1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*
* Argyll Color Correction System
* Multi-dimensional counter macros.
*
* Author: Graeme W. Gill
* Date: 28/9/96
*
* Copyright 1996 - 2006, Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
#ifndef COUNTERS_H
#ifdef __cplusplus
extern "C" {
#endif
/* ------------------------------------------------------- */
/* Macros for a multi-dimensional counter. */
/* Declare the counter name nn, maximum di mxdi, dimensions di, & count */
#define DCOUNT(nn, mxdi, di, start, reset, endp1) \
int nn[mxdi]; /* counter value */ \
int nn##_di = (di); /* Number of dimensions */ \
int nn##_stt = (start); /* start count value */ \
int nn##_rst = (reset); /* reset on carry value */ \
int nn##_res = (endp1); /* last count +1 */ \
int nn##_e /* dimension index */
#define DRECONF(nn, start, reset, endp1) \
nn##_stt = (start); /* start count value */ \
nn##_rst = (reset); /* reset on carry value */ \
nn##_res = (endp1); /* last count +1 */
/* Set the counter value to 0 */
#define DC_INIT(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) \
nn[nn##_e] = nn##_stt; \
nn##_e = 0; \
}
/* Increment the counter value */
#define DC_INC(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) { \
nn[nn##_e]++; \
if (nn[nn##_e] < nn##_res) \
break; /* No carry */ \
nn[nn##_e] = nn##_rst; \
} \
}
/* After init or increment, expression is TRUE if counter is done */
#define DC_DONE(nn) \
(nn##_e >= nn##_di)
/* Typical use:
DCOUNT(cc, 15, 3, -1, -1, 2);
DC_INIT(cc);
while(!DC_DONE(cc)) {
DC_INC(cc);
}
*/
/* (Do we need a version of the above that tracks the actual input coords ?) */
/* ------------------------------------------------------- */
/* Similar to abovem but each dimension range can be clipped. */
#define FCOUNT(nn, mxdi, di) \
int nn[mxdi]; /* counter value */ \
int nn##_di = (di); /* Number of dimensions */ \
int nn##_stt[mxdi]; /* start count value */ \
int nn##_res[mxdi]; /* last count +1 */ \
int nn##_e /* dimension index */
/* Set start and end+1 to uniform values */
#define FRECONF(nn, start, endp1) \
for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) { \
nn##_stt[nn##_e] = (start); /* start count value */ \
nn##_res[nn##_e] = (endp1); /* last count +1 */ \
}
/* Set start and end+1 to individual values */
#define FRECONFA(nn, start, endp1) \
for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) { \
nn##_stt[nn##_e] = (start)[nn##_e]; /* start count value */ \
nn##_res[nn##_e] = (endp1)[nn##_e]; /* last count +1 */ \
}
/* Set the counter value to 0 */
#define FC_INIT(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) \
nn[nn##_e] = nn##_stt[nn##_e]; \
nn##_e = 0; \
}
/* Increment the counter value */
#define FC_INC(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) { \
nn[nn##_e]++; \
if (nn[nn##_e] < nn##_res[nn##_e]) \
break; /* No carry */ \
nn[nn##_e] = nn##_stt[nn##_e]; \
} \
}
/* After increment, expression is TRUE if counter is done */
#define FC_DONE(nn) \
(nn##_e >= nn##_di)
/* ------------------------------------------------------- */
/* Same as above, but allows for variable resolution on each axis. */
/* End offset is added to count[] */
/* (Hmm. Could merge FCOUNT and ECOUNT ?) */
#define ECOUNT(nn, mxdi, di, start, endp1, end_offst) \
int nn[mxdi]; /* counter value */ \
int nn##_di = (di); /* Number of dimensions */ \
int nn##_start = (start);/* Start value*/ \
int *nn##_res = (endp1);/* last count +1 */ \
int nn##_endo = (end_offst);/* Count offset */ \
int nn##_e /* dimension index */
/* Set the counter value to start */
#define EC_INIT(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) \
nn[nn##_e] = nn##_start; \
nn##_e = 0; \
}
/* Increment the counter value */
#define EC_INC(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) { \
nn[nn##_e]++; \
if (nn[nn##_e] < (nn##_res[nn##_e] + nn##_endo)) \
break; /* No carry */ \
nn[nn##_e] = nn##_start; \
} \
}
/* After increment, expression is TRUE if counter is done */
#define EC_DONE(nn) \
(nn##_e >= nn##_di)
/* (Do we need a version of the above that tracks the actual input coords ?) */
/* ------------------------------------------------------- */
/* Macros combination counter */
/* Declare the counter name nn, combinations out of total */
/* mxdi should be set to maximum combinations. */
/* e.g. if there are 8 objects, and we want all combinations */
/* of 4 out of the 8, we would use: COMBO(nn, 4, 4, 8) */
/* Declare and initialize */
#define COMBO(nn, mxdi, comb, total) \
int nn[mxdi+2]; /* counter value */ \
int nn##_cmb = (comb); /* number of combinations */ \
int nn##_tot = (total); /* out of total possible */ \
int nn##_e /* dimension index */
/* Declare, but don't initialize */
#define COMBO_DEC(nn, mxdi) \
int nn[mxdi+2]; /* counter value */ \
int nn##_cmb; /* number of combinations */ \
int nn##_tot; /* out of total possible */ \
int nn##_e /* dimension index */
/* Set combinations to new setting */
#define CB_SETC(nn, comb) \
nn##_cmb = (comb) /* number of combinations*/
/* Set total to new setting */
#define CB_SETT(nn, total) \
nn##_tot = (total) /* total possible */
/* Set the counter to its initial value */
#define CB_INIT(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_cmb; nn##_e++) \
nn[nn##_e] = nn##_cmb-nn##_e-1; \
nn##_e = 0; \
}
/* Increment the counter value */
#define CB_INC(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_cmb; nn##_e++) { \
nn[nn##_e]++; \
if (nn[nn##_e] < (nn##_tot-nn##_e)) { \
int _combo_ee; /* No carry */ \
for (_combo_ee = nn##_e-1; _combo_ee >= 0; _combo_ee--) \
nn[_combo_ee] = nn[_combo_ee+1] + 1; \
break; \
} \
} \
}
/* After init or increment, expression is TRUE if counter is done */
#define CB_DONE(nn) \
(nn##_e >= nn##_cmb)
/* ------------------------------------------------------- */
/* Macros simplex combination counter. */
/* Based on COMBO, but skips invalid simplex combinations */
#define XCOMBO(nn, mxdi, comb, total) \
COMBO(nn, mxdi, comb, total)
/* Set total to new setting */
#define XCB_SETT(nn, total) \
CB_SETT(nn, total)
/* Set combinations to new setting */
#define XCB_SETC(nn, comb) \
CB_SETC(nn, comb)
/* Set the counter to its initial value */
#define XCB_INIT(nn) \
{ \
int nn##_ii; \
\
for (nn##_e = 0; nn##_e < nn##_cmb; nn##_e++) \
nn[nn##_e] = nn##_cmb-nn##_e-1; \
for (nn##_ii = 1; nn##_ii < nn##_cmb; nn##_ii++) { \
if ((nn[nn##_ii-1] ^ nn[nn##_ii]) & nn[nn##_ii])\
break; /* Went from 0 to 1 */ \
} \
if (nn##_ii < nn##_cmb) { /* Fix invalid combination */ \
XCB_INC(nn); \
} \
nn##_e = 0; \
}
/* Increment the counter value */
#define XCB_INC(nn) \
{ \
int nn##_ii = 0; \
\
while (nn##_ii < nn##_cmb) { \
for (nn##_e = 0; nn##_e < nn##_cmb; nn##_e++) { \
nn[nn##_e]++; \
if (nn[nn##_e] < (nn##_tot-nn##_e)) { \
int nn##_ee; /* No carry */ \
for (nn##_ee = nn##_e-1; nn##_ee >= 0; nn##_ee--) \
nn[nn##_ee] = nn[nn##_ee+1] + 1; \
break; \
} \
} \
if (nn##_e >= nn##_cmb) \
break; /* Done */ \
\
/* Reject invalid combinations */ \
for (nn##_ii = 1; nn##_ii < nn##_cmb; nn##_ii++) { \
if ((nn[nn##_ii-1] ^ nn[nn##_ii]) & nn[nn##_ii]) \
break; /* Went from 0 to 1 */ \
} \
} \
}
/* After init or increment, expression is TRUE if counter is done */
#define XCB_DONE(nn) \
CB_DONE(nn)
/* - - - - - - - - - - - - - - - - - - - - - - - - - - */
#ifdef __cplusplus
}
#endif
#define COUNTERS_H
#endif /* COUNTERS_H */
|