1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
|
/* Integer Multi-Dimensional Interpolation */
/*
* Copyright 2000 - 2007 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/*
* Run time table allocater and initialiser
*
* The function here that knows how to create the
* appropriate run time tables for our chosen kernel,
* and the type color mapping we want to perform.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdarg.h>
#include <string.h>
#include "imdi.h"
#include "imdi_tab.h"
#undef VERBOSE
#undef ASSERTS /* Check asserts */
#ifdef ASSERTS
#include <numlib.h>
#endif
typedef unsigned char byte;
/* Left shift, handles >= 32 properly */
#define LSHIFT(aa, bb) ((bb) <= 31 ? ((aa) << (bb)) : (((aa) << 31) << ((bb)-31)))
/* The big value type used to represent table entries */
#ifdef ALLOW64
typedef unsigned longlong bvt;
#else
typedef unsigned long bvt;
#endif
/* Specific entry size write routine */
void write_uchar(
byte *p,
bvt v
) {
*((unsigned char *)p) = (unsigned char)v;
}
void write_ushort(
byte *p,
bvt v
) {
*((unsigned short *)p) = (unsigned short)v;
}
void write_uint(
byte *p,
bvt v
) {
*((unsigned int *)p) = (unsigned int)v;
}
void write_ulong(
byte *p,
bvt v
) {
*((unsigned long *)p) = (unsigned long)v;
}
#ifdef ALLOW64
void write_ulonglong(
byte *p,
bvt v
) {
*((unsigned longlong *)p) = (unsigned longlong)v;
}
#endif /* ALLOW64 */
void write_default(
byte *p,
bvt v
) {
fprintf(stderr,"imdi_tabl: internal failure - unexpected write size!\n");
exit(-1);
}
/* Array of write routines */
void (*write_entry[16])(byte *p, bvt v);
static void
init_write_tab(void) {
int i;
for (i = 0; i < 16; i++)
write_entry[i] = write_default; /* Make sure any un-inited access bombs */
write_entry[sizeof(unsigned char)] = write_uchar;
write_entry[sizeof(unsigned short)] = write_ushort;
write_entry[sizeof(unsigned int)] = write_uint;
write_entry[sizeof(unsigned long)] = write_ulong;
#ifdef ALLOW64
write_entry[sizeof(unsigned longlong)] = write_ulonglong;
#endif /* ALLOW64 */
}
/* Input offset adjustment table */
double in_adj[] = {
8.0324820232182659e+281, 1.3051220361353854e+214, 1.5654418860154115e-076,
6.6912978722165055e+281, 1.2369092402930559e+277, 1.4097588049607207e-308,
7.7791723264456369e-260, 3.6184161952648606e+238, 5.8235640814908141e+180,
9.1271554315814989e-072, 5.4310198502711138e+241, 2.7935452404894958e+275,
-2.9408705449902027e+003
};
/* Table creation function */
imdi_imp *
imdi_tab(
genspec *gs, /* Pointer to gen spec */
tabspec *ts, /* Pointer to table spec */
imdi_conv cnv, /* Runtime argument conversion needed */
imdi_pixrep irep, /* High level input pixel representation to match */
imdi_pixrep orep, /* High level output pixel representation to match */
void (*interp)(struct _imdi *s, void **outp, int outst, /* Underlying conversion function */
void **inp, int inst,
unsigned int npixels),
int *inm, /* Input raster channel to callback channel mapping, NULL for none. */
int *outm, /* Output raster channel to callback channel mapping, NULL for none. */
imdi_ooptions oopt, /* Output per channel options (Callback channel, NOT output channel) */
unsigned int *checkv, /* Output channel check values (Callback channel, NULL for none == 0. */
/* Callbacks to lookup the mdi table values */
void (*input_curves) (void *cntx, double *out_vals, double *in_vals),
void (*md_table) (void *cntx, double *out_vals, double *in_vals),
void (*output_curves)(void *cntx, double *out_vals, double *in_vals),
void *cntx /* Context to callbacks */
) {
static int inited = 0;
static int bigend = 0;
int i, e, f;
imdi_imp *it;
unsigned long etest = 0xff;
int idinc[IXDI+1]; /* Increment for each dimension of interp table. */
int ibdinc[IXDI+1]; /* idinc[] in bytes */
int sdinc[IXDI+1]; /* Increment for each dimension of simplex table. */
int sbdinc[IXDI+1]; /* sdinc[] in bytes */
#ifdef VERBOSE
printf("imdi_tab called\n");
#endif
if (inited == 0) {
init_write_tab();
if (*((unsigned char *)&etest) == 0xff)
bigend = 0; /* Little endian */
else
bigend = 1; /* Big endian */
inited = 1;
}
if ((it = (imdi_imp *)calloc(1, sizeof(imdi_imp))) == NULL) {
#ifdef VERBOSE
printf("malloc imdi_imp size %d failed\n",sizeof(imdi_imp));
#endif
return NULL; /* Should we signal error ? How ? */
}
it->size = sizeof(imdi_imp);
#ifdef VERBOSE
printf("Allocated imdi_imp structure size %u\n",it->size);
#endif /* VERBOSE */
/* Set runtime matching conversion provided */
it->cnv = cnv;
it->id = gs->id;
it->od = gs->od;
it->cirep = irep; /* Pixel representation interp is called with */
it->corep = orep;
it->firep = gs->irep; /* Pixel representation of function we are going to use */
it->forep = gs->orep;
it->interp = interp;
it->checkf = 0;
/* Compute number of written channels (allow for skip) */
it->wod = it->od;
for (i = 0; i < it->od; i++) {
if ((oopt & OOPT(oopts_skip,i)) != 0)
it->wod--;
}
/* Setup the raster to callback channel mappings */
if (inm != NULL) {
for (e = 0; e < it->id; e++)
it->it_map[e] = inm[e]; /* Copy input */
} else {
for (e = 0; e < it->id; e++)
it->it_map[e] = e; /* Direct mapping */
}
if (outm != NULL) {
for (e = 0; e < it->od; e++)
it->im_map[e] = outm[e]; /* Copy input */
} else {
for (e = 0; e < it->od; e++)
it->im_map[e] = e; /* Direct mapping */
}
if (checkv != NULL) {
for (e = 0; e < it->od; e++)
it->checkv[e] = checkv[it->im_map[e]]; /* Copy input and convert to Output index */
} else {
for (e = 0; e < it->od; e++)
it->checkv[e] = 0; /* Set to zero */
}
/* Compute interp and simplex table dimension increments & total sizes */
idinc[0] = 1;
ibdinc[0] = ts->im_ts;
for (e = 1; e <= it->id; e++) {
idinc[e] = idinc[e-1] * gs->itres;
ibdinc[e] = ibdinc[e-1] * gs->itres;
}
if (!ts->sort) {
sdinc[0] = 1;
sbdinc[0] = ts->sm_ts;
for (e = 1; e <= it->id; e++) {
sdinc[e] = sdinc[e-1] * gs->stres;
sbdinc[e] = sbdinc[e-1] * gs->stres;
}
}
/* First we setup the input tables */
for (e = 0; e < it->id; e++) {
byte *t, *p; /* Pointer to input table, entry pointer */
int ne; /* Number of entries */
int ex; /* Entry index */
double iaf;
int ix = 0; /* Extract flag */
/* Compute number of entries */
if (ts->it_ix && !gs->in.packed) { /* Input is the whole bpch[] size */
ix = 1; /* Need to do extraction in lookup */
if (gs->in.pint) {
ne = (1 << (gs->in.bpch[0])); /* Same size used for all input tables */
} else {
ne = (1 << (gs->in.bpch[e])); /* This input channels size */
}
} else { /* Input is the value size */
ne = (1 << (gs->in.bpv[e])); /* This input values size */
}
/* Allocate the table */
if ((t = (byte *)malloc(ts->it_ts * ne)) == NULL) {
#ifdef VERBOSE
printf("malloc imdi input table size %d failed\n",ts->it_ts * ne);
#endif
return NULL; /* Should we signal error ? How ? */
}
it->size += ts->it_ts * ne;
#ifdef VERBOSE
printf("Allocated input table %d size %u = %u * %u\n",e, ts->it_ts * ne,ts->it_ts,ne);
#endif /* VERBOSE */
/* Comput input adjustment factor */
for (iaf = 0.0, i = 0; i < (sizeof(in_adj)/sizeof(double)-1); i++)
iaf += log(in_adj[i]);
iaf += in_adj[i];
/* For each possible input value, compute the entry value */
for (ex = 0, p = t; ex < ne; ex++, p += ts->it_ts) {
int iiv; /* Integer input value */
int ivr; /* Input value range */
int isb; /* Input sign bit/signed to offset displacement */
double riv; /* Real input value, 0.0 - 1.0 */
double rtv; /* Real transformed value, 0.0 - 1.0 */
double rmi; /* Real interpolation table index */
double rsi; /* Real simplex index */
int imi; /* Interpiolation table index */
int isi = 0; /* Integer simplex index */
int iwe = 0; /* Integer weighting value */
int vo = 0; /* Vertex offset value */
if (ix) { /* Extract value from index */
ivr = ((1 << (gs->in.bpv[e])) -1);
iiv = (ex >> gs->in.bov[e]) & ((1 << (gs->in.bpv[e])) -1);
} else {
ivr = (ne - 1); /* (Should be bpv[e], but take no chances!) */
iiv = ex; /* Input value is simply index */
}
isb = ivr & ~(((unsigned int)ivr) >> 1); /* Top bit */
if (gs->in_signed & (1 << e)) /* Treat input as signed */
iiv = (iiv & isb) ? iiv - isb : iiv + isb; /* Convert to offset from signed */
riv = (double) iiv / (double)ivr; /* Compute floating point */
{
double civ[IXDI], cov[IXDI];
for (f = 0; f < it->id; f++)
civ[f] = riv;
input_curves(cntx, cov, civ); /* Lookup the input table transform */
rtv = iaf * cov[it->it_map[e]];
}
if (rtv < 0.0) /* Guard against sillies */
rtv = 0.0;
else if (rtv > 1.0)
rtv = 1.0;
/* divide into interp base and cube sub index */
rmi = rtv * (gs->itres - 1);
imi = (int)floor(rmi); /* Interp. entry coordinate */
if (imi >= (gs->itres-1)) /* Keep cube base one row back from far edge */
imi = gs->itres-2;
rsi = rmi - (double)imi; /* offset into entry cube */
if (ts->sort) {
iwe = (int)((rsi * (1 << gs->prec)) + 0.5); /* Weighting scale */
vo = idinc[e] * ts->vo_om; /* Vertex offset */
} else {
isi = (int)((rsi * gs->stres) + 0.5);
if (isi == gs->stres) { /* Keep simplex index within table */
isi = 0;
imi++; /* Move to next interp. lattice */
}
isi *= sdinc[e]; /* Convert the raw indexes into offset in this dim */
}
imi *= idinc[e]; /* Convert the raw indexes into offset in this dim */
#ifdef ASSERTS
/* ~~~ needs fixing for sort ~~~~ */
if ((imi & (LSHIFT(1,ts->it_ab)-1)) != imi)
error("imdi_tab assert: (imi & ((1 << ts->it_ab)-1)) != imi, imi = 0x%x, it_ab = 0x%x\n",imi,ts->it_ab);
if (imi >= idinc[it->id])
error("imdi_tab assert: imi >= idinc[it->id]\n");
if ((isi & (LSHIFT(1,ts->sx_ab)-1)) != isi)
error("imdi_tab assert: (isi & ((1 << ts->sx_ab)-1)) != isi, isi = 0x%x, sx_ab = 0x%x\n",isi,ts->sx_ab);
if (!ts->sort && isi >= sdinc[it->id])
error("imdi_tab assert: isi >= sdinc[it->id]\n");
#endif
/* Now stuff them into the table entry */
if (ts->sort) {
if (ts->it_xs) { /* Separate interp index and weight/offset*/
if (ts->wo_xs) { /* All 3 are separate */
write_entry[ts->ix_es](p + ts->ix_eo, imi);
write_entry[ts->we_es](p + ts->we_eo, iwe);
write_entry[ts->vo_es](p + ts->vo_eo, vo);
} else {
bvt iwo;
iwo = ((bvt)iwe << ts->vo_ab) | vo; /* Combined weight+vertex offset */
write_entry[ts->ix_es](p + ts->ix_eo, imi);
write_entry[ts->wo_es](p + ts->wo_eo, iwo);
}
} else { /* All 3 are combined */
bvt iit;
iit = ((((bvt)imi << ts->we_ab) | (bvt)iwe) << ts->vo_ab) | vo;
write_entry[ts->it_ts](p, iit);
}
} else {
if (ts->it_xs) { /* Separate interp index and weight/offset*/
write_entry[ts->ix_es](p + ts->ix_eo, imi);
write_entry[ts->sx_es](p + ts->sx_eo, isi);
} else {
bvt iit;
iit = ((bvt)imi << ts->sx_ab) | isi; /* Combine interp and simplex indexes */
write_entry[ts->it_ts](p, iit);
}
}
}
/* Put table into place */
it->in_tables[e] = (void *)t;
}
it->nintabs = e;
/* Setup the interpolation table */
{
byte *t, *p; /* Pointer to interp table, pointer to total entry */
PHILBERT(phc) /* Pseudo Hilbert counter */
double vscale; /* Value scale for fixed point */
int vsize; /* Fixed point storage size */
if (ts->im_cd)
vsize = (gs->prec * 2)/8; /* Fixed point entry & computation size */
else
vsize = gs->prec/8; /* Fixed point entry size */
vscale = (1 << gs->prec) -0.50000001;
/* Value scale for fixed point padding */
/* -0.5 is to prevent carry/rollover after accumulation */
/* Could get better accuracy with saturation arithmatic */
/* Allocate the table */
if ((t = (byte *)malloc(ibdinc[it->id])) == NULL) {
#ifdef VERBOSE
printf("malloc imdi interpolation table size %d failed\n",ibdinc[it->id]);
#endif
return NULL; /* Should we signal error ? How ? */
}
it->size += ibdinc[it->id];
#ifdef VERBOSE
printf("Allocated grid table = %u bytes, composed of %d dim of res %d entry %d\n",ibdinc[it->id], it->id, gs->itres, ts->im_ts);
#endif /* VERBOSE */
/* Get ready to access all the entries in the table */
p = t;
PH_INIT(phc, it->id, gs->itres)
/* Create all the interpolation table entry values */
do {
int ee, ff;
double riv[IXDI]; /* Real input values */
double rev[IXDO]; /* Real entry values */
unsigned long iev;
byte *pp; /* Pointer to sub-entry */
for (e = 0, p = t; e < it->id; e++) {
riv[e] = ((double)phc[e]) / (gs->itres - 1.0);
p += phc[e] * ibdinc[e]; /* Compute pointer to entry value */
}
/* Lookup this verticies value */
{
double mriv[IXDI]; /* Channel mapped real input values */
double mrev[IXDO]; /* Channel mapped real entry values */
for (e = 0; e < it->id; e++)
mriv[it->it_map[e]] = riv[e];
md_table(cntx, mrev, mriv);
for (e = 0; e < it->od; e++)
rev[e] = mrev[it->im_map[e]];
}
/* Create all the output values */
/* I'm trying to avoid having to declare the actual entry sized */
/* variables, since it is difficult dynamically. */
/* For all the full entries */
ff = 0;
pp = p;
for (e = 0; e < ts->im_fn; e++, pp += ts->im_fs) {
/* For all channels within full entry */
for (ee = 0; ee < ts->im_fv; ee++, ff++) {
double revf = rev[ff];
if (revf < 0.0) /* Guard against sillies */
revf = 0.0;
else if (revf > 1.0)
revf = 1.0;
iev = (unsigned long)(revf * vscale + 0.5);
if (bigend) {
write_entry[vsize](pp + (ts->im_fs - (ee+1) * vsize), iev);
} else {
write_entry[vsize](pp + ee * vsize, iev);
}
}
}
/* For all the 0 or 1 partial entry */
for (e = 0; e < ts->im_pn; e++) {
/* For all channels within partial entry */
for (ee = 0; ee < ts->im_pv; ee++, ff++) {
double revf = rev[ff];
if (revf < 0.0) /* Guard against sillies */
revf = 0.0;
else if (revf > 1.0)
revf = 1.0;
iev = (unsigned long)(revf * vscale + 0.5);
if (bigend) {
write_entry[vsize](pp + (ts->im_ps - (ee+1) * vsize), iev);
} else {
write_entry[vsize](pp + ee * vsize, iev);
}
}
}
#ifdef ASSERTS
if (f != it->od)
fprintf(stderr,"imdi_tab assert: f == it->od\n");
#endif
PH_INC(phc)
} while (!PH_LOOPED(phc));
/* Put table into place */
it->im_table = (void *)t;
}
/* Setup the simplex table */
if (ts->sort) {
it->sw_table = (void *)NULL;
} else {
byte *t, *p; /* Pointer to input table, pointer to total entry */
int nsplx; /* Total number of simplexes */
XCOMBO(vcmb, it->id+1, 1 << it->id);/* Simplex dimension id out of cube dimention id */
int comb[24][IXDI]; /* Parameter[id]->Absolute[id] coordinate index */
int ps[IXDI+1]; /* Base simplex parameter space counter */
int pse; /* Base simplex parameter space counter index */
int idioff; /* Interpolation table diagonal offset value */
if (it->id > 4) {
fprintf(stderr,"imdi_tabl: internal failure - trying to create simplex table with di > 4!\n");
exit(-1);
}
/* Allocate the table */
if ((t = (byte *)malloc(sbdinc[it->id])) == NULL) {
#ifdef VERBOSE
printf("malloc imdi simplex table size %d failed\n",sbdinc[it->id]);
#endif
return NULL; /* Should we signal error ? How ? */
}
it->size += sbdinc[it->id];
#ifdef VERBOSE
printf("Allocated simplex table = %u bytes, composed of %d dim of res %d entry %d\n",sbdinc[it->id], it->id, gs->stres, ts->sm_ts);
#endif /* VERBOSE */
/* Compute the interp table offset to the diagonal vertex */
for (idioff = 0, e = 0; e < it->id; e++)
idioff += idinc[e]; /* Sum one offset in each dimension */
/* Figure out how many simplexes fit into this dimension cube, */
/* and how to map from the base simplex to each actual simplex. */
XCB_INIT(vcmb);
for (nsplx = 0; ;) {
int i;
/* XCOMB generates verticies in order from max to min offest */
/* Compute Absolute -> Parameter mapping */
for (e = 0; e < it->id; e++) { /* For each absolute axis */
for (i = 0; i < it->id; i++) { /* For each verticy, order large to small */
if ((vcmb[i] & (1<<e)) != 0 &&
(vcmb[i+1] & (1<<e)) == 0) {/* Transition from offset 1 to 0 */
comb[nsplx][i] = e;
break;
}
}
}
//printf("~~Verticies = ");
//for (i = 0; i <= it->id; i++)
// printf("%d ",vcmb[i]);
//printf("\n");
//printf("~~Parm -> Abs = ");
//for (e = 0; e < it->id; e++)
// printf("%d ",comb[nsplx][e]);
//printf("\n");
/* Increment the counter value */
XCB_INC(vcmb);
nsplx++;
if (XCB_DONE(vcmb))
break;
}
/* Now generate the contents of the base simplex, */
/* and map it to all the symetrical simplexes */
/* Init parameter space counter. */
/* Note that ps[id-1] >= ps[id-2] >= ... >= ps[1] >= ps[0] */
for (pse = 0; pse < it->id; pse++)
ps[pse] = 0;
ps[pse] = gs->stres-1;
/* Itterate through the simplex parameter space */
for (pse = 0; pse < it->id;) {
int qps[IXDI]; /* Quantized parameter values */
int we[IXDI+1]; /* Baricentric coords/vertex weighting */
double wvscale = (1 << gs->prec); /* Weighting value scale */
int sx; /* Simplex */
//printf("Param coord =");
//for (e = it->id-1; e >= 0; e--) {
// printf(" %d",ps[e]);
//}
//printf("\n");
for (e = 0; e < it->id; e++) {
/* (Should try wvscale + 0.49999999, or something ?) */
double tt = (wvscale * (double)ps[e])/((double)gs->stres);
qps[e] = (int)(tt + 0.5);
}
/* Convert quantized parameter values into weighting values */
we[it->id] = (1 << gs->prec) - qps[it->id-1];
for (e = it->id-1; e > 0; e--)
we[e] = qps[e] - qps[e-1];
we[0] = qps[0];
#ifdef ASSERTS
{
int sow = 0;
for (e = it->id; e >= 0; e--)
sow += we[e];
if (sow != (1 << gs->prec))
fprintf(stderr,"imdi_tab assert: sum weights == (1 << gs->prec)\n");
}
#endif
//printf("Baricentric coord =");
//for (e = it->id; e >= 0; e--) {
// printf(" %d",we[e]);
//}
//printf("\n");
/* For each simplex, compute the interp. and */
/* and entry offsets, and write the entry. */
for (sx = 0; sx < nsplx; sx++ ) {
int v; /* Vertex index */
byte *pp; /* Pointer to sub-entry */
unsigned long vofb = 0; /* Vertex offset, base */
unsigned long vwe; /* Vertex weight */
for (e = 0, p = t; e < it->id; e++) {
int ee = comb[sx][e]; /* Absolute coord index */
p += ps[e] * sbdinc[ee]; /* Pointer to entry */
}
/* For each vertex entry */
for (v = 0, pp = p; v <= it->id; v++) {
unsigned long vof;
if (v == 0) {
vofb = idioff; /* Start at diagonal offset */
} else {
vofb -= idinc[comb[sx][v-1]];/* Move to next vertex */
}
vwe = we[v]; /* Weight for this vertex */
if (vwe == 0)
vof = 0; /* Use zero offset if weight is zero */
else
vof = vofb * ts->vo_om; /* Strength reduce kernel scaling */
/* Write vwe and vof to entry */
if (ts->wo_xs) { /* Separate entries */
write_entry[ts->we_es](pp + ts->we_eo, vwe);
write_entry[ts->vo_es](pp + ts->vo_eo, vof);
pp += ts->wo_es;
} else { /* Combined entries */
bvt iwo;
iwo = ((bvt)vwe << ts->vo_ab) | vof; /* Combined weight+vertex offset */
write_entry[ts->wo_es](pp + ts->wo_eo, iwo);
pp += ts->wo_es;
}
}
/* Assert vofb == 0 */
#ifdef ASSERTS
if (vofb != 0)
fprintf(stderr,"imdi_tab assert: vofb == 0\n");
#endif
} /* Next simplex */
/* Increment the parameter coords */
for (pse = 0; pse < it->id; pse++) {
ps[pse]++;
if (ps[pse] <= ps[pse+1])
break; /* No carry */
ps[pse] = 0;
}
}
/* Put table into place */
it->sw_table = (void *)t;
}
/* Last, setup the output tables */
for (e = 0; e < it->od; e++) {
byte *t, *p; /* Pointer to output table, entry pointer */
int ne; /* Number of entries */
int iiv; /* Integer input value */
double ivr = (double)((1 << gs->prec)-1); /* Input value range */
double ovr = (double)((1 << ts->ot_bits[e])-1); /* Output value range */
int osb = (1 << (ts->ot_bits[e]-1)); /* Output offset to signed displacement */
int ooff = ts->ot_off[e]; /* Output value bit offset */
ne = (1 << gs->prec); /* Output of clut is prec bits */
/* Allocate the table */
if ((t = (byte *)malloc(ts->ot_ts * ne)) == NULL) {
#ifdef VERBOSE
printf("malloc imdi output table size %d failed\n",ts->ot_ts * ne);
#endif
return NULL; /* Should we signal error ? How ? */
}
it->size += ts->ot_ts * ne;
#ifdef VERBOSE
printf("Allocated output table %d size %u = %u * %u\n",e, ts->ot_ts * ne,ts->ot_ts,ne);
#endif /* VERBOSE */
/* For each possible output value, compute the entry value */
for (iiv = 0, p = t; iiv < ne; iiv++, p += ts->ot_ts) {
double riv; /* Real input value, 0.0 - 1.0 */
double rtv; /* Real transformed value, 0.0 - 1.0 */
unsigned long iov; /* Integer output value */
riv = (double) iiv / ivr; /* Compute floating point */
{
double civ[IXDO], cov[IXDO];
for (f = 0; f < it->od; f++)
civ[f] = riv;
output_curves(cntx, cov, civ); /* Lookup the input table transform */
rtv = cov[it->im_map[e]];
}
if (rtv < 0.0) /* Guard against sillies */
rtv = 0.0;
else if (rtv > 1.0)
rtv = 1.0;
iov = (unsigned long)(rtv * ovr + 0.5); /* output value */
if (gs->out_signed & (1 << e)) /* Treat output as signed */
iov = (iov & osb) ? iov - osb : iov + osb; /* Convert to signed from offset */
iov <<= ooff; /* Aligned for output */
write_entry[ts->ot_ts](p, iov); /* Write entry */
}
/* Put table into place */
it->out_tables[e] = (void *)t;
}
it->nouttabs = e;
/* Adjust the check values for output value shift */
for (e = 0; e < it->od; e++) {
int ooff = ts->ot_off[e]; /* Output value bit offset */
it->checkv[e] <<= ooff; /* Aligned for output */
}
/* Setup the appropriate skip flags, indexed by Output channel */
it->skipf = 0;
if ((oopt & OOPTS_SKIP) != 0) {
int i;
for (i = 0; i < it->od; i++) {
if (oopt & OOPT(oopts_skip,it->im_map[i])) { /* Skip flag for this output chan */
it->skipf |= (1 << i);
}
}
}
/* Fill in some report information */
it->gres = gs->itres;
if (!ts->sort) {
it->sres = gs->stres;
} else {
it->sres = 0;
}
#ifdef VERBOSE
printf("imdi_tabl returning OK\n");
#endif
return it;
}
/* Free up the data allocated */
void
imdi_tab_free(
imdi_imp *it
) {
int e;
for (e = 0; e < it->nintabs; e++)
free(it->in_tables[e]);
if (it->sw_table != NULL)
free(it->sw_table);
if (it->im_table != NULL)
free(it->im_table);
for (e = 0; e < it->nouttabs; e++)
free(it->out_tables[e]);
free(it);
}
|