1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
|
/*
* Argyll Color Correction System
* Multi-dimensional regularized spline data structure
*
* Precice gamut surface, gamut pruning, ink limiting and K min/max
* support routines.
*
* Author: Graeme W. Gill
* Date: 2008/11/21
*
* Copyright 1999 - 2008 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*
* Latest simplex/linear equation version.
*/
/*
This probably needs re-writing, since (I think) it doesn't take gamut
self intersection into account. The rspl/rec.c code works more
reliably, but doesn't cope with concavities that cross the line
to the focal point. So can this "surface following" code be
adapted to solve this type of problem ?
Outline would be:
Have a spatial cache structure that contains list of potentialy
intersecting triangles for any point. Create this incrementally.
Each triangle can be replaced by a list of fragment triangles
sharing the same plane.
i.e.
triangle planes
triangles
edges
vertexes
Initialization:
Locate extreme vertex
Locate triangle that uses that vertex that is most elevated
in that direction as initial surface.
Intersect that triangle with all other triangles nearby, and
retain the fragment that has that vertex.
List of open edges is initial triangle edges.
Track outward and inward faces of all triangles in open surface.
Basic loop:
While edge list is non-empty {
Locate adjacent triangle that is not part of surface that
is most accutely angled to outside face.
Intersect that triangle with all other triangles using cache structure,
hanging on to all resulting fragments that are part of that edge.
Add those fragments to the open surface.
}
Each intersection adds new nodes, and splits a triangle into
about 8 smaller triangles. Trick is to avoid slivers and
numerical issues with triangles.
Alternative would be to not split triangles, but just track
the line of intersection ?
*/
/* TTBD:
Add ouutput curve lookup callback support.
Cache these values in the vertex structures ?
Add ink limit support. This be done by breaking
a cell into a fixed geometry of smaller simplexes
by dividing the cell into two on each axis.
(rspl/rev.c has code for this ??)
Need to then add scan that detects areas to prune,
that then ties in with rev code to mark such
areas out of gamut.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include <memory.h>
#include <time.h>
#include "rspl_imp.h"
#include "numlib.h"
#include "sort.h" /* Heap sort */
#include "counters.h" /* Counter macros */
#include "vrml.h" /* If there is VRML/X3D stuff here */
/* Print a vectors value */
#define DBGVI(text, dim, out, vec, end) \
{ int pveci; \
printf("%s",text); \
for (pveci = 0 ; pveci < (dim); pveci++) \
printf(out,(vec)[pveci]); \
printf(end); \
}
/* Print a matrix value */
#define DBGMI(text, rows, cols, out, mat, end) \
{ int pveci, pvecr; \
printf("%s",text); \
for (pvecr = 0 ; pvecr < (rows); pvecr++) { \
for (pveci = 0 ; pveci < (cols); pveci++) \
printf(out,(mat)[pvecr][pveci]); \
if ((pvecr+1) < (rows)) \
printf("\n"); \
} \
printf(end); \
}
#undef VRML_TRACE /* Save a vrml at each step */
/* Do an arbitrary printf */
#define DBGI(text) printf text ;
#define DEBUG1
#undef DBG
#undef DBGV
#undef DBGM
#undef NEVER
#define ALWAYS
#ifdef DEBUG1
#undef DBGS
#undef DBG
#undef DBGV
#undef DBGM
#define DEBUG
#define DBGS(xxx) xxx
#define DBG(xxx) DBGI(xxx)
#define DBGV(xxx) DBGVI xxx
#define DBGM(xxx) DBGMI xxx
#else
#undef DEBUG
#undef DBGS
#undef DBG
#undef DBGV
#undef DBGM
#define DBGS(xxx)
#define DBG(xxx)
#define DBGV(xxx)
#define DBGM(xxx)
#endif
/* Convention is to use:
i to index grid points u.a
n to index data points d.a
e to index position dimension di
f to index output function dimension fdi
j misc and cube corners
k misc
*/
#define EPS (1e-10) /* Allowance for numeric error */
/* ====================================================== */
/* Support functions */
/* Compute the norm (length) squared of a vector define by two points */
static double norm33sq(double in1[3], double in0[3]) {
int j;
double rv;
for (rv = 0.0, j = 0; j < 3; j++) {
double tt = in1[j] - in0[j];
rv += tt * tt;
}
return rv;
}
static rvert *get_vert(rspl *s, int gix);
/* Given an output value, return the gamut radius */
static double gvprad(rspl *s, double *v) {
int f, fdi = s->fdi;
double rr = 0.0;
for (f = 0; f < fdi; f++) {
double tt;
tt = s->gam.scale[f] * (v[f] - s->gam.cent[f]);
rr += tt * tt;
}
rr = sqrt(rr);
return rr;
}
/* Given an output value, create the radial coordinate */
static void radcoord(rspl *s, double *rad, double *v) {
int f, fdi = s->fdi;
double rr = 0.0;
for (f = 0; f < fdi; f++) {
double tt;
tt = s->gam.scale[f] * (v[f] - s->gam.cent[f]);
rr += tt * tt;
}
rr = sqrt(rr);
rad[0] = rr;
}
/* Given an output value and an edge, return the side, */
/* 0 = -vem 1 = +ve */
static int eside(rspl *s, redge *ep, double *v) {
int f, fdi = s->fdi;
double tt;
for (tt = 0.0, f = 0; f < fdi; f++) {
tt += v[f] * ep->pe[f];
}
tt += ep->pe[f];
return (tt >= 0.0 ? 1 : 0);
}
/* Given a list of nodes that form an sdi-1 sub-simplex, */
/* return a list of nodes that could be added to make */
/* an sdi sub-simplex. */
/* Nodes are identified by their grid index. */
/* All possible nodes are returned, even if they are already */
/* in our surface triangulation. */
/* NOTE that inodes will be sorted into sub-simplex order! */
// ~~99 we aren't currently taking ink limit into account
/* return nz on fatal error */
static int get_ssimplex_nodes(
rspl *s,
int sdi, /* Dimensionality of target sub-simplex */
rvert **inodes, /* sdi input nodes that form an sdi-1 dimensional input sub-simplex */
int aonodes, /* Number of output nodes allowed for */
int *nonodes, /* Number of output nodes set */
rvert **onodes /* Space for up to 3^MXDI-1 output nodes */
) {
int e, di = s->di;
int i, j, k;
*nonodes = 0;
//printf("\n~1 get_ssimplex_nodes called with sdi = %d\n",sdi);
/* Sort the input nodes into normal sub-simplex order */
/* (We are assuming all the nodes are in the grid) */
for (i = 0; i < sdi-1; i++) {
for (j = i+1; j < sdi; j++) {
if (inodes[i]->gix < inodes[j]->gix) {
rvert *tt;
tt = inodes[i]; inodes[i] = inodes[j]; inodes[j] = tt;
}
}
}
//printf("~2 input nodes = %d %d\n", inodes[0]-gix, inodes[1]->gix);
/* For each sub-simplex */
for (i = 0; i < s->gam.ssi[sdi].nospx; i++) {
int kk;
//printf("~1 sub simplex %d\n",i);
/* For leaving out one node of the ssimplex in turn, */
/* check the inodes match the remaining ssimplex nodes */
for (kk = 0; kk <= sdi; kk++) { /* ssimplex node being left out */
int bix = 0; /* ssimplex base node */
if (kk == 0)
bix++;
//printf("~1 anchor node %d = %d\n",j,s->gam.ssi[sdi].spxi[i].goffs[bix]);
//printf("~2 candidate node offsets = %d %d %d\n",
//s->gam.ssi[sdi].spxi[i].offs[0],
//s->gam.ssi[sdi].spxi[i].offs[1],
//s->gam.ssi[sdi].spxi[i].offs[2]);
for (j = k = 0; j < sdi; j++, k++) { /* Check all inodes[] */
if (k == kk)
k++; /* Skip the ssimplex node being left out */
if (inodes[j]->gix != (inodes[0]->gix + s->gam.ssi[sdi].spxi[i].goffs[k]
- s->gam.ssi[sdi].spxi[i].goffs[bix])) {
//printf("~1 not a match\n");
break;
}
//printf("~1 matched node %d\n",inodes[k]->gix);
}
if (j >= sdi) { /* they all match */
//printf("~1 all match\n");
/* Check if kk offset to the base is still in the grid */
for (e = 0; e < di; e++) {
int doff = ((s->gam.ssi[sdi].spxi[i].offs[kk] >> e) & 1)
- ((s->gam.ssi[sdi].spxi[i].offs[bix] >> e) & 1);
int eflags = G_FL(inodes[0]->fg,e);
//printf("~1 checking dim %d, doff = %d, eflags = %d\n",e,doff,eflags);
if ((doff < 0 && (eflags & 4) && (eflags & 3) < 1)
|| (doff > 0 && !(eflags & 4) && (eflags & 3) < 1)) {
//printf("~1 outside grid\n");
break; /* Offset will take us past edge */
}
}
if (e >= di) { /* Remaining point is within grid */
int gix;
/* Add the remaining node to the onodes */
if (*nonodes >= aonodes)
return 1; /* Oops - ran out of return space! */
gix = inodes[0]->gix + s->gam.ssi[sdi].spxi[i].goffs[kk]
- s->gam.ssi[sdi].spxi[i].goffs[bix];
onodes[*nonodes] = get_vert(s, gix);
//printf("~1 Returning node %d\n",(onodes[*nonodes]->gix);
//printf("~1 Value %f %f %f\n", onodes[*nonodes]->p[0], onodes[*nonodes]->p[1], onodes[*nonodes]->p[2]);
(*nonodes)++;
}
}
}
}
//printf("~1 onodes = %d\n",*nonodes);
return 0;
}
/* ====================================================== */
/* Search for an existing vertex, and return it. */
/* If there is no existing edge, create it. */
/* (This is where we apply the output functions to the grid values) */
static rvert *get_vert(rspl *s, int gix) {
int f, fdi = s->fdi;
int hash;
rvert *vp = NULL;
if (gix < 0 || gix >= s->g.no) { /* Assert */
error("rspl_gam: get_vert got out of range gix %d\n",gix);
}
/* See if it is in our hash list */
hash = gix % s->gam.vhsize;
for (vp = s->gam.verts[hash]; vp != NULL; vp = vp->next) {
if (vp->gix == gix)
break;
}
if (vp == NULL) { /* No such vertex */
float *fg;
if ((vp = calloc(1, sizeof(rvert))) == NULL)
error("rspl_gam: get_vert calloc failed");
fg = s->g.a + gix * s->g.pss;
vp->n = s->gam.rvert_no++; /* serial number */
vp->fg = fg; /* Pointer to node float data */
vp->gix = gix; /* grid index */
for (f = 0; f < fdi; f++) /* Node output value */
vp->v[f] = (double)fg[f];
if (s->gam.outf != NULL)
s->gam.outf(s->gam.cntxf, vp->v, vp->v); /* Apply output lookup */
radcoord(s, vp->r, vp->v); /* Compute radial coordinate */
/* Add vertex to hash */
vp->next = s->gam.verts[hash];
s->gam.verts[hash] = vp;
/* Add the vertex to the bottom of the list of vertex */
if (s->gam.vbot == NULL) {
s->gam.vtop = s->gam.vbot = vp;
} else {
s->gam.vbot->list = vp;
s->gam.vbot = vp;
}
}
return vp;
}
/* Search for an existing edge containing the given verticies, */
/* and return it. If there is no existing edge, create it. */
/* Note that edges have fdi-2 dimensions == fdi-1 verticies. */
static redge *get_edge(rspl *s, rvert **_vv) {
int i, j, f, fdi = s->fdi;
rvert *vv[MXDO-1]; /* Sorted verticies */
int gix, hash;
redge *ep = NULL;
/* Sort the input nodes into normal sub-simplex order */
/* (We are assuming all the nodes are in the grid) */
for (i = 0; i < (fdi-1); i++)
vv[i] = _vv[i];
for (i = 0; i < (fdi-2); i++) {
for (j = i+1; j < (fdi-1); j++) {
if (vv[i]->gix < vv[j]->gix) {
rvert *tt;
tt = vv[i]; vv[i] = vv[j]; vv[j] = tt;
}
}
}
for (gix = i = 0; i < (fdi-1); i++)
gix += vv[i]->gix;
//printf("~1 get edge with nodes = %d %d\n", vv[0]->gix, vv[1]->gix);
/* See if it is in our hash list */
hash = gix % s->gam.ehsize;
//printf("~1 get edge gix = %d, hash = %d\n", gix, hash);
for (ep = s->gam.edges[hash]; ep != NULL; ep = ep->next) {
for (i = 0; i < (fdi-1); i++) {
if (ep->v[i] != vv[i]) {
//printf("~1 verticies don't match\n");
break; /* No match */
}
}
if (i >= (fdi-1)) {
//printf("~1 all verticies match\n");
break; /* All match */
}
}
if (ep == NULL) { /* No such edge */
int sm, lg;
if ((ep = calloc(1, sizeof(redge))) == NULL)
error("rspl_gam: get_edge calloc failed");
ep->n = s->gam.redge_no++; /* serial number */
for (i = 0; i < (fdi-1); i++)
ep->v[i] = vv[i]; /* Vertex */
printf("~1 new edge %d with nodes = %d %d\n", ep->n, ep->v[0]->gix, ep->v[1]->gix);
/* Compute plane equation to center of gamut, so */
/* that we can quickly determine which side a triangle lies on. */
/* Compute plane equation */
if (fdi < 2 || fdi > 3)
error("rspl_gam: plane equation for out dimensions other than 2 or 3 not supported!");
if (fdi == 2) {
} else {
double v1[3], v2[3];
/* Compute two vectors from the three points */
for (f = 0; f < fdi; f++) {
v1[f] = ep->v[0]->v[f] - s->gam.cent[f];
v2[f] = ep->v[1]->v[f] - s->gam.cent[f];
}
/* Compute normal to the plane using the cross product */
ep->pe[0] = ep->v[0]->v[1] * (ep->v[1]->v[2] - s->gam.cent[2])
+ ep->v[1]->v[1] * (s->gam.cent[2] - ep->v[0]->v[2])
+ s->gam.cent[1] * (ep->v[0]->v[2] - ep->v[1]->v[2]);
ep->pe[1] = ep->v[0]->v[2] * (ep->v[1]->v[0] - s->gam.cent[0])
+ ep->v[1]->v[2] * (s->gam.cent[0] - ep->v[0]->v[0])
+ s->gam.cent[2] * (ep->v[0]->v[0] - ep->v[1]->v[0]);
ep->pe[2] = ep->v[0]->v[0] * (ep->v[1]->v[1] - s->gam.cent[1])
+ ep->v[1]->v[0] * (s->gam.cent[1] - ep->v[0]->v[1])
+ s->gam.cent[0] * (ep->v[0]->v[1] - ep->v[1]->v[1]);
ep->pe[3] = - (ep->v[0]->v[0] * (ep->v[1]->v[1] * s->gam.cent[2] - s->gam.cent[1] * ep->v[1]->v[2])
+ ep->v[1]->v[0] * (s->gam.cent[1] * ep->v[0]->v[2] - ep->v[0]->v[1] * s->gam.cent[2])
+ s->gam.cent[0] * (ep->v[0]->v[1] * ep->v[1]->v[2] - ep->v[1]->v[1] * ep->v[0]->v[2]));
}
/* Add edge to hash */
ep->next = s->gam.edges[hash];
s->gam.edges[hash] = ep;
/* Add the edge to the bottom of the list of edges */
if (s->gam.ebot == NULL) {
s->gam.etop = s->gam.ebot = ep;
} else {
s->gam.ebot->list = ep;
s->gam.ebot = ep;
}
}
printf("~1 returning edge no %d\n",ep->n);
return ep;
}
/* Check whether a triangle like this already exists */
/* Return NULL if it doesn't */
static rtri *check_tri(rspl *s, redge *ep, rvert *_vv) {
int i, j, k, f, fdi = s->fdi;
rvert *vv[MXDO]; /* Sorted verticies */
int gix, hash;
rtri *tp = NULL;
/* Copy edge verticies from edge */
for (i = 0; i < (fdi-1); i++)
vv[i] = ep->v[i];
vv[i] = _vv; /* And new vertex */
/* Sort verticies */
for (i = 0; i < (fdi-1); i++) {
for (j = i+1; j < fdi; j++) {
if (vv[i]->gix < vv[j]->gix) {
rvert *tv;
tv = vv[i]; vv[i] = vv[j]; vv[j] = tv;
}
}
}
/* Create hash */
for (gix = i = 0; i < fdi; i++)
gix += vv[i]->gix;
/* See if it is in our hash list */
hash = gix % s->gam.thsize;
//printf("~1 make tri gix = %d, hash = %d\n", gix, hash);
for (tp = s->gam.tris[hash]; tp != NULL; tp = tp->next) {
for (i = 0; i < fdi; i++) {
if (tp->v[i] != vv[i]) {
//printf("~1 verticies don't match\n");
break; /* No match */
}
}
if (i >= fdi) {
//printf("~1 all verticies match\n");
break; /* All match */
}
}
return tp;
}
/* Create a triangle given an edge with fdi-1 verticies and a grid vertex. */
/* if inv is set, triangle is upside down wrt to center point, */
/* and so all the oppositive verticies should be placed on the */
/* opposite to their natural side. */
static rtri *make_tri(rspl *s, redge *ep, rvert *_vv, int inv) {
int i, j, k, f, fdi = s->fdi;
rvert *vv[MXDO]; /* Sorted verticies */
int gix, hash;
rtri *tp = NULL;
printf("~1 make_tri called\n");
/* Copy edge verticies from edge */
for (i = 0; i < (fdi-1); i++)
vv[i] = ep->v[i];
vv[i] = _vv; /* And new vertex */
/* Sort verticies */
for (i = 0; i < (fdi-1); i++) {
for (j = i+1; j < fdi; j++) {
if (vv[i]->gix < vv[j]->gix) {
rvert *tv;
tv = vv[i]; vv[i] = vv[j]; vv[j] = tv;
}
}
}
/* Create hash */
for (gix = i = 0; i < fdi; i++)
gix += vv[i]->gix;
/* See if it is in our hash list */
hash = gix % s->gam.thsize;
printf("~1 make tri gix = %d, hash = %d\n", gix, hash);
for (tp = s->gam.tris[hash]; tp != NULL; tp = tp->next) {
for (i = 0; i < fdi; i++) {
if (tp->v[i] != vv[i]) {
//printf("~1 verticies don't match\n");
break; /* No match */
}
}
if (i >= fdi) {
//printf("~1 all verticies match\n");
break; /* All match */
}
}
if (tp == NULL) { /* No such triangle */
//printf("~1 creating a new triangle\n");
/* Create triangle */
if ((tp = calloc(1, sizeof(rtri))) == NULL)
error("rspl_gam: make_tri calloc failed");
tp->n = s->gam.rtri_no++; /* serial number */
/* Copy edge verticies to triangle */
for (i = 0; i < fdi; i++)
tp->v[i] = vv[i];
/* Link all the triangles edges to this triangle */
printf("~1 triangle nodes = %d %d %d\n", tp->v[0]->gix, tp->v[1]->gix, tp->v[2]->gix);
//printf("~2 triangle vert 0 = %f %f %f\n", tp->v[0]->v[0], tp->f[0]->v[1], tp->f[0]->v[2]);
//printf("~2 triangle vert 1 = %f %f %f\n", tp->v[1]->v[0], tp->f[1]->v[1], tp->f[1]->v[2]);
//printf("~2 triangle vert 2 = %f %f %f\n", tp->v[2]->v[0], tp->f[2]->v[1], tp->f[2]->v[2]);
for (i = 0; i < fdi; i++) { /* For each tri verticy being odd one out */
rvert *ov, *rr[MXDO-1]; /* Odd verticy, remaining edge verticies */
int ss; /* Side */
ov = tp->v[i]; /* Odd node */
for (k = j = 0; j < fdi; j++) {
if (i == j)
continue;
rr[k++] = tp->v[j]; /* Remaining nodes */
}
//printf("~1 edge nodes = %d %d, odd = %d\n", rr[0]->gix, rr[1]->gix, ov->gix);
ep = get_edge(s, rr);
if (ep->nt >= MXNE)
error("rspl_gam: make_tri run out of triangle space %d in edge",MXNE);
ep->t[ep->nt++] = tp;
/* See which side of the edge the remaining vertex is */
ss = eside(s, ep, ov->v);
//printf("~1 node gix %d has side %d to edge %d %d\n", ov->gix, ss, ep->v[0]->gix, ep->v[1]->gix);
if (inv)
ss = 1-ss;
if (ss) { /* +ve side */
ep->t[ep->npt++] = tp;
} else {
ep->t[ep->nnt++] = tp;
}
}
/* Add triangle to hash */
tp->next = s->gam.tris[hash];
s->gam.tris[hash] = tp;
/* Add them to the linked list */
tp->list = s->gam.ttop;
s->gam.ttop = tp;
}
return tp;
}
/* ====================================================== */
/* Create a surface gamut representation. */
/* Return NZ on error */
/* Could add more flexibility with:
optional function instead of default radial distance function
option use sub set of output dimensions (ie allow for CMYK->LabK etc. ? )
*/
static int
gam_comp_gamut(
rspl *s,
double *cent, /* Optional center of gamut [fdi], default center of out range */
double *scale, /* Optional Scale of output values in vector to center [fdi], def. 1.0 */
void (*outf)(void *cntxf, double *out, double *in), /* Optional rspl val -> output value */
void *cntxf, /* Context for function */
void (*outb)(void *cntxb, double *out, double *in), /* Optional output value -> rspl val */
void *cntxb /* Context for function */
) {
int e, f, di = s->di, fdi = s->fdi;
int i, j, ssdi;
int maxp[MXDO]; /* Grid indexes of maxium function values */
rvert *fedge[MXDO-1]; /* The first "edge" containing fdi-1 verticies */
rvert *onodes[50]; /* float pointers of canditate nodes */
int aonodes = 50; /* Allocated out nodes */
int nonodes; /* Number of nodes returned */
rvert *cnodes[2][50]; /* Negative, positive candidate nodes */
double rcnodes[2][50]; /* Radius of negative, positive candidate nodes */
int ncnodes[2]; /* Number of negative, positive candidate nodes */
if (fdi < 2 || fdi > di) {
DBG(("gam: gam_comp_gamut called for di = %d, fdi = %d\n", di, fdi));
return 2;
}
/* Save output value conversion functions */
s->gam.outf = outf;
s->gam.cntxf = cntxf;
s->gam.outb = outb;
s->gam.cntxb = cntxb;
/* Deal with gamut center point, and scale */
if (cent == NULL) {
double min[MXDO], max[MXDO];
s->get_out_range(s, min, max);
if (s->gam.outf != NULL) {
s->gam.outf(s->gam.cntxf, min, min); /* Apply output lookup */
s->gam.outf(s->gam.cntxf, max, max); /* Apply output lookup */
}
for (f = 0; f < fdi; f++)
s->gam.cent[f] = 0.5 * (min[f] + max[f]);
} else {
for (f = 0; f < fdi; f++)
s->gam.cent[f] = cent[f];
}
DBGVI("Gamut center is ", fdi, "%f ", s->gam.cent, "\n")
if (scale == NULL) {
for (f = 0; f < fdi; f++)
s->gam.scale[f] = 1.0;
} else {
for (f = 0; f < fdi; f++)
s->gam.scale[f] = scale[f];
}
DBGVI("Gamut scale is ", fdi, "%f ", s->gam.scale, "\n")
for (ssdi = 1; ssdi <= fdi-1; ssdi++) {
int i, j;
/* Compute gamut surface sub-simplex geometry info */
rspl_init_ssimplex_info(s, &s->gam.ssi[ssdi], ssdi);
/* Filter the sub-simplex geometry to only include subsimplexes that */
/* use the base vertex, so that there are no duplicates. */
for (i = j = 0; i < s->gam.ssi[ssdi].nospx; i++) {
if (s->gam.ssi[ssdi].spxi[i].offs[s->gam.ssi[ssdi].sdi] == 0) {
s->gam.ssi[ssdi].spxi[j] = s->gam.ssi[ssdi].spxi[i]; /* Structure copy */
j++;
}
}
s->gam.ssi[ssdi].nospx = j;
#ifdef DEBUG
printf("Sub-simplex dim %d out of input %d\n",s->gam.ssi[ssdi].sdi,di);
printf("Number of subsimplex = %d\n",s->gam.ssi[ssdi].nospx);
for (i = 0; i < s->gam.ssi[ssdi].nospx; i++) {
printf("Cube Offset = ");
for (e = 0; e <= s->gam.ssi[ssdi].sdi; e++)
printf("%d ",s->gam.ssi[ssdi].spxi[i].offs[e]);
printf("\n");
printf("Grid Offset = ");
for (e = 0; e <= s->gam.ssi[ssdi].sdi; e++)
printf("%d ",s->gam.ssi[ssdi].spxi[i].foffs[e]);
printf("\n");
printf("\n");
}
#endif /* DEBUG */
}
/* Allocate the vertex hash array */
if ((s->gam.verts = calloc(VHASHSIZE, sizeof(rvert *))) == NULL) {
DBG(("gam: allocating vertex hash array failed\n"));
return 1;
}
s->gam.vhsize = VHASHSIZE;
/* Allocate the edge hash array */
if ((s->gam.edges = calloc(EHASHSIZE, sizeof(redge *))) == NULL) {
DBG(("gam: allocating edge hash array failed\n"));
return 1;
}
s->gam.ehsize = EHASHSIZE;
/* Allocate the triangle hash array */
if ((s->gam.tris = calloc(THASHSIZE, sizeof(rtri *))) == NULL) {
DBG(("gam: allocating tris hash array failed\n"));
return 1;
}
s->gam.thsize = THASHSIZE;
/* Get a starting gid point for surface */
// ~~99 this isn't right if the point we get is over the ink limit!!!. */
s->get_out_range_points(s, NULL, maxp); /* Maximum */
// s->get_out_range_points(s, maxp, NULL); /* Minium */
DBG(("Starting point = gix %d/%d\n",maxp[0], s->g.no));
/* Now work it up to an fdi-2 sub-simplex, so that we have a */
/* "triangle edge", and can enter the main loop. */
// ~~~9 this needs fixing to switch to "maximum angle" calculation
fedge[0] = get_vert(s, maxp[0]); /* grid index of first vertex */
if (fdi == 2) {
/* We just need one point, and we've got it */
} else if (fdi == 3) { /* Usual case */
double ba = -1.0; /* Bigest angle */
/* We just need two points, so find the other points */
/* that makes the greatest angle to the center */
if (get_ssimplex_nodes(s, 1, fedge, aonodes, &nonodes, onodes)) {
error("rspl_gam: get_ssimplex_nodes fatal error - too many nodes?");
}
if (nonodes == 0)
error("rspl_gam: get_ssimplex_nodes fatal error - retrurned no nodes?");
printf("~1 get_ssimplex_nodes returned %d nodes\n",nonodes);
for(i = 0; i < nonodes; i++)
printf(" ~1 %d: %d\n",i,onodes[i]->gix);
/* Evaluate the choice of verticies to choose the one that */
/* will best enclose the gamut. (We use a really dumb criteria - maximum radius) */
for (i = 0; i < nonodes; i++) {
double tt, a, b, c; /* Lenght of sides of triangle squared */
a = norm33sq(onodes[i]->v, s->gam.cent);
b = norm33sq(onodes[i]->v, fedge[0]->v);
c = norm33sq(fedge[0]->v, s->gam.cent);
tt = acos((b + c - a)/(2.0 * sqrt(b * c)));
printf("~1 node %d angle = %f\n",onodes[i]->gix,tt);
if (tt > ba) {
ba = tt;
fedge[1] = onodes[i]; /* Use candidate with largest gamut as next base */
}
}
printf("~1 chosen node %d\n",fedge[1]->gix);
} else if (fdi > 3) { /* General case */
/* This isn't a correct approach ... */
for (ssdi = 1; ssdi <= fdi-2; ssdi++) {
double br = -1.0; /* Bigest radius */
DBG(("Working up ssdim %d -> %d\n",ssdi-1, ssdi));
if (get_ssimplex_nodes(s, ssdi, fedge, aonodes, &nonodes, onodes)) {
error("rspl_gam: get_ssimplex_nodes fatal error - too many nodes?");
}
if (nonodes == 0)
error("rspl_gam: get_ssimplex_nodes fatal error - retrurned no nodes?");
printf("~1 get_ssimplex_nodes returned %d nodes\n",nonodes);
for(i = 0; i < nonodes; i++)
printf(" ~1 %d: %d\n",i,onodes[i]->gix);
/* Evaluate the choice of verticies to choose the one that */
/* will best enclose the gamut. (We use a really dumb criteria - maximum radius) */
for (i = 0; i < nonodes; i++) {
double tt;
tt = gvprad(s, onodes[i]->v); /* Compute radius */
if (tt > br) {
br = tt;
fedge[ssdi] = onodes[i]; /* Use candidate with largest gamut as next base */
}
}
printf("~1 chosen node %d\n",fedge[ssdi]->gix);
}
}
/* Creat the initial "edge" */
get_edge(s, fedge);
printf("~1 Created initial edge\n");
{
redge *ep;
double **A; /* lu value -> baricentric matrix */
double *B;
int *pivx;
pivx = ivector(0, fdi-1); /* pixv[fdi] */
A = dmatrix(0, fdi-1, 0, fdi-1); /* A[fdi][fdi] */
B = dvector(0, fdi-1); /* B[fdi] */
/* The main loop: */
/* We start with any "edges" that have less than two associated "triangles", */
/* and evaluate the vertex nodes that can make "triangles" with the "edge". */
/* We choose the node that will give the greatest slope, and make a "triangle". */
/* Loop until there are no "edges" with less than two associated "triangles". */
for (ep = s->gam.etop; ep != NULL; ep = ep->list) {
printf("~1 expanding from edge no %d\n",ep->n);
printf("~1 edge v1 = %d = %f %f %f\n", ep->v[0]->gix, ep->v[0]->v[0], ep->v[0]->v[1], ep->v[0]->v[2]);
printf("~1 edge v2 = %d = %f %f %f\n", ep->v[1]->gix, ep->v[1]->v[0], ep->v[1]->v[1], ep->v[1]->v[2]);
// if (ep->npt < 1 || ep->nnt < 1)
{
int ss;
if (get_ssimplex_nodes(s, fdi-1, ep->v, aonodes, &nonodes, onodes)) {
error("rspl_gam: get_ssimplex_nodes fatal error - too many nodes?");
}
/* Clasify the returned nodes as positive or negative side */
ncnodes[0] = ncnodes[1] = 0;
for (i = 0; i < nonodes; i++) {
double tt;
tt = gvprad(s, onodes[i]->v); /* Compute radius */
ss = eside(s, ep, onodes[i]->v); /* Side */
printf("~1 node gix %d has rad %f side %d to edge %d %d\n", onodes[i]->gix, tt, ss, ep->v[0]->gix, ep->v[1]->gix);
#ifdef NEVER /* This messes things up ? */
/* Check if this node is already in a triangle with this edge, */
/* to avoid costly matrix solution check below. */
if (check_tri(s, ep, onodes[i]) == NULL)
#endif
{
cnodes[ss][ncnodes[ss]] = onodes[i];
rcnodes[ss][ncnodes[ss]++] = tt;
}
}
/* Sort them */
for (ss = 0; ss < 2; ss++) { /* Negative side then positive */
for (i = 0; i < (ncnodes[ss]-1); i++) {
for (j = i+1; j < ncnodes[ss]; j++) {
if (rcnodes[ss][i] < rcnodes[ss][j]) {
rvert *tt;
double tr;
tt = cnodes[ss][i]; cnodes[ss][i] = cnodes[ss][j];
cnodes[ss][j] = tt;
tr = rcnodes[ss][i]; rcnodes[ss][i] = rcnodes[ss][j];
rcnodes[ss][j] = tr;
}
}
}
}
// ~~1
for (ss = 0; ss < 2; ss++) { /* Negative side then positive */
if (ss == 0)
printf("~1 -ve nodes:\n");
else
printf("~1 +ve nodes:\n");
for (i = 0; i < ncnodes[ss]; i++) {
printf("~1 node %d, rad %f\n",cnodes[ss][i]->gix,rcnodes[ss][i]);
}
}
#ifdef VRML_TRACE
{
vrml *wrl;
int i, j, k;
ECOUNT(gc, MXDIDO, di, 0, s->g.res, 0);/* coordinates */
DCOUNT(cc, MXDIDO, s->di, 0, 0, 2); /* Surrounding cube counter */
float *gp; /* Grid point pointer */
rvert *vp;
rtri *tp;
double col[3], pos[3];
if ((wrl = new_vrml("gam_diag", 1, vrml_lab)) == NULL)
error("new_vrml failed for 'gam_diag%s\n",vrml_ext());
wrl->start_line_set(wrl, 0);
/* Display the grid */
EC_INIT(gc);
for (gp = s->g.a; !EC_DONE(gc); gp += s->g.pss) {
/* Itterate cube from this base */
DC_INIT(cc)
for (i = 0; !DC_DONE(cc); i++ ) {
float *sp = s->g.a;
for (e = 0; e < s->di; e++) { /* Input tables */
int j;
j = gc[e] + cc[e];
if (j < 0 || j >= s->g.res[e]) {
sp = NULL; /* outside grid */
break;
}
sp += s->g.fci[e] * j; /* Compute pointer to surrounder */
}
if (i> 0 && e >= s->di) {
/* Create vector from base to surrounder */
pos[0] = (double)gp[0];
pos[1] = (double)gp[1];
pos[2] = (double)gp[2];
if (s->gam.outf != NULL)
s->gam.outf(s->gam.cntxf, pos, pos); /* Apply output lookup */
wrl->add_vertex(wrl, 0, pos);
pos[0] = (double)sp[0];
pos[1] = (double)sp[1];
pos[2] = (double)sp[2];
if (s->gam.outf != NULL)
s->gam.outf(s->gam.cntxf, pos, pos); /* Apply output lookup */
wrl->add_vertex(wrl, 0, pos);
}
DC_INC(cc);
}
EC_INC(gc);
}
wrl->make_lines(wrl, 0, 2);
wrl->start_line_set(wrl, 0);
/* Display the current triangles transparently */
if (s->gam.ttop != NULL) {
for (vp = s->gam.vtop; vp != NULL; vp = vp->list) {
wrl->add_vertex(wrl, 0, vp->v);
}
/* Set the triangles */
for (tp = s->gam.ttop; tp != NULL; tp = tp->list) {
int ix[3];
ix[0] = tp->v[0]->n;
ix[1] = tp->v[1]->n;
ix[2] = tp->v[2]->n;
wrl->add_triangle(wrl, 0, ix);
}
// wrl->make_triangles(wrl, 0, 0.3, NULL);
wrl->make_triangles(wrl, 0, 0.0, NULL);
wrl->start_line_set(wrl, 0);
}
/* Show the active edge as a red cone */
col[0] = 1.0; col[1] = 0.0; col[2] = 0.0; /* Red */
wrl->add_cone(wrl, ep->v[0]->v, ep->v[1]->v, col, 1.0);
//printf("~1 edge v1 = %d = %f %f %f\n", ep->v[0]->gix, ep->v[0]->v[0], ep->v[0]->v[1], ep->v[0]->v[2]);
//printf("~1 edge v2 = %d = %f %f %f\n", ep->v[1]->gix, ep->v[1]->v[0], ep->v[1]->v[1], ep->v[1]->v[2]);
/* Show the candidate verticies */
for (ss = 0; ss < 2; ss++) {
for (i = 0; i < ncnodes[ss]; i++) { /* +ve */
if (ss) {
col[0] = 0.0; col[1] = 1.0; col[2] = 0.0; /* Green +ve */
} else {
col[0] = 0.0; col[1] = 0.0; col[2] = 1.0; /* Blue -ve */
}
wrl->add_marker(wrl, cnodes[ss][i]->v, col, 1.0);
}
}
wrl->del(wrl);
printf("Waiting for return after writing gam_diag%s\n",vrml_ext());
getchar();
}
#endif
/* See if we can make a triangle */
for (ss = 0; ss < 2; ss++) { /* For -ve and +ve sides */
int ii, si;
int sta, end, inc;
rvert **nods;
double rip; /* Row interchange parity */
printf("~1 direction = %d\n",ss);
#ifdef NEVER
if (( ss && ep->npt >= 1) /* Not looking for a positive node */
|| (!ss && ep->nnt >= 1)) { /* Not looking for a negative node */
printf("~1 no need to look for node in this direction\n");
continue;
}
#endif
if (ncnodes[ss] > 0) { /* There are nodes in wanted direction */
si = ss; /* use wanted direction nodes */
sta = 0; /* Start at max radius node */
end = ncnodes[si]; /* End and least radius node */
inc = 1; /* Increment */
nods = cnodes[si]; /* +ve nodes */
printf("~1 Looking for biggest angle, inc = %d\n",inc);
#ifdef NEVER /* Convex tracing ? */
} else if (ncnodes[1-ss] > 0) { /* There are opposited direction nodes */
si = 1-ss; /* use opposite direction nodes */
sta = ncnodes[si]-1; /* Start at min radius node */
end = -1; /* end and max radius node */
inc = -1; /* Decrement */
nods = cnodes[si];
printf("~1 Looking for smallest angle, inc = %d\n",-1);
#endif /* NEVER */
} else {
printf("~1 No points to search\n");
continue;
}
ii = 0;
if (ncnodes[si] > 1) { /* If there is more than one to choose from */
/* Go through each candidate in the most likely order */
for (ii = sta; ii != end; ii += inc) {
printf("~1 Candidate %d: node %d\n",ii,nods[ii]->gix);
/* Create the baricentric conversion for this candidate */
for (f = 0; f < fdi; f++) /* The center point */
A[f][0] = s->gam.cent[f] - nods[ii]->v[f];
for (j = 0; j < (fdi-1); j++) { /* The edge points */
for (f = 0; f < fdi; f++)
A[f][j+1] = ep->v[j]->v[f] - nods[ii]->v[f];
}
if (lu_decomp(A, fdi, pivx, &rip)) {
printf("~1 lu_decomp failed\n");
for (f = 0; f < fdi; f++) /* The center point */
A[f][0] = s->gam.cent[f] - nods[ii]->v[f];
for (j = 0; j < (fdi-1); j++) { /* The edge points */
for (f = 0; f < fdi; f++)
A[f][j+1] = ep->v[j]->v[f] - nods[ii]->v[f];
}
printf("~1 A = \n");
printf("~1 %f %f %f\n", A[0][0], A[0][1], A[0][2]);
printf("~1 %f %f %f\n", A[1][0], A[1][1], A[1][2]);
printf("~1 %f %f %f\n", A[2][0], A[2][1], A[2][2]);
warning("lu_decomp failed");
continue;
}
/* Test the remainder candidates against this simplex */
for (i = sta; i != end; i += inc) {
if (i == ii)
continue;
printf("~1 Test %d: node %d\n",i,nods[i]->gix);
for (f = 0; f < fdi; f++) /* The candidate point */
B[f] = nods[i]->v[f] - nods[ii]->v[f];
lu_backsub(A, fdi, pivx, B);
#ifdef NEVER
printf("~1 baricentric = %f %f %f %f\n",B[0],B[1],B[2],1.0-B[0]-B[1]-B[2]);
{
double tt[3], B3;
/* Check baricentric */
B3 = 1.0-B[0]-B[1]-B[2];
for (f = 0; f < fdi; f++)
tt[f] = 0.0;
for (f = 0; f < fdi; f++)
tt[f] += B[0] * s->gam.cent[f];
for (f = 0; f < fdi; f++)
tt[f] += B[1] * ep->v[0]->v[f];
for (f = 0; f < fdi; f++)
tt[f] += B[2] * ep->v[1]->v[f];
for (f = 0; f < fdi; f++)
tt[f] += B3 * nods[ii]->v[f];
printf("~1 target point %f %f %f\n", (double)nods[i][0], (double)nods[i][1], (double)nods[i][2]);
printf("~1 barice check %f %f %f\n", tt[0],tt[1],tt[2]);
}
#endif /* NEVER */
if ((inc == 1 && B[0] < -EPS) /* other point is at higher angle */
|| (inc == -1 && B[0] > EPS)) { /* other point is at lower angle */
printf("~1 candidate isn't best\n");
break;
}
}
if (i == end) {
printf("~1 candidate IS the best\n");
break; /* Candidate is at highest angle */
}
}
if (ii == end) {
printf("~1Inconsistent candidate ordering\n");
error("Inconsistent candidate ordering");
}
} else {
printf("~1 there are only %d nodes, so don't search them\n",ncnodes[si]);
}
printf("~1 Making triangle with %d: node %d\n",ii,nods[ii]->gix);
make_tri(s, ep, nods[ii], inc == -1);
}
if (ep->npt < 1 || ep->nnt < 1) {
if (ep->npt < 1)
warning("###### Unable to locate +ve triangles for edge %d\n",ep->n);
if (ep->nnt < 1)
warning("###### Unable to locate -ve triangles for edge %d\n",ep->n);
}
}
}
free_ivector(pivx, 0, fdi-1);
free_dmatrix(A, 0, fdi-1, 0, fdi-1);
free_dvector(B, 0, fdi-1);
/* Dump out the edges */
for (ep = s->gam.etop; ep != NULL; ep = ep->list) {
printf("~1 edge no %d, npt = %d, nnt = %d\n",ep->n, ep->npt, ep->nnt);
}
}
return 0;
}
/* ====================================================== */
/* Gamut rspl setup functions */
/* Called by rspl initialisation */
void
init_gam(rspl *s) {
/* Methods */
s->comp_gamut = gam_comp_gamut;
}
/* Free up all the gamut info */
void free_gam(
rspl *s /* Pointer to rspl grid */
) {
int i;
int ssdi;
rvert *vp, *nvp;
redge *ep, *nep;
rtri *tp, *ntp;
for (ssdi = 1; ssdi <= s->fdi-1; ssdi++)
rspl_free_ssimplex_info(s, &s->gam.ssi[ssdi]);
/* Free the verticies */
for (vp = s->gam.vtop; vp != NULL; vp = nvp) {
nvp = vp->list;
free(vp);
}
free(s->gam.verts);
/* Free the edges */
for (ep = s->gam.etop; ep != NULL; ep = nep) {
nep = ep->list;
free(ep);
}
free(s->gam.edges);
/* Free the triangles */
for (tp = s->gam.ttop; tp != NULL; tp = ntp) {
ntp = tp->list;
free(tp);
}
free(s->gam.tris);
}
/* Create the gamut surface structure. */
/* Current this is:
not rationalized to be non-overlapping
culled to eliminate overlaps
Have ink limits applied
*/
/* ~~~ we need space ing gam to:
store radial coordinates of output values
mark nodes as being visited.
store surface triangle structures
hold tadial output bounding acceleration structures
There is a lot in common with rev here.
we need to know input channel significance (what's black)
plus ink limit info.
we're going to create black generation information used by rev.
*/
/* ---------------------- */
/* rspl gam diagnostic */
/* Diagnostic */
void rspl_gam_plot(rspl *s, char *name) {
int i;
double col[3] = { 0.7, 0.7, 0.7 };
rvert *vp, *nvp;
rtri *tp, *ntp;
vrml *wrl;
if ((wrl = new_vrml(name, 1, 0)) == NULL)
error("new_vrml failed for '%s%s'\n",name,vrml_ext());
/* Set the verticies */
for (vp = s->gam.vtop; vp != NULL; vp = vp->list) {
wrl->add_vertex(wrl, 0, vp->v);
}
/* Set the triangles */
for (tp = s->gam.ttop; tp != NULL; tp = ntp) {
int ix[3];
ntp = tp->list;
ix[0] = tp->v[0]->n;
ix[1] = tp->v[1]->n;
ix[2] = tp->v[2]->n;
wrl->add_triangle(wrl, 0, ix);
}
wrl->make_triangles(wrl, 0, 0.0, NULL);
// wrl->make_triangles(wrl, 0, 0.0, col);
wrl->del(wrl);
}
#undef DEBUG
#undef DBGV
#undef DBG
#define DBGV(xxx)
#define DBG(xxx)
|