
rr = 5.0;
rr = sqrt(rr / 50.0);
// Scale radius aprox. by cylindrical distance ?? */
//rrdh *= rr;
rrdl = 1.0/rrdl;
rrdh = 1.0/rrdh;
smp[ix].nnd = 0;
/* Until we get a minimum number of neighbors */
for (sit = 0; smp[ix].nnd < 8 && sit < 10; sit++) {
smp[ix].nnd = 0;
/* Search for points within the radius */
for (i = 0; i < nmpts; i++) {
double tt, dd, tv;
/* Dot of neighbor color and point */
tv = smp[i].sv[1] * smp[ix].sv[1] + smp[i].sv[2] * smp[ix].sv[2];
/* Ignore if of the opposote hue */
if (tv < 0.0)
continue;
dd = 0.0;
tt = rrdl * (smp[i].sv[0] - smp[ix].sv[0]);
dd += tt * tt;
tt = rrdh * (smp[i].sv[1] - smp[ix].sv[1]);
dd += tt * tt;
tt = rrdh * (smp[i].sv[2] - smp[ix].sv[2]);
dd += tt * tt;
/* If we're within the filtering radius, */
/* and not of the opposite hue */
if (dd <= 1.0) {
double w;
dd = sqrt(dd); /* Convert to radius <= 1.0 */
/* Add this point into the list */
if (smp[ix].nnd >= smp[ix]._nnd) {
neighb *nd;
int _nnd;
_nnd = 5 + smp[ix]._nnd * 2;
if ((nd = (neighb *)realloc(smp[ix].nd, _nnd * sizeof(neighb))) == NULL) {
VB(("realloc of neighbs at vector %d failed\n",ix));
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
smp[ix].nd = nd;
smp[ix]._nnd = _nnd;
}
smp[ix].nd[smp[ix].nnd].n = &smp[i];
/* Box filter */
// w = 1.0;
/* Triangle filter */
// w = 1.0 - dd;
// /* Cubic spline filter (default) */
w = 1.0 - dd;
w = w * w * (3.0 - 2.0 * w);
/* Gaussian filter */
// w = exp(-9.0 * dd/2.0);
/* Sphere filter */
// w = sqrt(1.0 - dd * dd);
/* Sinc^2 filter */
// w = 3.1415926 * dd;
// if (w < 1e-9)
// w = 1e-9;
// w = sin(w)/w;
// w = w * w;
/* Save weighting */
smp[ix].nd[smp[ix].nnd].w = w; /* Will be normalized to sum to 1.0 */
// /* Sphere filter for depth */
// w = sqrt(1.0 - dd * dd);
/* Cubic spline filter for depth (default) */
// w = 1.0 - dd;
// w = w * w * (3.0 - 2.0 * w);
// /* Gaussian filter for depth */
// w = exp(-9.0 * dd/2.0);
/* Save weighting */
smp[ix].nd[smp[ix].nnd].rw = w; /* Won't be normalized */
//printf("~1 adding %d at %f %f %f, rad %f L %f, w %f dir.\n",i, smp[i].sv[0], smp[i].sv[1], smp[i].sv[2],sqrt(dd),tv[0],smp[ix].nd[smp[ix].nnd].w);
smp[ix].nnd++;
}
}
/* Increase radius in case we haven't found enough neighbors */
rrdl /= 1.5;
rrdh /= 1.5;
}
//if (smp[ix].nnd < 8) printf("~1 point %d has %d neighbors\n",ix,smp[ix].nnd);
if (smp[ix].nnd < minnd)
minnd = smp[ix].nnd;
avgnd += (double)smp[ix].nnd;
//printf("~1 total of %d dir neigbours after try %d\n",smp[ix].nnd, sit);
}
avgnd /= (double)nmpts;
if (verb) printf("Average number of direction guide neigbours = %f, min = %d\n",avgnd,minnd);
/* Now normalize each points weighting */
for (i = 0; i < nmpts; i++) {
double tw;
/* Adjust direction weights to sum to 1.0 */
for (tw = 0.0, j = 0; j < smp[i].nnd; j++) {
tw += smp[i].nd[j].w;
}
for (j = 0; j < smp[i].nnd; j++) {
smp[i].nd[j].w /= tw;
}
}
}
#ifdef SHOW_NEIGB
{
vrml *wrl = NULL;
double yellow[3] = { 1.0, 1.0, 0.0 };
double red[3] = { 1.0, 0.0, 0.0 };
double green[3] = { 0.0, 1.0, 0.0 };
double magenta[3] = { 1.0, 0.0, 1.0 };
double pp[3];
for (i = 0; i < nmpts; i++) {
if ((wrl = new_vrml("neigb", 1, vrml_lab)) == NULL)
error("New %s failed for '%s%s'",vrml_format(),"neigb",vrml_ext());
for (j = 0; j < smp[i].nnd; j++) {
if (smp[i].nd[j].n == &smp[i])
continue;
wrl->add_col_vertex(wrl, 0, smp[i].sv, yellow);
wrl->add_col_vertex(wrl, 0, smp[i].nd[j].n->sv, yellow);
}
wrl->make_lines(wrl, 0, 2);
wrl->add_marker(wrl, smp[i].sv, red, 0.5);
wrl->del(wrl);
printf("Waiting for input after writing 'neigb%s' for point %d:\n",vrml_ext(),i);
getchar();
}
}
#endif /* SHOW_NEIGB */
#ifdef SHOW_NEIGB_WEIGHTS
{
vrml *wrl = NULL;
double yellow[3] = { 1.0, 1.0, 0.0 };
double red[3] = { 1.0, 0.0, 0.0 };
double pp[3];
for (i = 0; i < nmpts; i++) {
double maxw;
if ((wrl = new_vrml("weights", 1, vrml_lab)) == NULL)
error("New %s failed for '%s%s'",vrml_format(),"weights",vrml_ext());
maxw = 0.0;
for (j = 0; j < smp[i].nnd; j++) {
if (smp[i].nd[j].w > maxw)
maxw = smp[i].nd[j].w;
}
for (j = 0; j < smp[i].nnd; j++) {
wrl->add_col_vertex(wrl, 0, smp[i].sgam->cent, smp[i].nd[j].n == &smp[i] ? red : yellow);
icmNormalize33(pp, smp[i].nd[j].n->sv, smp[i].sgam->cent, smp[i].nd[j].w * 50.0/maxw);
wrl->add_col_vertex(wrl, 0, pp, smp[i].nd[j].n == &smp[i] ? red : yellow);
}
wrl->make_lines(wrl, 0, 2);
wrl->del(wrl);
printf("Waiting for input after writing 'weights%s' for point %d:\n",vrml_ext(),i);
getchar();
}
}
#endif /* SHOW_NEIGB_WEIGHTS */
/* Optimise the location of the source to destination mapping. */
if (verb) printf("Optimizing source to destination mapping...\n");
VA(("Doing first pass to locate the nearest point\n"));
/* First pass to locate the weighted nearest point, to use in subsequent passes */
{
double s[2] = { 20.0, 20.0 }; /* 2D search area */
double iv[3]; /* Initial start value */
double nv[2]; /* 2D New value */
double tp[3]; /* Resultint value */
double ne; /* New error */
int notrials = NO_TRIALS;
for (i = 0; i < nmpts; i++) { /* Move all the points */
double bnv[2]; /* Best 2d value */
double brv; /* Best return value */
int trial;
double mv;
opts.pass = 0; /* Itteration pass */
opts.ix = i; /* Point to optimise */
opts.p = &smp[i];
/* If the img point is within the destination, then we're */
/* expanding, so temporarily swap src and radial dest. */
/* (??? should we use the cvect() direction to determine swap, */
/* rather than radial ???) */
smp[i].swap = 0;
if (useexp && smp[i].dr > (smp[i].sr + 1e-9)) {
gamut *tt;
double dd;
smp[i].swap = 1;
tt = smp[i].dgam; smp[i].dgam = smp[i].sgam; smp[i].sgam = tt;
smp[i].dr = smp[i].sr;
smp[i].dv[0] = smp[i].sv[0];
smp[i].dv[1] = smp[i].sv[1];
smp[i].dv[2] = smp[i].sv[2];
smp[i].sr = smp[i].drr;
smp[i].sv[0] = smp[i].drv[0];
smp[i].sv[1] = smp[i].drv[1];
smp[i].sv[2] = smp[i].drv[2];
}
opts.wngam = smp[i].dgam; /* Nearest to dgam */
opts.wn = smp[i].sv; /* minimize optfunc1 sv -> dgam */
/* Convert our start value from 3D to 2D for speed. */
icmMul3By3x4(iv, smp[i].m2d, smp[i].dv);
nv[0] = iv[0] = iv[1];
nv[1] = iv[1] = iv[2];
/* Do several trials from different starting points to avoid */
/* any local minima, particularly with nearest mapping. */
brv = 1e38;
for (trial = 0; trial < notrials; trial++) {
double rv; /* Temporary */
/* Optimise the point */
if (powell(&rv, 2, nv, s, 0.01, 1000, optfunc1, (void *)(&opts), NULL, NULL) == 0
&& rv < brv) {
brv = rv;
//printf("~1 point %d, trial %d, new best %f\n",i,trial,sqrt(rv));
bnv[0] = nv[0];
bnv[1] = nv[1];
}
//else printf("~1 powell failed with rv = %f\n",rv);
/* Adjust the starting point with a random offset to avoid local minima */
nv[0] = iv[0] + d_rand(-20.0, 20.0);
nv[1] = iv[1] + d_rand(-20.0, 20.0);
}
if (brv == 1e38) { /* We failed to get a result */
fprintf(stderr, "multiple powells failed to get a result (1)\n");
#ifdef DEBUG_POWELL_FAILS
/* Optimise the point with debug on */
opts.debug = 1;
icmMul3By3x4(iv, smp[i].m2d, smp[i].dv);
nv[0] = iv[0] = iv[1];
nv[1] = iv[1] = iv[2];
powell(NULL, 2, nv, s, 0.01, 1000, optfunc1, (void *)(&opts), NULL, NULL);
#endif
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
/* Convert best result 2D -> 3D */
tp[2] = bnv[1];
tp[1] = bnv[0];
tp[0] = 50.0;
icmMul3By3x4(tp, smp[i].m3d, tp);
/* Remap it to the destinaton gamut surface */
smp[i].dgam->radial(smp[i].dgam, tp, tp);
icmCpy3(smp[i].aodv, tp);
/* Undo any swap */
if (smp[i].swap) {
gamut *tt;
double dd;
tt = smp[i].dgam; smp[i].dgam = smp[i].sgam; smp[i].sgam = tt;
/* We get the point on the real src gamut out when swap */
smp[i]._sv[0] = smp[i].aodv[0];
smp[i]._sv[1] = smp[i].aodv[1];
smp[i]._sv[2] = smp[i].aodv[2];
/* So we need to compute cusp mapped sv */
comp_ce(&opts, smp[i].sv, smp[i]._sv, &smp[i].wt);
smp[i].sr = icmNorm33(smp[i].sv, smp[i].sgam->cent);
VB(("Exp Src %d = %f %f %f\n",i,smp[i]._sv[0],smp[i]._sv[1],smp[i]._sv[2]));
smp[i].aodv[0] = smp[i].drv[0];
smp[i].aodv[1] = smp[i].drv[1];
smp[i].aodv[2] = smp[i].drv[2];
}
}
}
VA(("Locating weighted mapping vectors without smoothing\n"));
/* Second pass to locate the optimized overall weighted point nrdv[], */
/* which is a balance of absolute error, radial error, depth room weighting */
{
double s[2] = { 20.0, 20.0 }; /* 2D search area */
double iv[3]; /* Initial start value */
double nv[2]; /* 2D New value */
double tp[3]; /* Resultint value */
double ne; /* New error */
int notrials = NO_TRIALS;
for (i = 0; i < nmpts; i++) { /* Move all the points */
double bnv[2]; /* Best 2d value */
double brv; /* Best return value */
int trial;
double mv;
opts.pass = 0; /* Itteration pass */
opts.ix = i; /* Point to optimise */
opts.p = &smp[i];
//printf("~1 point %d, sv %f %f %f\n",i,smp[i].sv[0],smp[i].sv[1],smp[i].sv[2]);
/* Convert our start value from 3D to 2D for speed. */
icmMul3By3x4(iv, smp[i].m2d, smp[i].aodv);
nv[0] = iv[0] = iv[1];
nv[1] = iv[1] = iv[2];
//printf("~1 point %d, iv %f %f %f, 2D %f %f\n",i, smp[i].aodv[0], smp[i].aodv[1], smp[i].aodv[2], iv[0], iv[1]);
/* Do several trials from different starting points to avoid */
/* any local minima, particularly with nearest mapping. */
brv = 1e38;
for (trial = 0; trial < notrials; trial++) {
double rv; /* Temporary */
/* Optimise the point */
if (powell(&rv, 2, nv, s, 0.01, 1000, optfunc2, (void *)(&opts), NULL, NULL) == 0
&& rv < brv) {
brv = rv;
//printf("~1 point %d, trial %d, new best %f at xy %f %f\n",i,trial,sqrt(rv), nv[0],nv[1]);
bnv[0] = nv[0];
bnv[1] = nv[1];
}
//else printf("~1 powell failed with rv = %f\n",rv);
/* Adjust the starting point with a random offset to avoid local minima */
nv[0] = iv[0] + d_rand(-20.0, 20.0);
nv[1] = iv[1] + d_rand(-20.0, 20.0);
}
if (brv == 1e38) { /* We failed to get a result */
fprintf(stderr, "multiple powells failed to get a result (2)\n");
#ifdef DEBUG_POWELL_FAILS
/* Optimise the point with debug on */
opts.debug = 1;
icmMul3By3x4(iv, smp[i].m2d, smp[i].dv);
nv[0] = iv[0] = iv[1];
nv[1] = iv[1] = iv[2];
powell(NULL, 2, nv, s, 0.01, 1000, optfunc2, (void *)(&opts), NULL, NULL);
#endif
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
/* Convert best result 3D -> 2D */
tp[2] = bnv[1];
tp[1] = bnv[0];
tp[0] = 50.0;
icmMul3By3x4(tp, smp[i].m3d, tp);
/* Remap it to the destinaton gamut surface */
smp[i].dgam->radial(smp[i].dgam, tp, tp);
icmCpy3(smp[i].dv, tp); /* Default current solution */
icmCpy3(smp[i].nrdv, tp); /* Non smoothed result */
icmCpy3(smp[i].anv, tp); /* Starting point for smoothing */
smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent);
//printf("~1 %d: dv %f %f %f\n", i, smp[i].dv[0], smp[i].dv[1], smp[i].dv[2]);
}
}
/* Make sure the input and output ranges encompas the points */
for (i = 0; i < nmpts; i++) {
for (j = 0; j < 3; j++) {
if (smp[i]._sv[j] < map_il[j])
map_il[j] = smp[i]._sv[j];;
if (smp[i]._sv[j] > map_ih[j])
map_ih[j] = smp[i]._sv[j];
if (smp[i].sv[j] < map_il[j])
map_il[j] = smp[i].sv[j];;
if (smp[i].sv[j] > map_ih[j])
map_ih[j] = smp[i].sv[j];
if (smp[i].dv[j] < map_ol[j])
map_ol[j] = smp[i].dv[j];;
if (smp[i].dv[j] > map_oh[j])
map_oh[j] = smp[i].dv[j];
}
}
#ifdef NEVER
if (verb) {
printf("Input bounding box:\n");
printf(" %f -> %f, %f -> %f, %f -> %f\n",
map_il[0], map_ih[0], map_il[1], map_ih[1], map_il[2], map_ih[2]);
}
#endif
/* Expand the bounding box by gexp so that our surface grid points */
/* establish the extrapolation behaviour. Ensure that boundary */
/* lands on the new grid though. */
{
double scale;
dmapres = (int)(((mapres-1) - (mapres-1)/gexp)/2.0 + 0.5);
if (dmapres < 1)
dmapres = 1;
scale = (double)(mapres-1-dmapres)/(double)(mapres-1 - 2 * dmapres);
for (j = 0; j < 3; j++) {
double low, high;
high = map_ih[j];
low = map_il[j];
map_ih[j] = (scale * (high - low)) + low;
map_il[j] = (scale * (low - high)) + high;
}
#ifdef NEVER
if (verb) {
printf("After scaling up by %f, input bounding box:\n",scale);
printf(" %f -> %f, %f -> %f, %f -> %f\n",
map_il[0], map_ih[0], map_il[1], map_ih[1], map_il[2], map_ih[2]);
}
#endif
/* Values for grid surface points */
hmapres = (mapres+1)/2;
hdmapres = (dmapres+1)/2;
}
#if RSPLPASSES > 0 || VECADJPASSES > 0
VA(("Computing fine tuning correction direction:\n"));
/* We need inward pointing correction vectors to be able */
/* to do clipping and fine tuning. We create a shrunken */
/* version of the dst_gamut and a mapping based on the */
/* weighted minimum absolute error metric, and then */
/* create a rspl to represent that mapping. */
/* This sort of clipping direction helps preserve the */
/* mapping shape (hence smoothness), while minimizing the */
/* loss of saturation and change in dest. mapping location. */
{
gamut *shgam; /* Shrunken dst_gam */
double cusps[6][3];
double wp[3], bp[3], kp[3];
double p[3], p2[3], rad;
int i;
double s[2] = { 20.0, 20.0 }; /* 2D search area */
double iv[3]; /* Initial start value */
double nv[2]; /* 2D New value */
double tp[3]; /* Resultint value */
double ne; /* New error */
int notrials = NO_TRIALS;
cow *gpnts = NULL; /* Mapping points to create 3D -> 3D mapping */
datai il, ih;
datao ol, oh;
int gres[MXDI];
double avgdev[MXDO];
/* Create a gamut that is a shrunk version of the destination */
if ((shgam = new_gamut(dst_gam->getsres(dst_gam), dst_gam->getisjab(dst_gam),
dst_gam->getisrast(dst_gam))) == NULL) {
fprintf(stderr, "new_gamut failed\n");
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
shgam->setnofilt(shgam);
/* Translate all the surface nodes */
for (i = 0;;) {
double len;
if ((i = dst_gam->getrawvert(dst_gam, p, i)) < 0)
break;
doshrink(&opts, p, p, SHRINK);
shgam->expand(shgam, p);
}
/* Translate cusps */
if (dst_gam->getcusps(dst_gam, cusps) == 0) {
shgam->setcusps(shgam, 0, NULL);
for (i = 0; i < 6; i++) {
doshrink(&opts, p, cusps[i], SHRINK);
shgam->setcusps(shgam, 1, p);
}
shgam->setcusps(shgam, 2, NULL);
}
/* Translate white and black points */
if (dst_gam->getwb(dst_gam, wp, bp, kp, NULL, NULL, NULL) == 0) {
doshrink(&opts, wp, wp, SHRINK);
doshrink(&opts, bp, bp, SHRINK);
doshrink(&opts, kp, kp, SHRINK);
shgam->setwb(shgam, wp, bp, kp);
}
if ((gpnts = (cow *)malloc(nmpts * sizeof(cow))) == NULL) {
fprintf(stderr,"gamut map: Malloc of near smooth points failed\n");
shgam->del(shgam);
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
/* Now locate the closest points on the shrunken gamut */
/* and set them up for creating a rspl */
opts.wngam = shgam;
for (i = 0; i < nmpts; i++) { /* Move all the points */
gtri *ctri = NULL;
double tmp[3];
double bnv[2]; /* Best 2d value */
double brv; /* Best return value */
int trial;
double mv;
opts.pass = 0; /* Itteration pass */
opts.ix = i; /* Point to optimise */
opts.p = &smp[i];
opts.wn = smp[i].dv; /* minimize optfunc1a dv -> shgam */
/* Convert our start value from 3D to 2D for speed. */
icmMul3By3x4(iv, smp[i].m2d, smp[i].nrdv);
nv[0] = iv[0] = iv[1];
nv[1] = iv[1] = iv[2];
/* Do several trials from different starting points to avoid */
/* any local minima, particularly with nearest mapping. */
brv = 1e38;
for (trial = 0; trial < notrials; trial++) {
double rv; /* Temporary */
/* Optimise the point */
if (powell(&rv, 2, nv, s, 0.01, 1000, optfunc1a, (void *)(&opts), NULL, NULL) == 0
&& rv < brv) {
brv = rv;
bnv[0] = nv[0];
bnv[1] = nv[1];
}
/* Adjust the starting point with a random offset to avoid local minima */
nv[0] = iv[0] + d_rand(-20.0, 20.0);
nv[1] = iv[1] + d_rand(-20.0, 20.0);
}
if (brv == 1e38) { /* We failed to get a result */
fprintf(stderr, "multiple powells failed to get a result (3)\n");
#ifdef DEBUG_POWELL_FAILS
/* Optimise the point with debug on */
opts.debug = 1;
icmMul3By3x4(iv, smp[i].m2d, smp[i].nrdv);
nv[0] = iv[0] = iv[1];
nv[1] = iv[1] = iv[2];
powell(NULL, 2, nv, s, 0.01, 1000, optfunc1a, (void *)(&opts), NULL, NULL);
#endif
shgam->del(shgam); /* Done with this */
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
/* Convert best result 2D -> 3D */
tp[2] = bnv[1];
tp[1] = bnv[0];
tp[0] = 50.0;
icmMul3By3x4(tp, smp[i].m3d, tp);
/* Remap it to the destinaton gamut surface */
shgam->radial(shgam, tp, tp);
/* Compute mapping vector from dst to shdst */
icmSub3(smp[i].temp, tp, smp[i].nrdv);
/* In case shrunk vector is very short, add a small part */
/* of the nearest normal. */
smp[i].dgam->nearest_tri(smp[i].dgam, NULL, smp[i].nrdv, &ctri);
icmScale3(tmp, ctri->pe, 0.1); /* Scale to small inwards */
icmAdd3(smp[i].temp, smp[i].temp, tmp);
/* evector */
icmNormalize3(smp[i].temp, smp[i].temp, 1.0);
/* Place it in rspl setup array */
icmCpy3(gpnts[i].p, smp[i].nrdv);
icmCpy3(gpnts[i].v, smp[i].temp);
gpnts[i].w = 1.0;
}
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
gres[j] = mapres; /* Full resolution */
avgdev[j] = GAMMAP_RSPLAVGDEV;
}
evectmap = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */
evectmap->fit_rspl_w(evectmap, GAMMAP_RSPLFLAGS, gpnts, nmpts,
map_il, map_ih, gres, map_ol, map_oh, 1.0, avgdev, NULL);
#ifdef PLOT_EVECTS /* Create VRML of error correction vectors */
{
vrml *wrl = NULL;
int doaxes = 0;
double cc[3] = { 0.7, 0.7, 0.7 };
double red[3] = { 1.0, 0.0, 0.0 };
double green[3] = { 0.0, 1.0, 0.0 };
double tmp[3];
co cp;
#ifdef PLOT_AXES
doaxes = 1;
#endif
printf("###### gamut/nearsmth.c: writing diagnostic evects%s\n",vrml_ext());
if ((wrl = new_vrml("evects", doaxes, vrml_lab)) == NULL)
error("new_vrml failed for '%s%s'","evects",vrml_ext());
wrl->make_gamut_surface_2(wrl, dst_gam, 0.6, 0, cc);
cc[0] = -1.0;
wrl->make_gamut_surface(wrl, shgam, 0.2, cc);
/* Start of guide vector plot */
wrl->start_line_set(wrl, 0);
for (i = 0; i < nmpts; i++) {
wrl->add_col_vertex(wrl, 0, smp[i].nrdv, red);
#ifdef NEVER /* Plot created vectors */
icmScale3(tmp, smp[i].temp, 4.0);
icmSub3(tmp, smp[i].nrdv, tmp);
#else
/* Plot interpolated vectors */
icmCpy3(cp.p, smp[i].nrdv);
evectmap->interp(evectmap, &cp);
icmScale3(tmp, cp.v, 4.0);
icmSub3(tmp, smp[i].nrdv, tmp);
#endif
wrl->add_col_vertex(wrl, 0, tmp, green);
}
wrl->make_lines(wrl, 0, 2); /* Guide vectors */
wrl->del(wrl); /* Write and delete */
}
#endif /* PLOT_EVECTS */
shgam->del(shgam); /* Done with this */
free(gpnts);
}
#endif /* RSPLPASSES > 0 */
#if VECADJPASSES > 0
/* Fine tune vectors to compensate for side effects of vector smoothing */
/* Lookup correction vectors */
VA(("Smoothing guide vectors:\n"));
{
int pncliped = nmpts;
double delta;
/* Compute the source to destination neighborhood scale factors */
for (i = 0; i < nmpts; i++) {
double tmp[3];
double sav[3], dav[3]; /* Average center locations */
double sdev[3], ddev[3]; /* Average devation in each direction from center */
double scev, dcev; /* Average spherical deviation */
for (j = 0; j < 3; j++)
sav[j] = dav[j] = sdev[j] = ddev[j] = 0.0;
scev = dcev = 0.0;
/* Compute center average values */
for (j = 0; j < smp[i].nnd; j++) {
nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
double nw = smp[i].nd[j].w; /* Weight */
icmScale3(tmp, np->sv, nw);
icmAdd3(sav, sav, tmp);
icmScale3(tmp, np->dv, nw);
icmAdd3(dav, dav, tmp);
}
/* Compute average deviation in each direction */
for (j = 0; j < smp[i].nnd; j++) {
nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
double nw = smp[i].nd[j].w; /* Weight */
double tt;
icmSub3(tmp, sav, np->sv);
icmAbs3(tmp, tmp);
icmScale3(tmp, tmp, nw);
icmAdd3(sdev, sdev, tmp);
tt = icmNorm33(sav, np->sv);
tt *= nw;
scev += tt;
icmSub3(tmp, dav, np->dv);
icmAbs3(tmp, tmp);
icmScale3(tmp, tmp, nw);
icmAdd3(ddev, ddev, tmp);
tt = icmNorm33(dav, np->dv);
tt *= nw;
dcev += tt;
}
//printf("~1 %d: sdev %f %f %f, scev %f\n",i,sdev[0],sdev[1],sdev[2],scev);
//printf("~1 %d: ddev %f %f %f, dcev %f\n",i,ddev[0],ddev[1],ddev[2],dcev);
/* Try and protect against silliness */
if (scev < 1e-3 || dcev < 1e-3)
scev = dcev = 1e-3;
for (j = 0; j < 3; j++) {
if (sdev[j] < 1e-3 || ddev[j] < 1e-3) {
sdev[j] = scev;
ddev[j] = dcev;
}
}
/* Compute scale factors */
icmDiv3(smp[i].nscale, ddev, sdev); /* Scale = ddev/sdev */
#ifdef NEVER
if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01
|| smp[i].nscale[1] > 1.5 || smp[i].nscale[1] < 0.01
|| smp[i].nscale[2] > 1.5 || smp[i].nscale[2] < 0.01) {
printf("~1 %d: scale factors %f %f %f\n",i,smp[i].nscale[0], smp[i].nscale[1], smp[i].nscale[2]);
printf("~1 %d: from sdev %f %f %f\n",i,sdev[0], sdev[1], sdev[2]);
printf("~1 %d: from ddev %f %f %f\n",i,ddev[0], ddev[1], ddev[2]);
}
#endif /* NEVER */
}
/* Itterate smoothing until we're happy */
for (it = 0; it < VECADJPASSES; it++) {
int ncliped = 0;
double maxclipby = 0.0;
double avgclipby = 0.0;
/* Compute the neighbourhood smoothed anv[] from dv[] */
for (i = 0; i < nmpts; i++) {
double sav[3], dav[3]; /* Average locations */
double tmp[3], c1[3], c2[3];
double rdsm;
/* Compute average values */
sav[0] = sav[1] = sav[2] = 0.0;
dav[0] = dav[1] = dav[2] = 0.0;
for (j = 0; j < smp[i].nnd; j++) {
nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
double nw = smp[i].nd[j].w; /* Weight */
icmScale3(tmp, np->sv, nw); /* weight for filter */
icmAdd3(sav, sav, tmp); /* sum filtered value */
/* weight for filter */
tmp[0] = nw * np->dv[0]; /* Don't itterate J */
tmp[1] = nw * np->anv[1];
tmp[2] = nw * np->anv[2];
icmAdd3(dav, dav, tmp); /* sum filtered value */
}
/* Compute filtered value with source to dest scaling */
icmSub3(tmp, smp[i].sv, sav); /* Vector from average to src */
icmMul3(tmp, tmp, smp[i].nscale); /* Scale */
icmAdd3(tmp, tmp, dav); /* average dst + vector */
rdsm = 1.0 - sqrt(smp[i].wt.r.dsm); /* To degree of blending with unchanged */
icmBlend3(tmp, tmp, smp[i].dv, rdsm); /* Less than full imprint */
#if VECADJPASSES > 1
/* Clip to gamut */
if (dc_gam->nradial(dc_gam, c1, tmp) > (1.0 + 1e-6)) {
co cp;
double cvec[3];
/* Lookup "shrunk gamut" cliping direction */
icmCpy3(cp.p, tmp);
evectmap->interp(evectmap, &cp);
icmNormalize3(cvec, cp.v, 1.0);
if (!vintersect2(dc_gam, NULL, c2, cvec, tmp)) { /* Got an intersection */
double id;
//printf("~1 clipped %f %f %f -> %f %f %f\n", tmp[0], tmp[1], tmp[2], c2[0], c2[1], c2[2]);
id = icmNorm33(c2, tmp); /* Dist to intersection */
icmCpy3(tmp, c2);
ncliped++;
if(id > maxclipby)
maxclipby = id;
avgclipby += id;
} else {
//printf("~1 rclipped %f %f %f -> %f %f %f\n", tmp[0], tmp[1], tmp[2], c1[0], c1[1], c1[2]);
icmCpy3(tmp, c1); /* Use radial clip */
}
}
#endif
/* Blend to un-smoothed value on neutral axis */
icmBlend3(tmp, smp[i].dv, tmp, smp[i].naxbf);
/* Updated value for next itteration */
icmCpy3(smp[i].anv, tmp);
}
if (ncliped > 0)
avgclipby /= (double)ncliped;
delta = (pncliped - ncliped)/(double)nmpts;
if (verb) {
printf("It %d: No clip %d/%d delta %f max by %f, avg by %f\n",it,ncliped, nmpts+1, delta, maxclipby, avgclipby);
}
pncliped = ncliped;
}
/* Copy final results */
for (i = 0; i < nmpts; i++) {
icmCpy3(smp[i].dv, smp[i].anv);
smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent);
}
}
#endif /* VECADJPASSES > 0 */
#ifdef DIAG_POINTS
/* Show just the closest vectors etc. */
for (i = 0; i < nmpts; i++) { /* Move all the points */
// icmCpy3(smp[i].dv, smp[i].drv); /* Radial */
icmCpy3(smp[i].dv, smp[i].aodv); /* Nearest */
// icmCpy3(smp[i].dv, smp[i].nrdv); /* No smoothed weighted */
smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent); /* Vector smoothed */
}
#else
/* The smoothed direction and raw depth is a single pass, */
/* but we use multiple passes to determine the extra depth that */
/* needs to be added so that the smoothed result lies within */
/* the destination gamut. */
#if RSPLPASSES > 0
VA(("Fine tuning vectors to allow for rspl smoothing:\n"));
/* We need to adjust the vectors with extra depth to compensate for */
/* for the effect of rspl smoothing. */
{
cow *gpnts = NULL; /* Mapping points to create 3D -> 3D mapping */
rspl *map = NULL; /* Test map */
int gres[MXDI];
double avgdev[MXDO];
double icgain, ixgain; /* Initial compression, expansion gain */
double fcgain, fxgain; /* Final compression, expansion gain */
if ((gpnts = (cow *)malloc(nmpts * sizeof(cow))) == NULL) {
fprintf(stderr,"gamut map: Malloc of near smooth points failed\n");
if (evectmap != NULL)
evectmap->del(evectmap);
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
/* Lookup correction vectors */
VA(("Computing fine tuning target for vectors:\n"));
for (i = 0; i < nmpts; i++) {
double nd, id, tmp[3];
/* If the sv and dv are within dc_gam, then this point doesn't need */
/* to be fine tuned to make it land on the gamut surface - this point */
/* either doesn't need gamut mapping, or is being expanded, in which */
/* case we prioritize smoothness over exactly hitting the expansion */
/* target */
if (dc_gam->nradial(dc_gam, NULL, smp[i].sv) <= (1.0 + 1e-6)
&& dc_gam->nradial(dc_gam, NULL, smp[i].dv) <= (1.0 + 1e-6)) {
icmCpy3(smp[i].tdst, smp[i].dv); /* Target is where we are */
smp[i].nott = 1;
} else {
co cp;
double evect[3];
/* Lookup fine tuning vector direction for current location */
icmCpy3(cp.p, smp[i].dv);
evectmap->interp(evectmap, &cp);
icmNormalize3(evect, cp.v, 1.0);
/* Use closest as a default */
smp[i].dgam->nearest(smp[i].dgam, smp[i].tdst, smp[i].dv);
nd = icmNorm33(smp[i].tdst, smp[i].dv); /* Dist to nearest */
/* Compute intersection with dest gamut as tdst */
if (!vintersect2(smp[i].dgam, NULL, tmp, evect, smp[i].dv)) {
/* Got an intersection */
id = icmNorm33(tmp, smp[i].dv); /* Dist to intersection */
if (id <= (nd + 5.0)) /* And it seems sane */
icmCpy3(smp[i].tdst, tmp);
}
smp[i].nott = 0;
}
smp[i].coff[0] = smp[i].coff[1] = smp[i].coff[2] = 0.0;
smp[i].rext = 0.0;
}
/* We know initially that dv == anv */
/* Each pass computes a rext for each point, then */
/* anv[] = dv[] + smooth(rext * evect[]) to try and avoid clipping */
VA(("Fine tune guide vectors for rspl:\n"));
for (it = 0; it < RSPLPASSES; it++) {
double tmp[3];
double avgog = 0.0, maxog = 0.0, nog = 0.0;
double avgig = 0.0, maxig = 0.0, nig = 0.0;
double avgrext = 0.0;
double ovlen;
VA(("it %d: Creating rspl\n",it));
/* Setup the rspl guide points for creating rspl */
for (i = 0; i < nmpts; i++) {
icmCpy3(gpnts[i].p, smp[i]._sv); /* The orgininal src point */
icmCpy3(gpnts[i].v, smp[i].anv); /* current dst from previous results */
gpnts[i].w = 1.0;
}
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
gres[j] = mapres; /* Full resolution */
avgdev[j] = GAMMAP_RSPLAVGDEV;
}
map = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */
map->fit_rspl_w(map, GAMMAP_RSPLFLAGS, gpnts, nmpts,
map_il, map_ih, gres, map_ol, map_oh, mapsmooth, avgdev, NULL);
VA(("it %d: Evaluate mapping\n",it));
/* See what the source actually maps to via rspl, and how far from */
/* the target point they are. */
for (i = 0; i < nmpts; i++) {
co cp;
double cvec[3];
/* Lookup rspl smoothed destination value */
icmCpy3(cp.p, smp[i]._sv);
map->interp(map, &cp);
icmCpy3(smp[i].temp, cp.v);
/* Lookup fine tuning vector direction for that value. */
/* (evect[] is then used in the local correction loop below) */
icmCpy3(cp.p, smp[i].temp);
evectmap->interp(evectmap, &cp);
icmNormalize3(smp[i].evect, cp.v, 1.0);
/* Compute the correction needed and it's signed length */
icmSub3(cvec, smp[i].tdst, smp[i].temp);
smp[i].clen = icmDot3(smp[i].evect, cvec);
}
VA(("it %d: Compute correction vectors\n",it));
/* Compute local correction */
for (i = 0; i < nmpts; i++) {
double minext = 1e80;
double maxext = -1e80; /* Max weighted depth extension */
double clen;
double tpoint[3], cvect[3];
double tt;
double cgain, xgain; /* This itters compression, expansion gain */
double gain; /* Gain used */
co cp;
double evect[3];
/* See what the worst case is in the local area, and */
/* aim to lower the whole local area by enough to */
/* cause the max to be 0.0 (just on the gamut) */
/* Compute local depth value */
minext = -20.0; /* Base to measure max from */
for (j = 0; j < smp[i].nnd; j++) {
nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
double nw = smp[i].nd[j].rw; /* Weight */
double tmpl;
tmpl = nw * (np->clen - minext); /* Track maximum weighted extra depth */
if (tmpl < 0.0)
tmpl = 0.0;
if (tmpl > maxext)
maxext = tmpl;
}
maxext += minext;
/* maxext is the current effective error at this point with rext aim point */
if (it == 0) { /* Set target on first itteration */
if (smp[i].rext <= 0.0) /* Expand direction */
smp[i].rext += maxext;
else
smp[i].rext += RSPLSCALE * maxext;
}
avgrext += smp[i].rext;
/* Compute offset target point at maxlen from tdst in evect dir. */
icmScale3(tpoint, smp[i].evect, smp[i].rext);
icmAdd3(tpoint, tpoint, smp[i].tdst);
/* Expansion/compression gain program */
icgain = 1.4; /* Initial itteration compression gain */
ixgain = smp[i].wt.f.x * icgain; /* Initial itteration expansion gain */
fcgain = 0.5 * icgain; /* Final itteration compression gain */
fxgain = 0.5 * ixgain; /* Final itteration expansion gain */
/* Set the gain */
tt = it/(RSPLPASSES - 1.0);
cgain = (1.0 - tt) * icgain + tt * fcgain;
xgain = (1.0 - tt) * ixgain + tt * fxgain;
if (it != 0) /* Expand only on first itter */
xgain = 0.0;
//if (i == 0) printf("~1 i %d, it %d, wt.f.x = %f, cgain %f, xgain %f\n",i,it,smp[i].wt.f.x, cgain, xgain);
if (smp[i].rext > 0.0) /* Compress direction */
gain = cgain;
else
gain = xgain;
/* Keep stats of this point */
clen = smp[i].clen;
if (clen > 0.0) {
if (clen > maxog)
maxog = clen;
avgog += clen;
nog++;
} else { /* Expand */
if (-clen > maxig)
maxig = -clen;
avgig += -clen;
nig++;
}
/* Compute needed correction from current rspl smoothed anv */
/* to offset target point. */
icmSub3(cvect, tpoint, smp[i].temp); /* Correction still needed */
icmScale3(cvect, cvect, gain); /* Times gain */
icmAdd3(smp[i].coff, smp[i].coff, cvect); /* Accumulated */
icmCpy3(gpnts[i].p, smp[i].dv);
icmCpy3(gpnts[i].v, smp[i].coff);
gpnts[i].w = 1.0;
}
if ((it+1) < RSPLPASSES || !surfpnts)
map->del(map); /* Not the last pass, or not doing grid surface points */
else
lastmap = map; /* Let grid surface creation use this. */
VA(("it %d: Compute correction rspl\n",it));
/* Create rspl of corrections */
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
gres[j] = mapres; /* Full resolution */
avgdev[j] = GAMMAP_RSPLAVGDEV;
}
map = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */
map->fit_rspl_w(map, GAMMAP_RSPLFLAGS, gpnts, nmpts,
map_il, map_ih, gres, map_ol, map_oh, 1.0, avgdev, NULL);
VA(("it %d: Apply corrections\n",it));
/* Lookup the smoothed extension vector for each point and apply it */
for (i = 0; i < nmpts; i++) {
double tt;
co cp;
if (smp[i].nott) /* Don't alter points within the gamut */
continue;
icmCpy3(cp.p, smp[i].dv);
map->interp(map, &cp);
#ifdef RSPLUSEPOW
spow3(smp[i].coff, cp.v, 1.0/2.0); /* Filtered value is current value */
#else
icmCpy3(smp[i].coff, cp.v); /* Filtered value is current value */
#endif
/* Make sure anv[] is on the destination gamut at neutral axis */
icmScale3(cp.v, cp.v, smp[i].naxbf);
/* Apply accumulated offset */
icmAdd3(smp[i].anv, smp[i].dv, cp.v);
}
map->del(map); /* Not the last pass, or not doing grid surface points */
if (verb)
printf("No og %4.0f max %f avg %f, No ig %4.0f max %f avg %f, avg rext %f\n",
nog,maxog,nog > 1 ? avgog/nog : 0.0, nig,maxig,nig > 1 ? avgig/nig : 0.0, avgrext/nmpts);
} /* Next pass */
free(gpnts);
/* Copy last anv to dv for result */
for (i = 0; i < nmpts; i++) {
// ~~99
// Normal target
icmCpy3(smp[i].dv, smp[i].anv);
// Show evect direction
// icmCpy3(smp[i]._sv, smp[i].dv);
// icmScale3(smp[i].evect, smp[i].evect, 4.0);
// icmAdd3(smp[i].dv, smp[i].evect, smp[i].dv);
// Show target point destination
// icmCpy3(smp[i].dv, smp[i].tdst);
// Show offset target destination
// icmScale3(smp[i].dv, smp[i].evect, smp[i].rext);
// icmAdd3(smp[i].dv, smp[i].dv, smp[i].tdst);
smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent);
}
}
#endif /* RSPLPASSES > 0 */
#endif /* !DIAG_POINTS */
VA(("Smoothing passes done, doing final houskeeping\n"));
#if defined(SAVE_VRMLS) && defined(PLOT_MAPPING_INFLUENCE)
create_influence_plot(smp, nmpts, mapres);
#endif
VA(("Restoring non cusp-rotated source points:\n"));
/* Restore the actual non cusp rotated source point */
for (i = 0; i < nmpts; i++) {
VB(("Src %d = %f %f %f\n",i,smp[i].sv[0],smp[i].sv[1],smp[i].sv[2]));
VB(("Dst %d = %f %f %f\n",i,smp[i].dv[0],smp[i].dv[1],smp[i].dv[2]));
/* Save the cusp mapped source value */
icmCpy3(smp[i].csv, smp[i].sv);
/* Finally un cusp map the source point */
// inv_comp_ce(&opts, smp[i].sv, smp[i].sv, &smp[i].wt);
// smp[i].sr = icmNorm33(smp[i].sv, smp[i].sgam->cent);
icmCpy3(smp[i].sv, smp[i]._sv);
smp[i].sr = smp[i]._sr;
}
VB(("Creating sub-surface guide points:\n"));
/* Create sub-surface points. */
for (i = 0; i < nmpts; i++) {
/* Create sub-surface mapping points too. We control the degree */
/* of knee with a extrapolated destination point dv2, where */
/* the degree of extrapolation is inversly related to the sharpness of the knee. */
/* A third point maps 1:1 with a weight that is related the sharpness. */
/* Note that not every mapping point has a sub-surface point, */
/* and that the gflag and vflag will be nz if it does. */
/* We're assuming here that the dv is close to being on the */
/* destination gamut, so that the vector_isect param will be */
/* close to 1.0 at the intended destination gamut. */
{
double mv[3], ml, nv[3]; /* Mapping vector & length, noralized mv */
double minv[3], maxv[3]; /* (Not used) */
double mint, maxt;
gtri *mintri, *maxtri;
smp[i].vflag = smp[i].gflag = 0; /* Default unknown */
smp[i].w2 = 0.0;
icmSub3(mv, smp[i].dv, smp[i].sv); /* Mapping vector */
ml = icmNorm3(mv); /* It's length */
if (ml > 0.1) { /* If mapping is non trivial */
//#define PFCOND i == 802
//if (PFCOND) printf("~1 mapping %d = %f %f %f -> %f %f %f\n", i, smp[i].sv[0],smp[i].sv[1],smp[i].sv[2],smp[i].dv[0],smp[i].dv[1],smp[i].dv[2]);
//if (PFCOND) printf("~1 vector %f %f %f, len %f\n", mv[0], mv[1], mv[2],ml);
/* Compute actual depth of ray into destination gamut */
/* to determine if this is expansion or contraction. */
if (dst_gam->vector_isect(dst_gam, smp[i].sv, smp[i].dv,
minv, maxv, &mint, &maxt, &mintri, &maxtri) != 0) {
double wp[3], bp[3]; /* Gamut white and black points */
double p1, napoint[3] = { 50.0, 0.0, 0.0 }; /* Neutral axis point */
double natarg[3]; /* Neutral axis sub target */
double adepth1, adepth2 = 1000.0; /* Directional depth, radial depth */
double adepth; /* Minimum available depth */
double mv2[3], sml; /* Sub-surface mapping vector & norm. length */
/* Locate the point on the neutral axis that is closest to */
/* the guide ray. We use this as a destination direction */
/* if the sub surface ray gets very long, and to compute */
/* a sanity check on the available depth. */
if (dc_gam->getwb(dc_gam, NULL, NULL, NULL, wp, dst_kbp ? NULL : bp, dst_kbp ? bp : NULL) == 0) {
if (icmLineLineClosest(napoint, NULL, &p1, NULL, bp, wp,
smp[i].sv, smp[i].dv) == 0) {
double nalev[3];
icmCpy3(nalev, napoint);
//if (PFCOND) printf("~1 neutral axis point = %f %f %f\n", napoint[0], napoint[1], napoint[2]);
/* Compute a normalized available depth from distance */
/* to closest to neautral axis point */
if ((mint > 1e-8 && maxt > -1e-8) /* G. & V. Compression */
|| ((mint < -1e-8 && maxt > -1e-8) /* G. Exp & V. comp. */
&& (fabs(mint) < (fabs(maxt) - 1e-8)))) {
/* Compression */
/* Moderate the neutral axis point to be half way */
/* between sv->dv direction, and horizontal. */
nalev[0] = smp[i].dv[0];
icmBlend3(napoint, napoint, nalev, 0.5);
/* Clip it to be between black and white point */
if (napoint[0] < bp[0])
icmCpy3(napoint, bp);
else if (napoint[0] > wp[0])
icmCpy3(napoint, wp);
adepth2 = icmNorm33(napoint, smp[i].dv);
} else {
/* Expansion */
/* Moderate the neutral axis point to be half way */
/* between sv->dv direction, and horizontal. */
nalev[0] = smp[i].sv[0];
icmBlend3(napoint, napoint, nalev, 0.5);
/* Clip it to be between black and white point */
if (napoint[0] < bp[0])
icmCpy3(napoint, bp);
else if (napoint[0] > wp[0])
icmCpy3(napoint, wp);
adepth2 = icmNorm33(napoint, smp[i].sv);
}
}
#ifdef VERB
else {
printf("icmLineLineClosest failed\n");
}
#endif
}
#ifdef VERB
else {
printf("dc_gam->getwb failed\n");
}
#endif
//printf("\n~1 i %d: %f %f %f -> %f %f %f\n isect at t %f and %f\n", i, smp[i].sv[0], smp[i].sv[1], smp[i].sv[2], smp[i].dv[0], smp[i].dv[1], smp[i].dv[2], mint, maxt);
/* Only create sub-surface mapping vectors if it makes sense. */
/* If mapping vector is pointing away from destination gamut, */
/* (which shouldn't happen), ignore it. If the directional depth */
/* is very thin compared to the radial depth, indicating that we're */
/* near a "lip", ignore it. */
if (mint >= -1e-8 && maxt > 1e-8) {
/* Gamut compression and vector compression */
if (fabs(mint - 1.0) < fabs(maxt) - 1.0
&& smp[i].dgam->radial(smp[i].dgam, NULL, smp[i].dv)
< smp[i].sgam->radial(smp[i].sgam, NULL, smp[i].dv)) {
double sgamcknf = gamcknf * 0.6; /* [0.7] Scale to limit overshoot */
//if (PFCOND) printf("~1 point is gamut comp & vect comp.\n");
//if (PFCOND) printf("~1 point is gamut comp & vect comp. mint %f maxt %f\n",mint,maxt);
adepth1 = ml * 0.5 * (maxt + mint - 2.0); /* Average depth */
#ifdef CYLIN_SUBVEC
adepth = adepth2; /* Always cylindrical depth */
#else
adepth = adepth1 < adepth2 ? adepth1 : adepth2; /* Smaller of the two */
#endif
if (adepth1 < (0.5 * adepth2))
continue;
//if (PFCOND) printf("~1 dir adepth %f, radial adapeth %f\n",adepth1,adepth2);
adepth *= 0.9; /* Can't use 100% */
smp[i].gflag = 1; /* Gamut compression and */
smp[i].vflag = 1; /* vector compression */
/* Compute available depth and knee factor adjusted sub-vector */
icmCpy3(smp[i].sv2, smp[i].dv); /* Sub source is guide dest */
ml *= (1.0 - sgamcknf); /* Scale by knee */
adepth *= (1.0 - sgamcknf);
sml = ml < adepth ? ml : adepth; /* Smaller of two */
//if (PFCOND) printf("~1 adjusted subvec len %f\n",sml);
icmNormalize3(mv2, mv, sml); /* Full sub-surf disp. == no knee */
icmAdd3(mv2, smp[i].sv2, mv2); /* Knee adjusted destination */
//if (PFCOND) printf("~1 before blend sv2 %f %f %f, dv2 %f %f %f\n", smp[i].sv2[0], smp[i].sv2[1], smp[i].sv2[2], mv2[0], mv2[1], mv2[2]);
/* Compute point at sml depth from sv2 towards napoint */
icmSub3(natarg, napoint, smp[i].sv2);
icmNormalize3(natarg, natarg, sml); /* Sub vector towards n.axis */
icmAdd3(natarg, natarg, smp[i].sv2); /* n.axis target */
#ifdef CYLIN_SUBVEC
icmCpy3(mv2, natarg); /* cylindrical direction vector */
#else
/* Blend towards n.axis as length of sub vector approaches */
/* distance to neutral axis. */
icmBlend3(mv2, mv2, natarg, sml/adepth2);
#endif /* CYLIN_SUBVEC */
//if (PFCOND) printf("~1 after blend sv2 %f %f %f, dv2 %f %f %f\n", smp[i].sv2[0], smp[i].sv2[1], smp[i].sv2[2], mv2[0], mv2[1], mv2[2]);
icmCpy3(smp[i].dv2, mv2); /* Destination */
icmCpy3(smp[i].temp, smp[i].dv2); /* Save a copy to temp */
smp[i].w2 = 0.7; /* De-weight due to density */
icmBlend3(mv2, mv2, napoint, 0.6); /* Half way to na */
icmCpy3(smp[i].sd3, mv2);
smp[i].w3 = 0.4 * gamcknf; /* [0.3] Weight with knee factor */
/* and to control overshoot */
} else {
//if (PFCOND) printf("~1 point is gamut exp & vect exp. mint %f maxt %f\n",mint,maxt);
smp[i].gflag = 2; /* Gamut expansion and */
smp[i].vflag = 0; /* vector expansion, */
/* but crossing over, so no sub vect. */
//if (PFCOND) printf("~1 point is crossover point\n",mint,maxt);
}
/* Gamut expansion and vector expansion */
} else if (mint < -1e-8 && maxt > 1e-8) {
//if (PFCOND) printf("~1 point is gamut exp & vect exp. mint %f maxt %f\n",mint,maxt);
/* This expand/expand case has reversed src/dst sense to above */
adepth1 = ml * 0.5 * -mint;
#ifdef CYLIN_SUBVEC
adepth = adepth2; /* Always cylindrical depth */
#else
adepth = adepth1 < adepth2 ? adepth1 : adepth2;
#endif
//if (PFCOND) printf("~1 dir adepth %f, radial adapeth %f\n",adepth1,adepth2);
adepth *= 0.9; /* Can't use 100% */
if (adepth1 < (0.6 * adepth2))
continue;
smp[i].gflag = 2; /* Gamut expansion */
smp[i].vflag = 2; /* vector is expanding */
icmCpy3(smp[i].dv2, smp[i].sv); /* Sub dest is guide src */
ml *= (1.0 - gamxknf); /* Scale by knee */
adepth *= (1.0 - gamxknf);
sml = ml < adepth ? ml : adepth;/* Smaller of two */
icmNormalize3(mv2, mv, sml); /* Full sub-surf disp. == no knee */
icmSub3(mv2, smp[i].dv2, mv2); /* Knee adjusted source */
/* Blend towards n.axis as length of sub vector approaches */
/* distance to neutral axis. */
icmSub3(natarg, smp[i].dv2, napoint);
icmNormalize3(natarg, natarg, sml); /* Sub vector away n.axis */
icmSub3(natarg, smp[i].dv2, natarg);/* n.axis oriented source */
#ifdef CYLIN_SUBVEC
icmCpy3(mv2, natarg); /* cylindrical direction vector */
#else
icmBlend3(mv2, mv2, natarg, sml/adepth2); /* dir adjusted src */
#endif /* CYLIN_SUBVEC */
icmCpy3(smp[i].sv2, mv2); /* Source */
icmCpy3(smp[i].temp, smp[i].dv2); /* Save a copy to temp */
smp[i].w2 = 0.8;
icmBlend3(mv2, mv2, napoint, 0.5); /* Half way to na */
icmCpy3(smp[i].sd3, mv2);
smp[i].w3 = 0.3 * gamcknf; /* Weight with knee fact */
/* Conflicted case */
} else {
/* Nonsense vector */
smp[i].gflag = 0; /* Gamut compression but */
smp[i].vflag = 0; /* vector is expanding */
//if (PFCOND) printf("~1 point is nonsense vector mint %f maxt %f\n",mint,maxt);
icmCpy3(smp[i].dv, smp[i].aodv); /* Clip to the destination gamut */
}
}
}
}
#ifdef NEVER // Diagnostic
smp[i].vflag = 0; /* Disable sub-points */
#endif /* NEVER */
VB(("Out Src %d = %f %f %f\n",i,smp[i].sv[0],smp[i].sv[1],smp[i].sv[2]));
VB(("Out Dst %d = %f %f %f\n",i,smp[i].dv[0],smp[i].dv[1],smp[i].dv[2]));
if (smp[i].vflag != 0) {
VB(("Out Src2 %d = %f %f %f\n",i,smp[i].sv2[0],smp[i].sv2[1],smp[i].sv2[2]));
VB(("Out Dst2 %d = %f %f %f\n",i,smp[i].dv2[0],smp[i].dv2[1],smp[i].dv2[2]));
}
}
#ifdef SUBVEC_SMOOTHING
VB(("Smoothing sub-surface guide points:\n"));
{
double maxmv = 0.0, avgmv = 0.0, acount = 0.0;
/* Smooth the sub-surface mapping points */
for (i = 0; i < nmpts; i++) {
double sav[3], dav[3]; /* Average locations */
double scr, dcr; /* Cylindrical radius */
double scf; /* Scale factor */
double tmp[3], de;
if (smp[i].vflag == 0)
continue; /* Sub value not valid */
/* Compute average values */
sav[0] = sav[1] = sav[2] = 0.0;
dav[0] = dav[1] = dav[2] = 0.0;
for (j = 0; j < smp[i].nnd; j++) {
nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
double nw = smp[i].nd[j].w; /* Weight */
icmScale3(tmp, np->sv2, nw); /* weight for filter */
icmAdd3(sav, sav, tmp); /* sum filtered value */
icmScale3(tmp, np->dv2, nw); /* weight for filter */
icmAdd3(dav, dav, tmp); /* sum filtered value */
}
/* We want to transfer the relative location (i.e. detail) from */
/* the source to destination, but we need to scale the features */
/* appropriately for the mapping. */
scr = sqrt(sav[1] * sav[1] + sav[2] * sav[2]);
dcr = sqrt(dav[1] * dav[1] + dav[2] * dav[2]);
scf = dcr/scr;
/* Compute filtered value */
icmSub3(tmp, smp[i].sv2, sav); /* Vector from average to src */
tmp[1] *= scf; /* Scale */
tmp[2] *= scf; /* Scale */
icmAdd3(tmp, tmp, dav); /* average dst + vector */
de = icmNorm33(smp[i].dv2, tmp);
icmCpy3(smp[i].dv2, tmp);
if (de > maxmv)
maxmv = de;
avgmv += de;
acount++;
VB(("Smthd Src %d = %f %f %f\n",i,smp[i].sv2[0],smp2[i].sv[1],smp2[i].sv2[2]));
VB(("Smthd Dst %d = %f %f %f\n",i,smp[i].dv2[0],smp2[i].dv[1],smp2[i].dv2[2]));
}
if (acount > 0)
avgmv /= acount;
if (verb)
printf("Sub-surface smoothing changed by max %f, average %f\n",maxmv, avgmv);
}
#endif /* SUBVEC_SMOOTHING */
VB(("near_smooth is done\n"));
#ifdef PLOT_SMOOTHING_CHANGE
/* Plot change in destination point of un-smoothed to smoothed */
{
vrml *wrl = NULL;
int doaxes = 0;
#ifdef PLOT_AXES
doaxes = 1;
#endif
wrl = new_vrml("dst_smvec", doaxes, vrml_lab);
/* Start of guide vector plot */
wrl->start_line_set(wrl, 0);
for (i = 0; i < nmpts; i++) {
double red[3] = { 1.0, 0.0, 0.0 };
double green[3] = { 0.0, 1.0, 0.0 };
wrl->add_col_vertex(wrl, 0, smp[i].nrdv, red);
wrl->add_col_vertex(wrl, 0, smp[i].dv, green);
}
wrl->make_lines(wrl, 0, 2); /* Change vectors */
#ifndef NEVER
/* Plot un-smoothed src to dst mappings */
wrl->start_line_set(wrl, 0);
for (i = 0; i < nmpts; i++) {
double lblue[3] = { 0.4, 0.4, 0.8 };
double magenta[3] = { 0.8, 0.4, 0.8 };
wrl->add_col_vertex(wrl, 0, smp[i].sv, lblue);
wrl->add_col_vertex(wrl, 0, smp[i].nrdv, magenta);
}
wrl->make_lines(wrl, 0, 2); /* Change vectors */
#endif
#ifdef NEVER
/* Plot index numbers */
for (i = 0; i < nmpts; i++) {
double cream[3] = { 0.7, 0.7, 0.5 };
char buf[100];
sprintf(buf, "%d", i);
wrl->add_text(wrl, buf, smp[i].dv, cream, 0.5);
}
#endif /* NEVER */
/* Write transparent destination space gamut surface */
dc_gam->write_to_vrml(dc_gam, wrl, 0.5, 0);
/* Write file */
wrl->del(wrl);
}
#endif /* PLOT_SMOOTHING_CHANGE */
/* If grid surface points are requested */
if (surfpnts) {
DCOUNT(gc, 3, 3, 0, 0, hmapres);
double cent[3];
VB(("Adding grid surface points:\n"));
/* If rspl smoothing didn't leave us a map */
if (lastmap == NULL) {
cow *gpnts = NULL; /* Mapping points to create 3D -> 3D mapping */
int gres[MXDI];
double avgdev[MXDO];
VB(("Creating rspl map for grid surface points\n",it));
if ((gpnts = (cow *)malloc(nmpts * sizeof(cow))) == NULL) {
fprintf(stderr,"gamut map: Malloc of near smooth points failed\n");
if (evectmap != NULL)
evectmap->del(evectmap);
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
/* Setup the rspl guide points for creating rspl */
for (i = 0; i < nmpts; i++) {
icmCpy3(gpnts[i].p, smp[i].sv);
icmCpy3(gpnts[i].v, smp[i].dv);
gpnts[i].w = 1.0;
}
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
gres[j] = mapres; /* Full resolution */
avgdev[j] = GAMMAP_RSPLAVGDEV;
}
lastmap = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */
lastmap->fit_rspl_w(lastmap, GAMMAP_RSPLFLAGS, gpnts, nmpts,
map_il, map_ih, gres, map_ol, map_oh, mapsmooth, avgdev, NULL);
free(gpnts);
}
sc_gam->getcent(dc_gam, cent);
DC_INIT(gc);
for (;;) {
/* If point is in the outer two layers of grid */
if ( gc[0] == 0 || gc[0] == hdmapres
|| gc[0] == (hmapres-1) || gc[0] == (hmapres-1-hdmapres)
|| gc[1] == 0 || gc[1] == hdmapres
|| gc[1] == (hmapres-1) || gc[1] == (hmapres-1-hdmapres)
|| gc[2] == 0 || gc[2] == hdmapres
|| gc[2] == (hmapres-1) || gc[2] == (hmapres-1-hdmapres))
/* Only points around gamut, not on top or underneath */
/*
if ( gc[1] == 0 || gc[1] == hdmapres
|| gc[1] == (hmapres-1) || gc[1] == (hmapres-1-hdmapres)
|| gc[2] == 0 || gc[2] == hdmapres
|| gc[2] == (hmapres-1) || gc[2] == (hmapres-1-hdmapres))
*/
{
double grid2gamut, gamut2cent, ww;
co cp;
if (nmpts >= mxnmpts) {
warning("nearsmth ran out of space for points");
break;
}
smp[nmpts].uflag = 1;
/* Source location */
for (j = 0; j < 3; j++)
smp[nmpts].sv[j] = map_il[j] + gc[j]/(hmapres-1.0) * (map_ih[j] - map_il[j]);
/* If this point is within source gamut, skip it */
if (sc_gam->nradial(sc_gam, NULL, smp[nmpts].sv) <= (1.0 + 1e-6)) {
//printf("~1 point %d %d %d = %f %f %f is inside source gamut\n", gc[0], gc[1], gc[2], smp[nmpts].sv[0], smp[nmpts].sv[1], smp[nmpts].sv[2]);
goto next_point;
}
#ifdef NEVER
/* Clip the point to the closest location on the source */
/* colorspace gamut. */
sc_gam->nearest(sc_gam, cp.p, smp[nmpts].sv);
#else
/* Map grid point to weighted nearest on source space gamut */
{
double ta[3] = { 50.0, 0.0, 0.0 };
double tc[3] = { 0.0, 0.0, 0.0 };
double s[2] = { 20.0, 20.0 }; /* 2D search area */
double nv[2]; /* 2D New value */
double tp[3]; /* Resultint value */
double ne; /* New error */
int notrials = NO_TRIALS;
double bnv[3]; /* Best 3d value */
double brv; /* Best return value */
int trial;
double mv;
/* Determine the parameter weighting at this location */
opts.pass = 0; /* Itteration pass */
opts.ix = nmpts;
opts.p = &smp[nmpts];
opts.wngam = sc_gam; /* Optimise to source colorspace gamut */
opts.wn = smp[nmpts].sv; /* minimize optfunc1a sv -> sc_gam */
/* Compute weights at this point */
interp_xweights(sc_gam, &smp[nmpts].wt, smp[nmpts].sv, opts.xwh, &opts, 0);
/* Initial starting point */
sc_gam->nearest(sc_gam, bnv, smp[nmpts].sv);
/* Do several trials from different starting points to avoid */
/* any local minima, particularly with nearest mapping. */
brv = 1e38;
for (trial = 0; trial < notrials; trial++) {
double rv; /* Temporary */
/* Setup the 3D -> 2D tangent conversion and inverse for our start point */
icmVecRotMat(smp[nmpts].m2d, bnv, sc_gam->cent, ta, tc);
icmVecRotMat(smp[nmpts].m3d, ta, tc, bnv, sc_gam->cent);
/* Convert our start value from 3D to 2D for speed. */
icmMul3By3x4(tp, smp[nmpts].m2d, bnv);
nv[0] = tp[1];
nv[1] = tp[2];
if (trial >= 2) {
/* Use random offset to avoid local minima */
nv[0] += d_rand(-20.0, 20.0);
nv[1] += d_rand(-20.0, 20.0);
}
/* Optimise the point */
if (powell(&rv, 2, nv, s, 0.01, 1000, optfunc1a, (void *)(&opts), NULL, NULL) == 0
&& rv < brv) {
brv = rv;
//printf("~1 point %d, trial %d, new best %f\n",i,trial,rv);
/* Convert best result 2D -> 3D */
tp[2] = nv[1];
tp[1] = nv[0];
tp[0] = 50.0;
icmMul3By3x4(tp, smp[nmpts].m3d, tp);
/* Remap it to the source gamut surface */
sc_gam->radial(sc_gam, bnv, tp);
}
//else printf("~1 powell failed with rv = %f\n",rv);
}
if (brv == 1e38) { /* We failed to get a result */
fprintf(stderr, "multiple powells failed to get a result (4)\n");
sc_gam->nearest(sc_gam, cp.p, smp[nmpts].sv);
} else {
icmCpy3(cp.p, bnv);
}
}
#endif /* NEVER */
//printf("~1 grid %f %f %f -> src %f %f %f\n", smp[nmpts].sv[0], smp[nmpts].sv[1], smp[nmpts].sv[2], cp.p[0], cp.p[1], cp.p[2]);
/* Then lookup the gamut mapped value */
lastmap->interp(lastmap, &cp);
//printf("~1 src %f %f %f -> dst %f %f %f\n", cp.p[0], cp.p[1], cp.p[2], cp.v[0], cp.v[1], cp.v[2]);
for (j = 0; j < 3; j++)
smp[nmpts].dv[j] = cp.v[j];
/* Compute the distance of the grid surface point to the to the */
/* source colorspace gamut, as well as the distance from there */
/* to the gamut center point. */
for (grid2gamut = gamut2cent = 0.0, j = 0; j < 3; j++) {
double tt;
tt = smp[nmpts].dv[j] - cp.p[j];
grid2gamut += tt * tt;
tt = cp.p[j] - cent[j];
gamut2cent += tt * tt;
}
grid2gamut = sqrt(grid2gamut);
gamut2cent = sqrt(gamut2cent);
if (gamut2cent < 0.1)
gamut2cent = 0.1;
/* Make the weighting inversely related to distance, */
/* to reduce influence on in gamut mapping shape, */
/* while retaining some influence at the edge of the */
/* grid. */
ww = grid2gamut / gamut2cent;
if (ww > 1.0)
ww = 1.0;
/* A low weight seems to be enough ? */
/* The lower the better in terms of geting best hull mapping fidelity */
smp[nmpts++].w1 = 0.1 * ww;
}
next_point:;
DC_INC(gc);
if (DC_DONE(gc))
break;
}
*npp = nmpts; /* Update returned number of points */
lastmap->del(lastmap);
}
if (evectmap != NULL)
evectmap->del(evectmap);
#ifndef PLOT_DIGAM
if (src_gam != sc_gam)
src_gam->del(src_gam);
if (dst_gam != src_gam && dst_gam != dc_gam)
dst_gam->del(dst_gam);
for (i = 0; i < nmpts; i++) {
smp[i].sgam = NULL;
smp[i].dgam = NULL;
smp[i].dcgam = NULL;
}
#else /* !PLOT_DIGAM */
warning("!!!!! PLOT_DIGAM defined !!!!!");
#endif /* !PLOT_DIGAM */
*npp = nmpts;
return smp;
}
/* Free the list of points that was returned */
void free_nearsmth(nearsmth *smp, int nmpts) {
int i;
/* Free contents that have been used */
for (i = 0; i < nmpts; i++) {
if (smp[i].nd != NULL)
free(smp[i].nd);
}
free(smp);
}
/* =================================================================== */
#if defined(SAVE_VRMLS) && defined(PLOT_MAPPING_INFLUENCE)
/* Create a plot indicating how the source mapping has been guided by the */
/* various weighting forces. */
static void create_influence_plot(nearsmth *smp, int nmpts, int mapres) {
int i, j, k;
gamut *gam;
int src = 0; /* 1 = src, 0 = dst gamuts */
vrml *wrl = NULL;
co *fpnts = NULL; /* Mapping points to create diagnostic color mapping */
rspl *swdiag = NULL;
int gres[3];
double avgdev[3];
double cols[4][3] = { { 1.0, 0.0, 0.0 }, /* Absolute = red */
{ 1.0, 1.0, 0.0 }, /* Relative = yellow */
{ 0.0, 0.0, 1.0 }, /* Radial = blue */
{ 0.0, 1.0, 0.0 } }; /* Depth = green */
double grey[3] = { 0.5, 0.5, 0.5 }; /* Grey */
double max, min;
int ix;
if (src)
gam = smp->sgam;
else
gam = smp->dgam;
/* Setup the scattered data points */
if ((fpnts = (co *)malloc((nmpts) * sizeof(co))) == NULL) {
fprintf(stderr,"gamut map: Malloc of diagnostic mapping setup points failed\n");
return;
}
/* Compute error values and diagnostic color */
/* for each guide vector */
for (i = 0; i < nmpts; i++) {
double dv[4], gv;
double rgb[3];
/* Source value location */
if (src) {
for (j = 0; j < 3; j++)
fpnts[i].p[j] = smp[i]._sv[j]; /* Non cusp rotated */
} else { /* Dest value location */
for (j = 0; j < 3; j++)
fpnts[i].p[j] = smp[i].dv[j];
}
/* Diagnostic color */
max = -1e60; min = 1e60;
for (k = 0; k < 4; k++) { /* Find max and min error value */
dv[k] = smp[i].dbgv[k];
if (dv[k] > max)
max = dv[k];
if (dv[k] < min)
min = dv[k];
}
for (k = 0; k < 4; k++) /* Scale to max */
dv[k] /= max;
max /= max;
min /= max;
max -= min; /* reduce min to zero */
for (k = 0; k < 4; k++)
dv[k] /= max;
for (gv = 1.0, k = 0; k < 4; k++) /* Blend remainder with grey */
gv -= dv[k];
for (j = 0; j < 3; j++) /* Compute interpolated color */
fpnts[i].v[j] = 0.0;
for (k = 0; k < 4; k++) {
for (j = 0; j < 3; j++)
fpnts[i].v[j] += dv[k] * cols[k][j];
}
for (j = 0; j < 3; j++)
fpnts[i].v[j] += gv * grey[j];
}
/* Create the diagnostic color rspl */
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
gres[j] = mapres;
avgdev[j] = 0.001;
}
swdiag = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */
swdiag->fit_rspl(swdiag, RSPL_NOFLAGS, fpnts, nmpts, NULL, NULL, gres, NULL, NULL, 1.0, avgdev, NULL);
/* Now create a plot of the sci_gam with the vertexes colored according to the */
/* diagnostic map. */
if ((wrl = new_vrml("sci_gam_wt", 1, vrml_lab)) == NULL) {
fprintf(stderr,"gamut map: new_vrml failed for '%s%s'\n","sci_gam_wt",vrm_ext());
swdiag->del(swdiag);
free(fpnts);
return;
}
/* Plot the gamut triangle vertexes */
for (ix = 0; ix >= 0;) {
co pp;
double col[3];
ix = gam->getvert(gam, NULL, pp.p, ix);
swdiag->interp(swdiag, &pp);
icmClip3(pp.v, pp.v);
wrl->add_col_vertex(wrl, 0, pp.p, pp.v);
}
gam->startnexttri(gam);
for (;;) {
int vix[3];
if (gam->getnexttri(gam, vix))
break;
wrl->add_triangle(wrl, 0, vix);
}
wrl->make_triangles_vc(wrl, 0, 0.0);
printf("Writing sci_gam_wt%s file\n",vrml_ext());
wrl->del(wrl); /* Write file */
free(fpnts);
swdiag->del(swdiag);
}
#endif
|