1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
|
/* This is better for stocastic optimisation, where the function */
/* being evaluated may have a random component, or is not smooth. */
/*
* Copyright 1999 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* A general purpose downhill simplex multivariate optimser, */
/* based on the Nelder and Mead algorithm. */
/* Code is an original expression of the algorithms decsribed in */
/* "Numerical Recipes in C", by W.H.Press, B.P.Flannery, */
/* S.A.Teukolsky & W.T.Vetterling. */
#include "numsup.h"
#undef DEBUG
int dhsx_debug = 0;
static void simplexinit(int di, double *cp, double **p, double *r, double sv, int ii);
static double trypoint(int di,double *cp, double **p, double *y, int hix, double hpfac,
double (*funk)(void *fdata, double *tp), void *fdata, double *tryp);
#ifdef NEVER /* Experimental */
#define ALPHA 0.7 /* Extrapolate hight point through oposite face factor */
#define GAMMA 1.4 /* Aditional extrapolation if ALPHA is good */
#define BETA 0.4 /* One dimensional contraction factor (smaller is more) */
#define DELTA 0.5 /* Multi dimensional contraction factor (smaller is more) */
#define NONEXP 2 /* non expanding passes */
#else /* Standard tuning values */
#define ALPHA 1.0 /* [1.0] Extrapolate hight point through oposite face factor */
#define GAMMA 2.0 /* [2.0] Aditional extrapolation if ALPHA is good */
#define BETA 0.4 /* [0.5] One dimensional contraction factor (smaller is more) */
#define DELTA 0.4 /* [0.5] Multi dimensional contraction factor (smaller is more) */
#define NONEXP 3 /* [3] non expanding passes */
#endif
/* Down hill simplex function */
/* return 0 on sucess, 1 on failure due to excessive itterations */
/* Result will be in cp */
int dhsx(
double *rv, /* If not NULL, return the residual error */
int di, /* Dimentionality */
double *cp, /* Initial starting point, return minimum */
double *s, /* Size of initial search area */
double ftol, /* Finishing tollerance of error change */
double athr, /* Absolute return value threshold. (Set high to not use) */
int maxit, /* Maximum iterations allowed */
double (*funk)(void *fdata, double *tp), /* Error function to evaluate */
void *fdata /* Data needed by function */
) {
int ii = 0; /* Initial simplex orientation */
int i, j;
int nit; /* Number of iterations */
int nsp = di+1; /* Number of simplex verticy points */
double tryy, ysave;
double tol;
double **p; /* Current simplex array */
double *y; /* Values of func at verticies */
double **p2; /* Trial simplex array */
double *y2; /* Trial values of func at verticies */
int lox, hix, nhix; /* Lowest point index, highest point, next highest point */
double *tryp; /* Temporary used by trypoint() */
/* Allocate array arrays */
tryp = dvector(0, di-1); /* Trial value */
p = dmatrix(0, nsp-1, 0, di-1); /* Vertex array of dimentions */
y = dvector(0, nsp-1); /* Value of function at verticies */
p2 = dmatrix(0, nsp-1, 0, di-1); /* Trial vertex array of dimentions */
y2 = dvector(0, nsp-1); /* Trial value of function at verticies */
/* Init the search simplex */
simplexinit(di, cp, p, s, 1.0, ii);
/* Compute initial y (function) values at simplex verticies */
for (i = 0; i < nsp; i++) /* For all verticies */
y[i] = (*funk)(fdata, p[i]); /* Compute error function */
/* Locate verticy with best value */
lox = 0;
for (i = 0; i < nsp; i++) {
if (y[i] < y[lox])
lox = i;
}
tryy = (*funk)(fdata, cp); /* Value at initial point */
#ifdef DEBUG
if (dhsx_debug) printf(" initial point %s = %e\n",debPdv(di,cp),tryy);
#endif /* DEBUG */
/* If our initial point is better than any of the simplex verticies */
if (y[lox] > tryy) {
#ifdef DEBUG
if (dhsx_debug) printf(" initial point is better than surrounding simplex\n");
#endif /* DEBUG */
/* Move all the verticies to match moving lox to cp */
for (i = 0; i < nsp; i++) {
if (i == lox)
continue;
for (j = 0; j < di; j++)
p[i][j] += cp[j] - p[lox][j];
y[i] = (*funk)(fdata, p[i]); /* Compute error function */
}
/* Make lox be the input point */
for (j = 0; j < di; j++)
p[lox][j] = cp[j];
y[lox] = tryy;
}
/* Compute current center point location as sum of verticies. */
/* (We use this to compute moves) */
for (j = 0; j < di; j++) { /* For all dimensions */
double sum;
for (i = 0, sum = 0.0; i < nsp; i++) /* For all verticies */
sum += p[i][j];
cp[j] = sum;
}
/* Untill we find a solution or give up */
for (nit = 0; ; nit++) {
/* Find highest, next highest and lowest vertex */
lox = nhix = hix = 0;
for (i = 0; i < nsp; i++) {
if (y[i] < y[lox])
lox = i;
if (y[i] > y[hix]) {
nhix = hix;
hix = i;
} else if (y[i] > y[nhix]) {
nhix = i;
}
}
tol = y[hix] - y[lox];
#ifdef DEBUG
if (dhsx_debug) {
printf("Current vs =\n");
for (i = 0; i < nsp; i++)
printf(" %d: %s\n",i,debPdv(di, p[i]));
printf("Current errs = %s\n",debPdv(nsp,y));
printf("Current y[lox] = %e, y[hix] = %e\n",y[lox], y[hix]);
}
#endif /* DEBUG */
/* If we look like we are about to finish, */
/* see if we should re-start with a new simplex. */
if (tol < ftol && y[lox] < athr /* Found an adequate solution */
&& nit < maxit) {
double scale = 0.0;
int lox2;
#ifdef DEBUG
if (dhsx_debug) printf(" nit %d, tol %e\n",nit, tol);
#endif /* DEBUG */
/* compute center location */
tryy = 1.0/nsp;
for (j = 0; j < di; j++) /* For all dimensions */
cp[j] *= tryy; /* Set cp to center point of simplex */
/* Compute scaled distance of vertexes from center */
for (i = 0; i < nsp; i++) {
double dist = 0.0;
for (j = 0; j < di; j++) {
double tt = (cp[j] - p[i][j])/s[j];
dist += tt * tt;
}
scale += sqrt(dist);
}
scale /= (double)nsp; /* Average scale compared to starting simplex */
#ifdef DEBUG
if (dhsx_debug) printf(" ave scale = %f\n",scale);
#endif /* DEBUG */
/* Enlarge search space, but not more than initial */
scale *= 10.0;
if (scale > 1.0)
scale = 1.0;
/* Compute trial simplex with different orientation */
if (++ii >= (di+1))
ii = 0;
/* Init the search simplex */
simplexinit(di, cp, p2, s, scale, ii);
/* Compute y (function) values at simplex verticies */
for (i = 0; i < nsp; i++) /* For all verticies */
y2[i] = (*funk)(fdata, p2[i]); /* Compute error function */
/* Locate verticy with best value */
lox2 = 0;
for (i = 0; i < nsp; i++) {
if (y2[i] < y2[lox2])
lox2 = i;
}
#ifdef DEBUG
if (dhsx_debug) printf(" y2lox %f ylox %f\n",y2[lox2], y[lox]);
#endif /* DEBUG */
/* If any of its vertexes are better than current best, switch */
/* to it and continue (i.e. re-start) */
if (y2[lox2] < y[lox]) {
#ifdef DEBUG
if (dhsx_debug) printf(" restarting\n");
#endif /* DEBUG */
for (i = 0; i < nsp; i++) {
for (j = 0; j < di; j++)
p[i][j] = p2[i][j];
y[i] = y2[i];
}
/* Compute current center point location as sum of verticies. */
/* (We use this to compute moves) */
for (j = 0; j < di; j++) { /* For all dimensions */
double sum;
for (i = 0, sum = 0.0; i < nsp; i++) /* For all verticies */
sum += p[i][j];
cp[j] = sum;
}
/* Find highest, next highest and lowest vertex */
lox = nhix = hix = 0;
for (i = 0; i < nsp; i++) {
if (y[i] < y[lox])
lox = i;
if (y[i] > y[hix]) {
nhix = hix;
hix = i;
} else if (y[i] > y[nhix]) {
nhix = i;
}
}
tol = y[hix] - y[lox];
}
}
if ((tol < ftol && y[lox] < athr) /* Found an adequate solution */
|| ((nit+1) >= maxit)) { /* Or we are about to fail */
/* convert cp[] to center point location, */
/* and use best out of it and any simplex verticy. */
tryy = 1.0/nsp;
for (j = 0; j < di; j++) /* For all dimensions */
cp[j] *= tryy; /* Set cp to center point of simplex */
#ifdef DEBUG
if (dhsx_debug) printf("C point = %s\n",debPdv(di,cp));
#endif
tryy = (*funk)(fdata, cp); /* Compute error function */
if (tryy > y[lox]) { /* Center point is not the best */
#ifdef DEBUG
if (dhsx_debug) printf("C point val %f is not best, using sx %d val %f instead\n",tryy,lox,y[lox]);
#endif
tryy = y[lox];
for (j = 0; j < di; j++)
cp[j] = p[lox][j];
}
#ifdef DEBUG
else if (dhsx_debug) printf("C point val %f is best\n",tryy);
#endif
free_dvector(y2, 0, nsp-1);
free_dmatrix(p2, 0, nsp-1, 0, di-1);
free_dvector(y, 0, nsp-1);
free_dmatrix(p, 0, nsp-1, 0, di-1);
free_dvector(tryp, 0, di-1);
#ifdef DEBUG
if (dhsx_debug) printf("Total itterations = %d\n",nit);
#endif
if (rv != NULL)
*rv = tryy;
if ((nit+1) >= maxit)
return 1; /* Failed */
return 0;
}
/* Only try expanding after a couple of iterations */
if (nit > NONEXP) {
/* Try moving the high point through the oposite face by ALPHA */
#ifdef DEBUG
if (dhsx_debug) printf("dhsx: try moving high point %d through oposite face",hix);
#endif
tryy = trypoint(di, cp, p, y, hix, -ALPHA, funk, fdata, tryp);
}
/* If gave good result, continue on in that direction */
if (nit > NONEXP && tryy <= y[lox]) {
#ifdef DEBUG
if (dhsx_debug) printf("dhsx: moving high through oposite face worked");
#endif
tryy = trypoint(di, cp, p, y, hix, GAMMA, funk, fdata, tryp);
/* else if ALPHA move made things worse, do a one dimensional */
/* contraction by a factor BETA */
} else if (nit <= NONEXP || tryy >= y[nhix]) {
#ifdef DEBUG
if (dhsx_debug) printf("dhsx: else try moving contracting point %d, y[ini] = %f",hix,y[hix]);
#endif
ysave = y[hix];
tryy = trypoint(di, cp, p, y, hix, BETA, funk, fdata, tryp);
if (tryy >= ysave) {
#ifdef DEBUG
if (dhsx_debug) printf("dhsx: contracting didn't work, try contracting other points to low");
#endif
/* That still didn't help us, so move all the */
/* other points towards the low point */
for (i = 0; i < nsp; i++) { /* For all verts except low */
if (i != lox) {
for (j = 0; j < di; j++) /* For all dimensions */
p[i][j] = DELTA * p[i][j] + (1.0 - DELTA) * p[lox][j];
y[i] = (*funk)(fdata, p[i]); /* Compute function value for new point */
}
}
/* Re-compute current center point location */
for (j = 0; j < di; j++) {
double sum;
for (i = 0,sum = 0.0;i<nsp;i++)
sum += p[i][j];
cp[j] = sum;
}
} else {
#ifdef DEBUG
if (dhsx_debug) printf("dhsx: contracting point %d worked, tryy = %e, ysave = %e",hix,tryy,ysave);
#endif
}
}
}
}
/* Try moving the high point through the opposite face */
/* by a factor of fac, and replaces the high point if */
/* that proves to be better. Return the failed or new */
/* function value. */
static double trypoint(
int di, /* Dimentionality */
double *cp, /* nsp * center coord/Returned coordinate */
double **p, /* Starting/Current simplex (modified by dhsx) */
double *y, /* values of func at verticies */
int hix, /* Index of high point we are moving */
double hpfac, /* factor to move high point */
double (*funk)(void *fdata, double tp[]), /* Error function to evaluate */
void *fdata, /* Data needed by function */
double *tryp /* temporary array of size di-1 */
) {
int j;
double tt, tryy;
/* Compute trial high point */
tt = (1.0 - hpfac)/di;
for (j = 0; j < di; j++)
tryp[j] = cp[j] * tt - p[hix][j] * (tt - hpfac);
/* Evaluate trial point */
tryy = (*funk)(fdata, tryp); /* Compute error function */
/* If new high point pos. is better */
if (tryy < y[hix]) {
#ifdef DEBUG
if (dhsx_debug) printf("Try gave improved %e from sx %d",tryy,hix);
#endif
y[hix] = tryy; /* Replace func val of hi with trial */
for (j = 0; j < di; j++) {
cp[j] += tryp[j] - p[hix][j]; /* Recompute cp */
p[hix][j] = tryp[j]; /* Replace co-ords of hi with trial */
}
} else {
#ifdef DEBUG
if (dhsx_debug) printf("Try gave worse %e from sx %d",tryy,hix);
#endif
}
return tryy; /* Function value of trial point */
}
/* Make up an initial simplex for dhsx routine */
static void
simplexinit(
int di, /* Dimentionality */
double *cp, /* Initial solution location */
double **p, /* Simplex to initialize */
double *s, /* initial radius for each dimention */
double sv, /* Radius scaling value */
int ii /* Coordinate to start with */
) {
double bb;
double hh = 0.5; /* Constant */
double rr = sqrt(3.0)/2.0; /* Constant */
int i, j;
for (i = 0; i < (di+1); i++) { /* For each vertex */
/* The bounding points form a equalateral simplex */
/* whose vertexes are on a sphere about the data */
/* point center. The coordinate sequence is: */
/* B = sphere radius */
/* H = 0.5 */
/* R = sqrt(3)/2 */
/* 0 0 0 +B */
/* 0 0 0 -B */
/* 0 0 0 +B */
/* 0 0 +RB -HB */
/* 0 0 -RB -HB */
/* 0 0 0 +B */
/* 0 0 +RB -HB */
/* 0 +RRb -HRB -HB */
/* 0 -RRb -HRB -HB */
/* 0 0 0 +B */
/* 0 0 +RB -HB */
/* 0 +RRb -HRB -HB */
/* +RRRb -HRRb -HRB -HB */
/* -RRRb -HRRb -HRB -HB */
/* etc. */
bb = 1.0; /* Initial unscaled radius */
for (j = 0; j < di; j++) { /* For each coordinate in vertex */
if (j > ii)
p[i][j] = cp[j] + sv * s[j] * 0.0; /* If beyond last */
else if (j == ii) /* If last non-zero */
p[i][j] = cp[j] + sv * s[j] * bb;
else if (ii == di && j == (di-1)) /* If last of last */
p[i][j] = cp[j] + sv * s[j] * -1.0 * bb;
else /* If before last */
p[i][j] = cp[j] + sv * s[j] * -hh * bb;
bb *= rr;
}
/* Increment coordinate number with wrap around */
if (++ii >= (di+1))
ii = 0;
}
#ifdef DEBUG
if (dhsx_debug) {
for (i = 0; i < (di+1); i++)
printf(" p[%d] = %s\n",i,debPdv(di,p[i]));
}
#endif
}
|