1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
/*
* Copyright 2018 Graeme Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
#include "numsup.h"
#include "ludecomp.h"
#include "gnewt.h" /* Public interface definitions */
#undef DEBUG
#ifdef DEBUG
# define DBG(xx) printf xx;
#else
# define DBG(xx)
#endif
#define TOLX 1.0e-7 /* Convergence criterion on delx */
#define STPMX 100.0 /* Maximum step multiplier */
static void apxjac(int n, double *x, double *fvec, double **df, void *fdata,
void (*fcn)(void *fdata, int n, double *x, double *fvec));
static int linesearch(int n, double *xold, double fold, double *delf, double *delx,
double *x, double *fvec, double *fp, double maxstep, void *fdata,
void (*fcn)(void *fdata, int n, double *x, double *f), int *pfit, int maxjac, int it);
#define FMAX(A, B) ((A) > (B) ? (A) : (B))
int gnewt(
void *fdata, /* Opaque pointer to pass to fcn() and jac() */
void (*fcn)(void *fdata, int n, double *x, double *fvec),
/* Pointer to function we are solving */
void (*jac)(void *fdata, int n, double *x, double **fjac),
/* Function to compute jacobian */
int n, /* Number of functions and variables */
double x[], /* Initial solution estimate, returns final solution */
double rfvec[], /* Optionaly return soln. function values */
double xtol, /* Desired tollerance of root */
double ftol, /* Desired tollerance of the solution */
int maxfcn, /* Maximum number of function itterations */
int maxjac /* Maximum number of jacobian itterations */
) {
int i, j, it, fit, jit, *pivx, _pivx[10];
double f, fold; /* half magnitide squared of fvec[] */
double *delf, _delf[10]; /* del f where f = 0.5 F.F */
double *fvec, _fvec[10]; /* F(x) */
double **fjac, *_fjac[11], __fjac[10 * 10];
double *xold, _xold[10];
double bigfx, bigx, maxstep;
double *delx, _delx[10]; /* Full step delta x */
double sum;
int rv = 0;
#ifdef DEBUG
double *fvec_check;
double **fjac_check;
#endif
DBG(("gnewt:\n"))
fit = jit = 0;
/* Do local vector/array allocations */
if (n <= 10) {
pivx = _pivx;
if (rfvec == NULL) {
fvec = _fvec;
} else
fvec = rfvec;
_fjac[0] = __fjac;
fjac = _fjac+1; /* dmatrix_reset() will setup fjac */
xold = _xold;
delf = _delf;
delx = _delx;
} else {
pivx = ivector(0, n-1); /* LU decomp. pivod record */
if (rfvec == NULL) {
fvec = dvector(0, n-1); /* Function value */
} else
fvec = rfvec;
fjac = dmatrix(0, n-1, 0, n-1); /* Jacobian matrix */
xold = dvector(0, n-1); /* Previous value of x[] */
delf = dvector(0, n-1); /* del f */
delx = dvector(0, n-1); /* Full step delta x */
}
#ifdef DEBUG
fvec_check = dvector(0, n-1);
fjac_check = dmatrix(0, n-1, 0, n-1);
#endif
/* Initial function value */
fcn(fdata, n, x, fvec);
fit++;
DBG((" x %s\n",debPdv(n,x)))
DBG((" fvec %s\n",debPdv(n,fvec)))
/* Compute half magnitide squared of function value at x */
for (sum = 0.0, i = 0; i < n; i++)
sum += fvec[i] * fvec[i];
f = 0.5 * sum;
DBG((" f %f\n",f))
/* test for initial value being a root */
for (bigfx = 0.0, i = 0; i < n; i++) {
double tt = fabs(fvec[i]);
if (tt > bigfx)
bigfx = tt;
}
if (bigfx < (0.01 * ftol)) {
goto done;
}
/* Compute line search x maximum step size */
for (sum = 0.0, i = 0 ; i < n; i++)
sum += x[i] * x[i];
maxstep = STPMX * FMAX(sqrt(sum), (double)n);
DBG((" maxstep %f\n",maxstep))
/* Until we are done */
for (it = 0; fit < maxfcn && jit < maxjac; it++) {
double rip;
DBG((" fit %d jit %d\n",fit,jit))
/* Compute Jacobian matrix */
if (jac != NULL) {
/* lu_decomp may have swapped rows - so fix it */
dmatrix_reset(fjac, 0, n-1, 0, n-1);
jac(fdata, n, x, fjac); /* User function */
} else {
apxjac(n, x, fvec, fjac, fdata, fcn); /* Numerical aproximation */
}
jit++;
#ifdef DEBUG
copy_dmatrix(fjac_check, fjac, 0, n-1, 0, n-1);
DBG((" fjac = \n"))
for (i = 0; i < n; i++)
DBG((" %d: %s\n",i,debPdv(n, fjac[i])))
DBG(("\n"))
#endif
/* Compute del f for the line search. */
for (i = 0; i < n; i++) {
for (sum = 0.0, j = 0; j < n; j++)
sum += fjac[j][i] * fvec[j]; /* Hmm. df/dx . f */
delf[i] = sum;
}
/* Save current values of x and f to be able to monitor progres */
for (i = 0; i < n; i++)
xold[i] = x[i];
fold = f;
/* Desired delta f to make F(x) == 0 */
for (i = 0; i < n; i++)
delx[i] = -fvec[i];
DBG((" -fvec %s\n",debPdv(n,delx)))
/* Solve for delta x using Jacobian and desired delta f */
if (lu_decomp(fjac, n, pivx, &rip)) {
rv = 2;
goto done;
}
lu_backsub(fjac, n, pivx, delx);
DBG((" delx %s\n",debPdv(n,delx)))
#ifdef DEBUG
matrix_vect_mult(fvec_check, n, fjac_check, n, n, delx, n);
DBG((" check -fvec : %s\n\n",debPdv(n,fvec_check)))
#endif
if ((rv = linesearch(n, xold, fold, delf, delx, x, fvec, &f, maxstep, fdata, fcn,
&fit, maxfcn, it)) != 0) {
if (rv != 1) { /* Not run out of itterations error */
DBG((" linesearch failed with %d\n",rv))
goto done;
}
}
DBG((" after linesearch:\n"))
DBG((" x %s\n",debPdv(n,x)))
DBG((" fvec %s\n",debPdv(n,fvec)))
/* See if f() has converged */
for (bigfx = 0.0, i = 0; i < n; i++) {
if (fabs(fvec[i]) > bigfx)
bigfx = fabs(fvec[i]);
}
DBG((" bigfx %f ftol %f\n",bigfx,ftol))
if (bigfx < ftol) {
goto done;
}
/* Could check for zero gradient problem here... */
/* See if x[] has converged */
for (bigx = 0.0, i = 0; i < n; i++) {
double tt = (fabs(x[i] - xold[i]))/FMAX(fabs(x[i]), 1.0);
if (tt > bigx)
bigx = tt;
}
DBG((" bigx %f xtol %f\n",bigx,xtol))
if (bigx < xtol)
goto done;
}
rv = 1;
done:;
if (n > 10) {
if (fvec != rfvec)
free_dvector(fvec, 0, n-1);
free_dvector(xold, 0, n-1);
free_dvector(delx, 0, n-1);
free_dvector(delf, 0, n-1);
free_dmatrix(fjac, 0, n-1, 0, n-1);
free_ivector(pivx, 0, n-1);
}
#ifdef DEBUG
free_dvector(fvec_check,0, n-1);
free_dmatrix(fjac_check,0, n-1, 0, n-1);
#endif
return rv;
}
/* - - - - - - - - */
#define ALF 1.0e-4 /* Ensures sufficient decrease in function value. */
/* Search for a step size that makes progress */
/* Return nz on error */
static int linesearch(
int n,
double *xold,
double fold,
double *delf, /* del f */
double *delx, /* full step delta x[] */
double *x, /* in/out current x[] */
double *fvec, /* return fvec at x[] */
double *fp, /* in/out f value */
double maxstep, /* maximum x step */
void *fdata, /* Context for fcn */
void (*fcn)(void *fdata, int n, double *x, double *f),
int *pfit, /* Inc number of itts */
int maxfcn, /* Max function its */
int it /* Caller iteration count */
) {
int i;
double f = *fp, f2;
double lmda1, lmda2, min_lmda;
double sum, slope, bigx;
DBG(("linesearch:\n"))
/* Comute magnitude of step */
for (sum = 0.0, i = 0; i < n; i++)
sum += delx[i] * delx[i];
sum = sqrt(sum);
/* re-scale if step is too big */
if (sum > maxstep) {
for (i = 0; i < n; i++)
delx[i] *= maxstep/sum;
}
for (slope = 0.0, i = 0; i < n; i++)
slope += delf[i] * delx[i];
if (slope >= 0.0) {
DBG((" slope %f >= 0.0\n",slope))
return 3;
}
bigx = 0.0;
for (i = 0;i < n; i++) {
double tt = fabs(delx[i])/FMAX(fabs(xold[i]), 1.0);
if (tt > bigx)
bigx = tt;
}
min_lmda = TOLX/bigx;
/* Try full Newton step first */
lmda1 = 1.0;
DBG((" lmda1 %f min_lmda %f\n",lmda1, min_lmda))
/* Top of loop */
for (; *pfit < maxfcn; it++) {
double tmp_lmda;
DBG((" lmda1 %f\n",lmda1))
/* Take step */
for (i = 0;i < n;i++)
x[i] = xold[i] + lmda1 * delx[i];
/* Compute f = 0.5 F.F at x */
fcn(fdata, n, x, fvec);
(*pfit)++;
DBG((" x %s\n",debPdv(n,x)))
DBG((" fvec %s\n",debPdv(n,fvec)))
for (sum = 0.0, i = 0; i < n; i++)
sum += fvec[i] * fvec[i];
f = 0.5 * sum;
//if (it == 0) printf(" linesearch: At 1st full step f %f -> %f\n", *fp, f);
/* Convergence on delx. */
if (lmda1 < min_lmda) {
for (i = 0; i < n; i++)
x[i] = xold[i];
return 0;
} else if (f <= fold + ALF * lmda1 * slope) {
*fp = f;
return 0; /* Sufficient function decrease */
} else { /* Backtrack. */
if (lmda1 == 1.0) /* First time */
tmp_lmda = -slope/(2.0 * (f - fold-slope));
else { /* Subsequent backtracks */
double c, d, e;
double a, b, rhs1, rhs2;
rhs1 = f - fold - slope * lmda1;
rhs2 = f2 - fold - slope * lmda2;
c = rhs1/(lmda1 * lmda1);
d = rhs2/(lmda2 * lmda2);
e = lmda1 - lmda2;
a = (c - d)/e;
b = (-lmda2 * c + lmda1 * d)/e;
if (a == 0.0)
tmp_lmda = -slope/(2.0 * b);
else {
double disc = b * b - 3.0 * a * slope;
if (disc < 0.0)
tmp_lmda = 0.5 * lmda1;
else if (b <= 0.0)
tmp_lmda = (-b + sqrt(disc))/(3.0 * a);
else
tmp_lmda = -slope/(b + sqrt(disc));
}
if (tmp_lmda > 0.5 * lmda1)
tmp_lmda = 0.5 * lmda1;
}
}
lmda2 = lmda1;
lmda1 = FMAX(tmp_lmda, lmda1 * 0.1);
f2 = f;
}
*fp = f;
return 1;
}
/* - - - - - - - - */
/* Compute forward difference as aprox. Jacobian matrix */
#define JEPS 1.0e-8 /* Aprox. sqrt of machine precision */
static void apxjac(
int n, /* Dimensions */
double *x, /* Location x to compute Jacobian */
double *fvec, /* Function value at x */
double **df, /* Return Jacobian */
void *fdata, /* fcn() context */
void (*fcn)(void *fdata, int n, double *x, double *fvec)
) {
int i, j;
double h, temp, *f, _f[10];
if (n <= 10)
f = _f;
else
f = dvector(0, n);
for (j = 0; j < n; j++) {
temp = x[j];
h = JEPS * fabs(temp);
if (h == 0.0)
h = JEPS;
x[j] = temp + h; /* Add delta */
h = x[j] - temp; /* Actual delta with fp precision limits */
fcn(fdata, n, x, f);
x[j] = temp; /* Restore value */
for (i = 0; i < n; i++)
df[i][j] = (f[i] - fvec[i])/h;
}
if (f != _f)
free_dvector(f, 0, n-1);
}
|