1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
/************************************************/
/* Investigate various curve approximations */
/************************************************/
/* Discrete regularized spline versions */
/* Standard test + Random testing */
/* Author: Graeme Gill
* Date: 4/10/95
* Date: 5/4/96
*
* Copyright 1995, 1996 Graeme W. Gill
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
#undef DIAG
#undef DIAG2
#undef GLOB_CHECK
#define RES2 /* Do multiple test at various resolutions */
#define AVGDEV 0.005 /* Average deviation of function data */
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <math.h>
#include "copyright.h"
#include "aconfig.h"
#include "numlib.h"
#include "rspl.h"
#include "plot.h"
#include "ui.h"
void usage(void);
#define TRIALS 20 /* Number of random trials */
#define SKIP 0 /* Number of random trials to skip */
#define MIN_PNTS 5
#define MAX_PNTS 40
#define MIN_RES 20
#define MAX_RES 2000
double xa[MAX_PNTS];
double ya[MAX_PNTS];
#define XRES 100
#define PNTS1 10
#define GRES1 400
//#define GRES 800
double t1xa[PNTS1] = { 0.2, 0.25, 0.30, 0.35, 0.40, 0.44, 0.48, 0.51, 0.64, 0.75 };
double t1ya[PNTS1] = { 0.3, 0.35, 0.4, 0.41, 0.42, 0.46, 0.5, 0.575, 0.48, 0.75 };
#ifndef NEVER
// Reverse in x */
#define PNTS2 10
#define GRES2 400
double t2xa[PNTS2] = { 0.25, 0.36, 0.49, 0.52, 0.56, 0.60, 0.65, 0.70, 0.75, 0.8 };
double t2ya[PNTS2] = { 0.75, 0.48, 0.575, 0.5, 0.46, 0.42, 0.41, 0.4, 0.35, 0.3 };
#else
#define PNTS2 10
#define GRES2 400
// reverse in y
double t2xa[PNTS2] = { 0.2, 0.25, 0.30, 0.35, 0.40, 0.44, 0.48, 0.51, 0.64, 0.75 };
double t2ya[PNTS2] = { 0.7, 0.65, 0.6, 0.59, 0.58, 0.54, 0.5, 0.425, 0.52, 0.25 };
#endif /* NEVER */
//#define PNTS2 2
//#define GRES2 5
//double t2xa[PNTS2] = { 0.0, 1.0 };
//double t2ya[PNTS2] = { 0.33, 0.66 };
co test_points[MAX_PNTS];
double lin(double x, double xa[], double ya[], int n);
void usage(void) {
fprintf(stderr,"Test 1D rspl interpolation\n");
fprintf(stderr,"Author: Graeme W. Gill\n");
fprintf(stderr,"usage: c1 [options]\n");
fprintf(stderr," -s smooth Use given smoothness (default 1.0)\n");
fprintf(stderr," -x Use auto smoothing\n");
exit(1);
}
int main(int argc, char *argv[]) {
int fa,nfa; /* argument we're looking at */
int i,j, n;
double x;
double xx[XRES];
double yy[6][XRES];
rspl *rss; /* incremental solution version */
datai low,high;
int gres[MXDI];
double smooth = 1.0;
int autosm = 0;
double avgdev[MXDO];
low[0] = 0.0;
high[0] = 1.0;
avgdev[0] = AVGDEV;
error_program = "c1";
check_if_not_interactive();
/* Process the arguments */
for(fa = 1;fa < argc;fa++) {
nfa = fa; /* skip to nfa if next argument is used */
if (argv[fa][0] == '-') { /* Look for any flags */
char *na = NULL; /* next argument after flag, null if none */
if (argv[fa][2] != '\000')
na = &argv[fa][2]; /* next is directly after flag */
else {
if ((fa+1) < argc) {
if (argv[fa+1][0] != '-') {
nfa = fa + 1;
na = argv[nfa]; /* next is seperate non-flag argument */
}
}
}
if (argv[fa][1] == '?')
usage();
/* smoothness */
else if (argv[fa][1] == 's') {
fa = nfa;
if (na == NULL) usage();
smooth = atof(na);
}
else if (argv[fa][1] == 'x') {
autosm = 1;
}
else
usage();
} else
break;
}
for (n = 0; n < TRIALS; n++) {
double lrand = 0.0; /* Amount of level randomness */
int pnts;
int fres;
if (n == 0) { /* Standard versions */
#ifdef NEVER /* Doubled up points */
pnts = 2 * PNTS;
fres = GRES;
for (i = 0; i < pnts; i++) {
xa[i * 2 + 0] = t1xa[i] - 0.01;
ya[i * 2 + 0] = t1ya[i];
xa[i * 2 + 1] = t1xa[i] + 0.01;
ya[i * 2 + 1] = t1ya[i];
}
#else
pnts = PNTS1;
fres = GRES1;
for (i = 0; i < pnts; i++) {
xa[i] = t1xa[i];
ya[i] = t1ya[i];
}
#endif
printf("Trial %d, points = %d, res = %d, level randomness = %f\n",n,pnts,fres,lrand);
} else if (n == 1) { /* Second test versions */
pnts = PNTS2;
fres = GRES2;
for (i = 0; i < pnts; i++) {
xa[i] = t2xa[i];
ya[i] = t2ya[i];
}
printf("Trial %d, points = %d, res = %d, level randomness = %f\n",n,pnts,fres,lrand);
} else { /* Random versions */
lrand = d_rand(0.0,0.1); /* Amount of level randomness */
pnts = i_rand(MIN_PNTS,MAX_PNTS);
fres = i_rand(MIN_RES,MAX_RES);
printf("Trial %d, points = %d, res = %d, level randomness = %f\n",n,pnts,fres,lrand);
/* Create X values */
xa[0] = d_rand(0.5,1.0);
for (i = 1; i < pnts; i++)
xa[i] = xa[i-1] + d_rand(0.5,1.0);
for (i = 0; i < pnts; i++) /* Divide out */
xa[i] = (xa[i]/xa[pnts-1]);
/* Create y values */
ya[0] = xa[0];
for (i = 0; i < pnts; i++)
ya[i] = ya[i-1] + d_rand(0.2,1.0) + d_rand(-0.2,0.3) + d_rand(-0.2,0.3);
for (i = 0; i < pnts; i++) /* Divide out */
ya[i] = (ya[i]/ya[pnts-1]);
}
if (n < SKIP)
continue;
/* Create the object */
rss = new_rspl(RSPL_NOFLAGS,
1, /* di */
1); /* fdi */
for (i = 0; i < pnts; i++) {
test_points[i].p[0] = xa[i];
test_points[i].v[0] = ya[i];
}
gres[0] = fres;
#ifdef RES2
if (n != 0) {
#endif
/* Fit to scattered data */
rss->fit_rspl(rss,
0 | (autosm ? RSPL_AUTOSMOOTH : 0) ,
test_points, /* Test points */
pnts, /* Number of test points */
low, high, gres, /* Low, high, resolution of grid */
NULL, NULL, /* Default data scale */
smooth, /* Smoothing */
avgdev, /* Average deviation */
NULL); /* iwidth */
/* Display the result */
for (i = 0; i < XRES; i++) {
co tp; /* Test point */
x = i/(double)(XRES-1);
xx[i] = x;
yy[0][i] = lin(x,xa,ya,pnts);
tp.p[0] = x;
rss->interp(rss, &tp);
yy[1][i] = tp.v[0];
if (yy[1][i] < -20.0)
yy[1][i] = -20.0;
else if (yy[1][i] > 120.0)
yy[1][i] = 120.0;
}
do_plot(xx,yy[0],yy[1],NULL,XRES);
#ifdef RES2
} else { /* Multiple resolution version */
int gresses[5];
for (j = 0; j < 5; j++) {
#ifndef NEVER
if (j == 0)
gres[0] = fres/8;
else if (j == 1)
gres[0] = fres/4;
else if (j == 2)
gres[0] = fres/2;
else if (j == 3)
gres[0] = fres;
else
gres[0] = fres * 2;
#else /* Check sensitivity to griding of data points */
if (j == 0)
gres[0] = 192;
else if (j == 1)
gres[0] = 193;
else if (j == 2)
gres[0] = 194;
else if (j == 3)
gres[0] = 195;
else
gres[0] = 196;
#endif
gresses[j] = gres[0];
rss->fit_rspl(rss,
0 | (autosm ? RSPL_AUTOSMOOTH : 0) ,
test_points, /* Test points */
pnts, /* Number of test points */
low, high, gres, /* Low, high, resolution of grid */
NULL, NULL, /* Default data scale */
smooth, /* Smoothing */
avgdev, /* Average deviation */
NULL); /* iwidth */
/* Get the result */
for (i = 0; i < XRES; i++) {
co tp; /* Test point */
x = i/(double)(XRES-1);
xx[i] = x;
yy[0][i] = lin(x,xa,ya,pnts);
tp.p[0] = x;
rss->interp(rss, &tp);
yy[1+j][i] = tp.v[0];
if (yy[1+j][i] < -20.0)
yy[1+j][i] = -20.0;
else if (yy[1+j][i] > 120.0)
yy[1+j][i] = 120.0;
}
}
printf("Black = lin, Red = %d, Green = %d, Blue = %d, Yellow = %d, Purple = %d\n",
gresses[0], gresses[1], gresses[2], gresses[3], gresses[4]);
do_plot6(xx,yy[0],yy[1],yy[2],yy[3],yy[4],yy[5],XRES);
}
#endif /* RES2 */
} /* next trial */
return 0;
}
/* Simple linear interpolation */
double
lin(
double x,
double xa[],
double ya[],
int n) {
int i;
double y;
if (x < xa[0])
return ya[0];
else if (x > xa[n-1])
return ya[n-1];
for (i = 0; i < (n-1); i++)
if (x >=xa[i] && x <= xa[i+1])
break;
x = (x - xa[i])/(xa[i+1] - xa[i]);
y = ya[i] + (ya[i+1] - ya[i]) * x;
return y;
}
/******************************************************************/
/* Error/debug output routines */
/******************************************************************/
/* Next u function done with optimization */
/* Structure to hold data for optimization function */
struct _edatas {
rspl *rss;
int j;
}; typedef struct _edatas edatas;
#ifdef GLOB_CHECK
/* Overall Global optimization method */
/* Definition of the optimization function handed to powell() */
double efunc2(void *edata, double p[])
{
int j;
double rv;
rspl *rss = (rspl *)edata;
for (j = 0; j < rss->nig; j++) /* Ugg */
rss->u[j].v = p[j];
rv = rss->efactor(rss);
#ifdef DIAG2
/* printf("%c%e",cr_char,rv); */
printf("%e\n",rv);
#endif
return rv;
}
solveu(rss)
rspl *rss;
{
int j;
double *cp;
double *s;
cp = dvector(0,rss->nig);
s = dvector(0,rss->nig);
for (j = 0; j < rss->nig; j++) /* Ugg */
{
cp[j] = rss->u[j].v;
s[j] = 0.1;
}
powell(rss->nig,cp,s,1e-7,1000,efunc2,(void *)rss);
}
#endif /* GLOB_CHECK */
|