1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
|
/*
* Argyll Color Correction System
*
* Scattered Data Interpolation with multilevel B-splines library.
* This can be used by rspl, or independently by any other routine.
*
* Author: Graeme W. Gill
* Date: 2001/1/1
*
* Copyright 2000 - 2001 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/*
* This is from the paper
* "Scattered Data Interpolation with Multilevel B-Splines"
* by Seungyong Lee, George Wolberg and Sung Yong Shin,
* IEEE Transactions on Visualisation and Computer Graphics
* Vol. 3, No. 3, July-September 1997, pp 228.
*/
/* TTBD:
*
* Figure out why the results are rubbish ?
*
* Can this be adapted to be adaptive in it smoothness,
* like the non-linear regularized spline stuff that Don Bone used ?
*
* Get rid of error() calls - return status instead
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <fcntl.h>
#include <string.h>
#include <math.h>
#if defined(__IBMC__) && defined(_M_IX86)
#include <float.h>
#endif
#include "numlib.h"
#include "mlbs.h"
#ifndef NUMSUP_H
void error(char *fmt, ...), warning(char *fmt, ...);
#endif
static void delete_mlbs(mlbs *p);
static int lookup_mlbs(mlbs *p, co *c);
/* Allocate a new empty mlbs */
mlbs *alloc_mlbs(
int di, /* Input dimensionality */
int fdi, /* Output dimesionality */
int res, /* Target resolution */
double smf /* Smoothing factor */
) {
mlbs *p;
if ((p = (mlbs *)malloc(sizeof(mlbs))) == NULL)
error("Malloc mlbs failed");
p->di = di;
p->fdi = fdi;
p->tres = res;
p->smf = smf;
p->s = NULL;
p->lookup = lookup_mlbs;
p->del = delete_mlbs;
return p;
}
static void delete_slbs(slbs *s);
static void delete_mlbs(mlbs *p) {
if (p != NULL) {
delete_slbs(p->s);
free(p);
}
}
/* Create a new empty slbs */
static slbs *new_slbs(
mlbs *p, /* Parent mlbs */
int res /* Resolution of this slbs */
) {
slbs *s;
int e, f;
double *_lat, *lat; /* Latice base address */
int ix, oe, oo[MXDI]; /* Neighborhood offset index, counter */
if ((s = (slbs *)malloc(sizeof(slbs))) == NULL)
error("Malloc slbs failed");
s->p = p;
s->res = res;
for (s->lsize = p->fdi, s->nsize = 1, e = 0; e < p->di; e++) {
s->coi[e] = s->lsize; /* (double) increment in this input dimension */
s->lsize *= (res + 2); /* Latice in 1D +/- 1 */
s->nsize *= 4; /* Neighborhood of 4 */
}
if ((s->_lat = (double *)malloc(s->lsize * sizeof(double))) == NULL)
error("Malloc slbs latice failed");
/* Compute the base address */
for (s->loff = 0, e = 0; e < p->di; e++) {
s->loff += s->coi[e]; /* Offset by 1 in each input dimension */
}
s->lat = s->_lat + s->loff;
/* Figure the cell width */
for (e = 0; e < p->di; e++)
s->w[e] = (p->h[e] - p->l[e])/(res-1.0);
/* Setup neighborhood cache info */
if ((s->n = (neigh *)malloc(s->nsize * sizeof(neigh))) == NULL)
error("Malloc slbs neighborhood failed");
for (oe = 0; oe < p->di; oe++)
oo[oe] = 0;
for(ix = oe = 0; oe < p->di; ix++) {
int xo;
for (xo = e = 0; e < p->di; e++) {
s->n[ix].c[e] = oo[e];
xo += s->coi[e] * oo[e]; /* Accumulate latice offset */
}
s->n[ix].xo = xo;
s->n[ix].w = 0.0;
/* Increment destination offset counter */
for (oe = 0; oe < p->di; oe++) {
if (++oo[oe] <= 3) /* Counting from 0 ... 3 */
break;
oo[oe] = 0;
}
}
return s;
}
/* Destroy a slbs */
static void delete_slbs(slbs *s) {
if (s != NULL) {
free(s->_lat);
free(s->n);
free(s);
}
}
/* Dump the 2D -> 1D contents of an slbs */
static void dump_slbs(slbs *s) {
int e, f;
int ce, co[MXDI]; /* latice counter */
mlbs *p = s->p; /* Parent object */
/* Init the counter */
for (ce = 0; ce < p->di; ce++)
co[ce] = -1;
ce = 0;
f = 0;
while(ce < p->di) {
double v;
int off = 0; /* Latice offset */
for (e = 0; e < p->di; e++) {
off += co[e] * s->coi[e]; /* Accumulate latice offset */
}
v = s->lat[off + f]; /* Value of this latice point */
printf("Latice at [%d][%d] = %f\n",co[1],co[0],v);
/* Increment the latice counter */
for (ce = 0; ce < p->di; ce++) {
if (++co[ce] <= s->res) /* Counting from -1 ... s->res */
break;
co[ce] = -1;
}
}
}
/* Initialise an slbs with a linear approximation to the scattered data */
static void linear_slbs(
slbs *s
) {
int i, e, f;
mlbs *p = s->p; /* Parent object */
double **A; /* A matrix holding scattered data points */
double *B; /* B matrix holding RHS & solution */
/* Allocate the matricies */
B = dvector(0, p->npts-1);
A = dmatrix(0, p->npts-1, 0, p->di);
/* For each output dimension, solve the linear equation coeficients */
for (f = 0; f < p->fdi; f++) {
int ce, co[MXDI]; /* latice counter */
/* Init A[][] with the scattered data points positions */
/* Also init B[] with the value for this output dimension */
for (i = 0; i < p->npts; i++) {
for (e = 0; e < p->di; e++)
A[i][e] = p->pts[i].p[e];
A[i][e] = 1.0;
B[i] = p->pts[i].v[f];
}
/* Solve the equation A.x = b using SVD */
/* (The w[] values are thresholded for best accuracy) */
/* Return non-zero if no solution found */
if (svdsolve(A, B, p->npts, p->di+1) != 0)
error("SVD least squares failed");
/* A[][] will have been changed, and B[] holds the p->di+1 coefficients */
/* Use the coefficients to initialise the slbs values */
for (ce = 0; ce < p->di; ce++)
co[ce] = -1;
ce = 0;
while(ce < p->di) {
double v = B[p->di]; /* Constant */
int off = 0; /* Latice offset */
for (e = 0; e < p->di; e++) {
double lv;
lv = p->l[e] + s->w[e] * co[e]; /* Input value for this latice location */
v += B[e] * lv;
off += co[e] * s->coi[e]; /* Accumulate latice offset */
}
s->lat[off + f] = v; /* Value of this latice point */
/* Increment the latice counter */
for (ce = 0; ce < p->di; ce++) {
if (++co[ce] <= s->res) /* Counting from -1 ... s->res */
break;
co[ce] = -1;
}
}
}
free_dmatrix(A, 0, p->npts-1, 0, p->di);
free_dvector(B, 0, p->npts-1);
}
/* Do a latice refinement - upsample the current */
/* source latice to the destination latice. */
static void refine_slbs(
slbs *ds, /* Destination slbs */
slbs *ss /* Source slbs */
) {
mlbs *p = ss->p; /* Parent object */
int ce, co[MXDI]; /* Source coordinate counter */
int six; /* Source index */
int dix; /* destination index */
static double _wt[5] = { 1.0/8.0, 4.0/8.0, 6.0/8.0, 4.0/8.0, 1.0/8.0 };
static double *wt = &_wt[2]; /* 1D Distribution weighting */
/* Zero the destination latice before accumulating values */
for (dix = 0; dix < ds->lsize; dix++)
ds->_lat[dix] = 0.0;
/* Now for each source latice entry, add weighted portions */
/* to the associated destination points */
/* Init the source coordinate counter */
for (ce = 0; ce < p->di; ce++)
co[ce] = -1;
ce = 0;
six = -ss->loff;
while(ce < p->di) {
int oe, oo[MXDI]; /* Destination offset counter */
//printf("Source coord %d %d, offset %d, value %f\n",co[0], co[1], six, ss->lat[six]);
/* calc destination index, and init offest counter */
for (dix = oe = 0; oe < p->di; oe++) {
oo[oe] = -2;
dix += co[oe] * 2 * ds->coi[oe]; /* Accumulate dest offset */
}
oe = 0;
//printf("Dest coord %d %d\n",co[0] * 2, co[1] * 2);
/* For all the offsets from the destination point */
while(oe < p->di) {
int e, f, dixo; /* Destination index offset */
double w = 1.0; /* Weighting */
//printf("dest offset %d %d\n",oo[0], oo[1]);
/* Compute dest index offset, and check that we are not outside the destination */
for (dixo = e = 0; e < p->di; e++) {
int x = co[e] * 2 + oo[e]; /* dest coord */
dixo += oo[e] * ds->coi[e]; /* Accumulate dest offset */
//printf("x[%d] = %d\n",e, x);
w *= wt[oo[e]]; /* Compute distribution weighting */
if (x < -1 || x > ds->res)
break; /* No good */
}
if (e >= p->di) { /* We are within the destination latice */
//if ((co[0] * 2 + oo[0]) == 0 && (co[1] * 2 + oo[1]) == 0) {
//printf("Source coord %d %d, offset %d, value %f\n",co[0], co[1], six, ss->lat[six]);
//printf("Dest coord %d %d ix %d, weight %f\n",co[0] * 2 + oo[0], co[1] * 2 + oo[1], dix+dixo, w);
//}
for (f = 0; f < p->fdi; f++) { /* Distribute weighted values */
double v = ss->lat[six + f];
//if ((co[0] * 2 + oo[0]) == 0 && (co[1] * 2 + oo[1]) == 0)
//printf("Value being dist %f, weighted value %f\n", v, v * w);
ds->lat[dix + dixo + f] += v * w;
}
}
/* Increment destination offset counter */
for (oe = 0; oe < p->di; oe++) {
if (++oo[oe] <= 2) /* Counting from -2 ... +2 */
break;
oo[oe] = -2;
}
}
/* Increment the source index and coordinat counter */
six += p->fdi;
for (ce = 0; ce < p->di; ce++) {
if (++co[ce] <= ss->res) /* Counting from -1 ... ss->res */
break;
co[ce] = -1;
}
}
}
/* Compute the Cubic B-spline weightings for a given t */
void basis(double b[4], double t) {
double _t3, _t2, _t1, _3t3, _3t2, _3t1, _6t2;
_t1 = t/6.0;
_t2 = _t1 * _t1;
_t3 = _t2 * _t1;
_3t1 = 3.0 * _t1;
_3t2 = 3.0 * _t2;
_3t3 = 3.0 * _t3;
_6t2 = 6.0 * _t2;
b[0] = - _t3 + _3t2 - _3t1 + 1.0/6.0;
b[1] = _3t3 - _6t2 + 4.0/6.0;
b[2] = -_3t3 + _3t2 + _3t1 + 1.0/6.0;
b[3] = _t3;
}
/* Improve an slbs to make it closer to the scattered data */
static void improve_slbs(
slbs *s
) {
int i, e, f;
mlbs *p = s->p; /* Parent object */
double *delta; /* Delta accumulation */
double *omega; /* Omega accumulation */
/* Allocate temporary accumulation arrays */
if ((delta = (double *)calloc(sizeof(double), s->lsize)) == NULL)
error("Malloc slbs temp latice failed");
delta += s->loff;
if ((omega = (double *)calloc(sizeof(double), s->lsize)) == NULL)
error("Malloc slbs temp latice failed");
omega += s->loff;
/* For each scattered data point */
for (i = 0; i < p->npts; i++) {
int ix; /* Latice index of base of neighborhood */
double b[MXDI][4]; /* B-spline basis factors for each dimension */
double sws; /* Sum of all the basis factors squared */
double ve[MXDO]; /* Current output value error */
int nn; /* Neighbor counter */
/* Figure out our neighborhood */
for (ix = e = 0; e < p->di; e++) {
int x;
double t, sp, fp;
sp = (p->pts[i].p[e] - p->l[e])/s->w[e]; /* Scaled position */
fp = floor(sp);
x = (int)(fp - 1.0); /* Grid coordinate */
ix += s->coi[e] * x; /* Accume latice offset */
t = sp - fp; /* Spline parameter */
basis(b[e], t); /* Compute basis function values */
}
/* Compute the grid basis weight functions, */
/* the sum of the weights squared, and the current */
/* output value estimate. */
for (f = 0; f < p->fdi; f++)
ve[f] = p->pts[i].v[f]; /* Target output value */
for (sws = 0.0, nn = 0; nn < s->nsize; nn++) {
double w;
for (w = 1.0, e = 0; e < p->di; e++)
w *= b[e][s->n[nn].c[e]];
s->n[nn].w = w; /* cache weighting */
sws += w * w;
for (f = 0; f < p->fdi; f++)
ve[f] -= w * s->lat[ix + s->n[nn].xo + f]; /* Subtract current aprox value */
}
//printf("Error at point %d = %f\n",i,ve[0]);
/* Accumulate the delta and omega factors */
/* for this resolutions improvement. */
for (nn = 0; nn < s->nsize; nn++) {
double ws, ww, w = s->n[nn].w;
int xo = ix + s->n[nn].xo; /* Latice offset */
ww = w * w;
ws = ww * w/sws; /* Scale factor for delta */
omega[xo] += ww; /* Accumulate omega */
for (f = 0; f < p->fdi; f++)
delta[xo + f] += ws * ve[f]; /* Accumulate delta */
//printf("Distributing omega %f to %d %d\n",ww,s->n[nn].c[0],s->n[nn].c[1]);
//printf("Distributing delta %f to %d %d\n",ws * ve[0],s->n[nn].c[0],s->n[nn].c[1]);
}
}
omega -= s->loff; /* Base them back to -1 corner */
delta -= s->loff;
/* Go through the delta and omega arrays, */
/* compute and add the refinements to the current */
/* B-spline control latice. */
for (i = 0; i < s->lsize; i++) {
double om = omega[i];
if (om != 0.0) {
for (f = 0; f < p->fdi; f++)
s->_lat[i] += delta[i + f]/om;
//printf("Adjusting latice index %d by %f to give %f\n",i, delta[i]/om, s->_lat[i]);
}
}
/* Done with temporary arrays */
free(omega);
free(delta);
}
/* Return the interpolated value for a given point */
/* Return NZ if input point is out of range */
static int lookup_mlbs(
mlbs *p,
co *c /* Point to interpolate */
) {
slbs *s = p->s;
int e, f;
int ix; /* Latice index of base of neighborhood */
double b[MXDI][4]; /* B-spline basis factors for each dimension */
int nn; /* Neighbor counter */
/* Figure out our neighborhood */
for (ix = e = 0; e < p->di; e++) {
int x;
double t, sp, fp;
sp = c->p[e];
if (sp < p->l[e] || sp > p->h[e])
return 1;
sp = (sp - p->l[e])/s->w[e]; /* Scaled position */
fp = floor(sp);
x = (int)(fp - 1.0); /* Grid coordinate */
ix += s->coi[e] * x; /* Accume latice offset */
t = sp - fp; /* Spline parameter */
basis(b[e], t); /* Compute basis function values */
}
/* Compute the the current output value. */
for (f = 0; f < p->fdi; f++)
c->v[f] = 0.0;
for (nn = 0; nn < s->nsize; nn++) {
double w;
for (w = 1.0, e = 0; e < p->di; e++)
w *= b[e][s->n[nn].c[e]];
for (f = 0; f < p->fdi; f++)
c->v[f] += w * s->lat[ix + s->n[nn].xo + f]; /* Accume spline value */
}
return 0;
}
/* Take a list of scattered data points, */
/* and setup the mlbs. */
static void set_mlbs(
mlbs *p, /* mlbs to set up */
dpnts *pts, /* scattered data points and weights */
int npts, /* number of scattered data points */
double *l, /* Input data range, low (May be NULL) */
double *h /* Input data range, high (May be NULL) */
) {
int res;
int i, e, f;
slbs *s0 = NULL, *s1;
/* Establish the input data range */
for (e = 0; e < p->di; e++) {
if (l == NULL)
p->l[e] = 1e60;
else
p->l[e] = l[e];
if (h == NULL)
p->h[e] = -1e60;
else
p->h[e] = h[e];
}
for (i = 0; i < npts; i++) {
for (e = 0; e < p->di; e++) {
if (pts[i].p[e] < p->l[e])
p->l[e] = pts[i].p[e];
if (pts[i].p[e] > p->h[e])
p->h[e] = pts[i].p[e];
}
}
/* Make point data available during init */
p->pts = pts;
p->npts = npts;
/* Create an initial slbs */
res = 2;
if ((s1 = new_slbs(p, 2)) == NULL)
error("new_slbs failed");
/* Set it up with a linear first approximation */
linear_slbs(s1);
//dump_slbs(s1);
/* Build up the resolution */
for (; res < p->tres;) {
res = 2 * res -1;
printf("~1 doing resolution %d\n",res);
delete_slbs(s0);
s0 = s1;
if ((s1 = new_slbs(p, res)) == NULL)
error("new_slbs failed");
refine_slbs(s1, s0);
//dump_slbs(s1);
improve_slbs(s1);
}
delete_slbs(s0);
p->s = s1; /* Final resolution */
/* We can't assume point data will stick around */
p->pts = NULL;
p->npts = 0;
}
/* Create a new empty mlbs */
mlbs *new_mlbs(
int di, /* Input dimensionality */
int fdi, /* Output dimesionality */
int res, /* Minimum final resolution */
dpnts *pts, /* scattered data points and weights */
int npts, /* number of scattered data points */
double *l, /* Input data range, low (May be NULL) */
double *h, /* Input data range, high (May be NULL) */
double smf /* Smoothing factor */
) {
mlbs *p;
if ((p = alloc_mlbs(di, fdi, res, smf)) == NULL)
return p;
set_mlbs(p, pts, npts, l, h);
return p;
}
#ifndef NUMSUP_H
/* Basic printf type error() and warning() routines */
void
error(char *fmt, ...)
{
va_list args;
fprintf(stderr,"stest: Error - ");
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, "\n");
exit (-1);
}
void
warning(char *fmt, ...)
{
va_list args;
fprintf(stderr,"stest: Warning - ");
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, "\n");
}
#endif /* NUMSUP_H */
|