1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
/*
* Argyll Color Correction System
* Multi-dimensional regularized splines
* optimiser based initialiser.
*
* Author: Graeme W. Gill
* Date: 2001/5/16
*
* Copyright 1996 - 2001 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* This file contains an rspl initialiser that */
/* works from an optimisation function callback. */
/* It is intended to support the creation of optimised */
/* color separations, although this usage is not hard coded */
/* here. */
/* TTBD:
*
* !!! fix so that this can also be used for smoothed
* inversion, ie. PCS -> DevN, as well as
* separation PseudoCMY/K -> DevN.
*
* Plan:
* Have additional callback function used for invert,
* called at grid initialisation that initialised
* the target values to fixed PCS values.
* For separation, these are dynamic, and adjusted by
* the usual optimisation callback.
* (Or can the usual callback figure out when the
* initial initialisation is needed ?)
*
* Need to return average/extrapolated surround values
* on the edge, just like fit, so smoothness can be
* evaluated in inversion.
* Provide another mechanism for sep to know
* it is on the edge of the grid, and should expand
* gamut if possible.
*
* Get rid of error() calls - return status instead
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include <time.h>
#if defined(__IBMC__) && defined(_M_IX86)
#include <float.h>
#endif
#include "rspl_imp.h"
#include "numlib.h"
#include "counters.h" /* Counter macros */
#undef DEBUG
/* Tuning parameters */
#define TOL 1e-6 /* Tollerance of result */
#define GRATIO 1.7 /* Multi-grid ratio */
#define SMOOTH 80.0 /* Set nominal smoothing (1.0) */
#undef NEVER
#define ALWAYS
/* Implemented in rspl.c: */
extern void alloc_grid(rspl *s);
extern int is_mono(rspl *s);
/* Convention is to use:
i to index grid points u.a
n to index data points d.a
e to index position dimension di
f to index output function dimension fdi
j misc and cube corners
k misc
*/
/* ================================================= */
/* Structure to hold temporary data for multi-grid caliculations */
/* Only used in this file. */
struct _omgtp {
rspl *s; /* Associated rspl */
/* Configuration data */
int tdi; /* Target guide values dimensionality (must be <= MXDI) */
/* (Typically the Lab aim values corresponding to this pseudo device value) */
int adi; /* Additional grid point data allowance (must be <= 2 * MXDI) */
/* (Typically black locus range) */
double (*func)(void *fdata, double *inout, double *surav, int first, double *cw);
/* Optimisation function */
void *fdata; /* Pointer to opaque data needed by callback function */
struct {
double cw[MXDI]; /* Curvature weight factor for each dimension */
} sf;
/* Grid points data */
struct {
int res[MXDI]; /* Single dimension grid resolution for each dimension */
int bres, brix; /* Biggest resolution and its index */
double mres; /* Geometric mean res[] */
int no; /* Total number of points in grid = res ^ di */
datai l,h,w; /* Grid low, high, grid cell width */
double *a; /* Grid point data */
/* Array is res ^ di entries double[fdi+tdi+adi] */
/* The output values start at offset 0, the */
/* target data values start at offset fdi, and */
/* the additional data starts at offset fdi+tdi. */
int pss; /* Grid point structure size = fdi+tdi */
/* Grid array offset lookups */
int ci[MXDI]; /* Grid coordinate increments for each dimension */
int fci[MXDI]; /* Grid coordinate increments for each dimension in doubles */
int *hi; /* 2^di Combination offset for sequence through cube. */
int *fhi; /* Combination offset for sequence through cube of */
/* 2^di points, starting at base, in floats */
int a_hi[DEF2MXDI]; /* Default allocation for *hi */
int a_fhi[DEF2MXDI];/* Default allocation for *fhi */
} g;
}; typedef struct _omgtp omgtp;
/* ================================================= */
static omgtp *new_omgtp(rspl *s, int tdi, int adi, int mxres,
double (*func)(void *fdata, double *inout, double *surav, int first, double *cw),
void *fdata);
static void free_omgtp(omgtp *m);
static void solve_gres(omgtp *m, double tol);
static void init_soln(omgtp *m1, omgtp *m2);
static void init_fsoln(omgtp *m, double **vdata);
/* Initialise the regular spline from the optimisation callback function. */
/* The target data is auxiliary data used to "target" the optimisation */
/* callback function. */
/* The callback function arguments are as follows:
* void *fdata,
* double *inout, Pointers to fdi+tdi+adi values for the grid point being optimised.
* double *surav, Pointers to fdi+tdi values which are the average of the
* neighbors of this grid point. Pointer will NULL if this
* is a surface grid point.
* int first, Flag, NZ if this is the first optimisation of this point.
* double *cw the (grid resolution) curvature weighting factor for each dimension
*
* Returns value is the "error" for this point.
*/
int
opt_rspl_imp(
rspl *s, /* this */
int flags, /* Combination of flags */
int tdi, /* Dimensionality of target data */
int adi, /* Additional per grid point data allocation */
double **vdata, /* di^2 array of function, target and additional values to init */
/* array corners with. Corners are ordered with lowest index */
/* dimension changing most rapidly. */
double (*func)(void *fdata, double *inout, double *surav, int first, double *cw),
/* Optimisation function */
void *fdata, /* Opaque data needed by function */
datai glow, /* Grid low scale - NULL = default 0.0 */
datai ghigh, /* Grid high scale - NULL = default 1.0 */
int gres[MXDI], /* Spline grid resolution for each dimension */
datao vlow, /* Data value low normalize, NULL = default 0.0 */
datao vhigh /* Data value high normalize - NULL = default 1.0 */
) {
// int di = s->di
int fdi = s->fdi;
int i, e, f;
// int n;
#if defined(__IBMC__) && defined(_M_IX86)
_control87(EM_UNDERFLOW, EM_UNDERFLOW);
#endif
/* set debug level */
s->debug = (flags >> 24);
if (flags & RSPL_VERBOSE) /* Turn on progress messages to stdout */
s->verbose = 1;
if (flags & RSPL_NOVERBOSE) /* Turn off progress messages to stdout */
s->verbose = 0;
s->symdom = (flags & RSPL_SYMDOMAIN) ? 1 : 0; /* Turn on symetric smoothness with gres */
if (tdi >= MXDI)
error("rspl, opt: tdi %d > MXDI %d",tdi,MXDI);
if (adi >= (2 * MXDI))
error("rspl, opt: adi %d > 2 * MXDI %d",adi,2 * MXDI);
/* transfer desired grid range to structure */
s->g.mres = 1.0;
s->g.bres = 0;
for (e = 0; e < s->di; e++) {
if (gres[e] < 2)
error("rspl: grid res must be >= 2!");
s->g.res[e] = gres[e]; /* record the desired resolution of the grid */
s->g.mres *= gres[e];
if (gres[e] > s->g.bres) {
s->g.bres = gres[e];
s->g.brix = e;
}
if (glow == NULL)
s->g.l[e] = 0.0;
else
s->g.l[e] = glow[e];
if (ghigh == NULL)
s->g.h[e] = 1.0;
else
s->g.h[e] = ghigh[e];
}
s->g.mres = pow(s->g.mres, 1.0/e); /* geometric mean */
/* compute width of each grid cell */
for (e = 0; e < s->di; e++) {
s->g.w[e] = (s->g.h[e] - s->g.l[e])/(double)(gres[e]-1);
}
/* record low and width data normalizing factors */
for (f = 0; f < s->fdi; f++) {
if (vlow == NULL)
s->d.vl[f] = 0.0;
else
s->d.vl[f] = vlow[f];
if (vhigh == NULL)
s->d.vw[f] = 1.0 - s->d.vl[f];
else
s->d.vw[f] = vhigh[f] - s->d.vl[f];
}
/* Do optimisation of data points */
{
int nn, res, sres;
double fres, gratio = GRATIO;
float *gp; /* rspl grid pointer */
double *mgp; /* Temp muligrid pointer */
omgtp *m, *om = NULL;
sres = 4; /* Start at initial grid res of 4 */
if (sres > s->g.bres)
sres = s->g.bres; /* Drop to target resolution */
/* Calculate the resolution scaling ratio */
if (((double)s->g.bres/(double)sres) <= gratio) {
gratio = (double)s->g.bres/(double)sres;
nn = 1;
} else { /* More than one needed */
nn = (int)((log((double)s->g.bres) - log((double)sres))/log(gratio) + 0.5);
gratio = exp((log((double)s->g.bres) - log((double)sres))/(double)nn);
}
/* Do each grid resolution in turn */
for (fres = (double)sres, res = sres;;) {
m = new_omgtp(s, tdi, adi, res, func, fdata);
if (om == NULL) {
init_fsoln(m, vdata); /* Set the initial targets & values from corners */
} else {
init_soln(m, om); /* Scale targets & values from from previous resolution */
free_omgtp(om); /* Free previous grid res solution */
}
solve_gres(m, TOL * s->g.mres/res); /* Use itterative */
if (res >= s->g.mres)
break; /* Done */
fres *= gratio;
res = (int)(fres + 0.5);
if ((res + 1) >= s->g.mres) /* If close enough */
res = (int)s->g.mres;
om = m;
}
/* Allocate the final rspl grid data */
alloc_grid(s);
/* Transfer result in x[] to appropriate grid point value */
for (gp = s->g.a, mgp = m->g.a, i = 0; i < s->g.no; gp += s->g.pss, mgp += m->g.pss, i++)
for (f = 0; f < fdi; f++)
gp[f] = (float)mgp[f];
free_omgtp(m);
}
/* Return non-mono check */
return is_mono(s);
}
/* - - - - - - - - - - - - - - - - - - - - - - - -*/
/* omgtp routines */
/* Create a new omgtp. */
/* Grid data will be uninitialised */
static omgtp *new_omgtp(
rspl *s, /* associated rspl */
int tdi, /* Target dimensions */
int adi, /* Additional per grid point data allocation */
int mxres, /* maximum resolution to create */
double (*func)(void *fdata, double *inout, double *surav, int first, double *cw),
/* Optimisation function */
void *fdata /* Opaque data needed by function */
) {
omgtp *m;
int di = s->di, fdi = s->fdi;
// int dno = s->d.no;
int gno;
int e, g, i;
// int f, n, j, k;
/* Allocate a structure */
if ((m = (omgtp *) calloc(1, sizeof(omgtp))) == NULL)
error("rspl: malloc failed - omgtp");
/* Allocate space for cube offset arrays */
m->g.hi = m->g.a_hi;
m->g.fhi = m->g.a_fhi;
if ((1 << di) > DEF2MXDI) {
if ((m->g.hi = (int *) malloc(sizeof(int) * (1 << di))) == NULL)
error("rspl omgtp malloc failed - hi[]");
if ((m->g.fhi = (int *) malloc(sizeof(int) * (1 << di))) == NULL)
error("rspl omgtp malloc failed - fhi[]");
}
/* General stuff */
m->s = s;
m->tdi = tdi;
m->adi = adi;
m->func = func;
m->fdata = fdata;
/* Grid related */
m->g.mres = 1.0;
m->g.bres = 0;
for (gno = 1, e = 0; e < di; e++) {
if (mxres >= s->g.res[e]) /* Shoose smaller of gres and target res */
m->g.res[e] = s->g.res[e];
else
m->g.res[e] = mxres;
m->g.mres *= m->g.res[e];
if (m->g.res[e] > m->g.bres) {
m->g.bres = m->g.res[e];
m->g.brix = e;
}
gno *= m->g.res[e];
}
m->g.mres = pow(m->g.mres, 1.0/e); /* geometric mean */
m->g.no = gno;
m->g.pss = fdi+tdi+adi; /* doubles for each output value + target data + additional data */
/* record high, low limits, and width of each grid cell */
for (e = 0; e < s->di; e++) {
m->g.l[e] = s->g.l[e];
m->g.h[e] = s->g.h[e];
m->g.w[e] = (s->g.h[e] - s->g.l[e])/(double)(m->g.res[e]-1);
}
/* Compute index coordinate increments into linear grid for each dimension */
/* ie. 1, gres, gres^2, gres^3 */
for (m->g.ci[0] = 1, e = 1; e < di; e++) {
m->g.ci[e] = m->g.ci[e-1] * m->g.res[e-1]; /* In grid points */
m->g.fci[e] = m->g.ci[e] * m->g.pss; /* In doubles */
}
/* Compute index offsets from base of cube to other corners */
for (m->g.hi[0] = 0, e = 0, g = 1; e < di; g *= 2, e++) {
for (i = 0; i < g; i++) {
m->g.hi[g+i] = m->g.hi[i] + m->g.ci[e]; /* In grid points */
m->g.fhi[g+i] = m->g.hi[g+i] * m->g.pss; /* In doubles */
}
}
/* Allocate space for grid */
if ((m->g.a = (double *) malloc(sizeof(double) * gno * m->g.pss)) == NULL)
error("rspl malloc failed - multi-grid points");
/* Compute curvature weighting for matching intermediate resolutions. */
/* cw[] is multiplied by the grid curvature_errors_squared[] to keep */
/* the same ratio with the sum of data position errors squared. */
for (e = 0; e < di; e++) {
double rsm; /* Resolution smoothness factor */
if (s->symdom)
rsm = m->g.res[e]-1.0; /* Relative final grid size */
else
rsm = m->g.mres-1.0; /* Relative mean final grid size */
rsm = pow(rsm,8.0/di);
rsm /= pow(200.0,8.0/di)/pow(200.0, 4.0); /* (Scale factor to adjust power) */
m->sf.cw[e] = (s->smooth * SMOOTH)/(rsm * (double)di);
}
return m;
}
/* Completely free an omgtp */
static void free_omgtp(omgtp *m) {
free((void *)m->g.a);
/* Free structure */
if (m->g.hi != m->g.a_hi) {
free(m->g.hi);
free(m->g.fhi);
}
free((void *)m);
}
/* Set the first targets & values from the corner values. */
static void init_fsoln(
omgtp *m, /* Destination */
double **vdata /* di^2 array of function and target values to init array corners with. */
/* Corners are ordered with lowest index dimension changing most rapidly. */
/* (Function data at index 0, target data at index fdi) */
) {
rspl *s = m->s;
int di = s->di;
int fdi = s->fdi;
int gno = m->g.no;
int gres_1[MXDI];
int e, n;
double *gp; /* Pointer to dest g.a[] grid cube base */
ECOUNT(gc, MXDIDO, di, 0, m->g.res, 0); /* Counter for output points */
double *gw; /* weight for each grid cube corner */
double a_gw[DEF2MXDI]; /* default allocation for gw */
gw = a_gw;
if ((1 << di) > DEF2MXDI) {
if ((gw = (double *) malloc(sizeof(double) * (1 << di))) == NULL)
error("rspl malloc failed - interp_rspl_nl");
}
for (e = 0; e < di; e++)
gres_1[e] = m->g.res[e]-1;
/* For all output grid points (could skip non-surface points ?) */
EC_INIT(gc);
for (n = 0, gp = m->g.a; n < gno; n++, gp += m->g.pss) {
double we[MXDI]; /* 1.0 - Weight in each dimension */
/* Figure out the pointer to the grid data and its weighting */
{
gp = m->g.a; /* Base of output array */
for (e = 0; e < di; e++)
we[e] = (double)gc[e]/gres_1[e]; /* 1.0 - weight */
}
/* Compute corner weights needed for interpolation */
{
int i, g;
gw[0] = 1.0;
for (e = 0, g = 1; e < di; g *= 2, e++) {
for (i = 0; i < g; i++) {
gw[g+i] = gw[i] * we[e];
gw[i] *= (1.0 - we[e]);
}
}
}
/* Compute the output values */
{
int i, f;
double w = gw[0];
double *d = vdata[0];
for (f = 0; f < m->g.pss; f++) /* Base of cube */
gp[f] = w * d[f];
for (i = 1; i < (1 << di); i++) { /* For all other corners of cube */
w = gw[i]; /* Strength reduce */
d = vdata[i];
for (f = 0; f < fdi; f++)
gp[f] += w * d[f];
}
}
EC_INC(gc);
}
if (gw != a_gw)
free(gw);
}
/* Transfer a device and target values solution from one omgtp to another. */
/* (We assume that they are for the same problem) */
static void init_soln(
omgtp *m1, /* Destination */
omgtp *m2 /* Source */
) {
rspl *s = m1->s;
int di = s->di;
int gno = m1->g.no;
int gres1_1[MXDI];
int gres2_1[MXDI];
int e, n;
double *a; /* Pointer to dest g.a[] grid cube base */
ECOUNT(gc, MXDIDO, di, 0, m1->g.res, 0); /* Counter for output points */
double *gw; /* weight for each grid cube corner */
double a_gw[DEF2MXDI]; /* default allocation for gw */
gw = a_gw;
if ((1 << di) > DEF2MXDI) {
if ((gw = (double *) malloc(sizeof(double) * (1 << di))) == NULL)
error("rspl malloc failed - interp_rspl_nl");
}
for (e = 0; e < di; e++) {
gres1_1[e] = m1->g.res[e]-1;
gres2_1[e] = m2->g.res[e]-1;
}
/* For all output grid points */
EC_INIT(gc);
for (n = 0, a = m1->g.a; n < gno; n++, a += m1->g.pss) {
double we[MXDI]; /* 1.0 - Weight in each dimension */
double *gp; /* Pointer to source g.a[] grid cube base */
/* Figure out which grid cell the point falls into */
{
double t;
int mi;
gp = m2->g.a; /* Base of solution array */
for (e = 0; e < di; e++) {
t = (double)gc[e] * gres2_1[e]/gres1_1[e];
mi = (int)floor(t); /* Grid coordinate */
if (mi < 0) /* Limit to valid cube base index range */
mi = 0;
else if (mi >= gres2_1[e])
mi = gres2_1[e]-1;
gp += mi * m2->g.fci[e]; /* Add Index offset for grid cube base in dimen */
we[e] = t - (double)mi; /* 1.0 - weight */
}
}
/* Compute corner weights needed for interpolation */
{
int i, g;
gw[0] = 1.0;
for (e = 0, g = 1; e < di; g *= 2, e++) {
for (i = 0; i < g; i++) {
gw[g+i] = gw[i] * we[e];
gw[i] *= (1.0 - we[e]);
}
}
}
/* Compute the output values */
{
int i, f;
double w = gw[0];
double *d = gp + m2->g.fhi[0];
for (f = 0; f < m1->g.pss; f++) /* Base of cube */
a[f] = w * d[f];
for (i = 1; i < (1 << di); i++) { /* For all other corners of cube */
w = gw[i]; /* Strength reduce */
d = gp + m2->g.fhi[i];
for (f = 0; f < m1->g.pss; f++)
a[f] += w * d[f];
}
}
EC_INC(gc);
}
if (gw != a_gw)
free(gw);
}
/* - - - - - - - - - - - - - - - - - - - -*/
static double one_itter(omgtp *m, int first);
/* Itterate the optimisation functions until we are happy things have settled */
static void
solve_gres(
omgtp *m,
double tol
) {
int i;
double dtol = tol * 0.1; /* Delta tol limit */
double ltt, tt;
ltt = 1.0;
tt = tol * 10.0;
for (i = 0; i < 500; i++) {
if (i == 0)
tt = one_itter(m, 1);
ltt = tt;
tt = one_itter(m, 0);
if (tt < tol || (ltt - tt) < dtol) /* Get within 0.1 % */
break;
}
}
/* Optimise the points values and (optionally) targets */
/* Use Red/Black order, return total error after this itteration. */
/* Return the total optimisation error */
static double
one_itter(
omgtp *m,
int first /* Flag, NZ if this is the first pass at this resolution */
) {
int di = m->s->di, fdi = m->s->fdi;
int tdi = m->tdi;
int i, e, f;
int gc[MXDI];
int *gres = m->g.res;
int gres_1[MXDI];
DCOUNT(cc, MXDIDO, di, -1, -1, 2); /* Surrounding cube counter */
double *gpp; /* Current grid point pointer */
double ssum[MXDO+MXDI+2*MXDI]; /* Pointer to surrounding average values */
double *surav; /* Surrounding average values */
double awt; /* Average weight */
double terr = 0.0; /* Total error */
int surf; /* This point is on the surface */
for (e = 0; e < di; e++) {
gc[e] = 0; /* init coords */
gres_1[e] = gres[e] - 1;
}
/* Until done */
for (;;) {
/* See if we are on the surface */
surf = 0;
gpp = m->g.a;
for (e = 0; e < di; e++) {
gpp += m->g.fci[e] * gc[e]; /* Compute pointer to current point */
if (gc[e] == 0 || gc[e] == gres_1[e])
surf = 1;
}
surav = NULL;
if (!surf) {
for (f = 0; f < (fdi + tdi); f++)
ssum[f] = 0.0;
awt = 0.0;
/* Average the 3x3 surrounders */
DC_INIT(cc)
for (i = 0; !DC_DONE(cc); i++ ) {
double *gp = m->g.a;
for (e = 0; e < di; e++) {
int j;
j = gc[e] + cc[e];
if (j < 0 && j > gres_1[e]) { /* outside */
break;
}
gp += m->g.fci[e] * j; /* Compute pointer to surrounder */
}
if (e >= di) { /* We have a valid point */
for (f = 0; f < (fdi + tdi); f++)
ssum[f] += gp[f];
awt += 1.0;
}
DC_INC(cc);
}
if (awt > 0.0) { /* Compute the average */
for (f = 0; f < (fdi + tdi); f++)
ssum[f] /= awt;
surav = ssum;
}
}
/* Call optimisation function */
terr += m->func(m->fdata, gpp, surav, first, m->sf.cw);
/* Increment index in red/black order */
for (e = 0; e < di; e++) {
if (e == 0) {
gc[0] += 2; /* Inc coordinate by 2 */
} else {
gc[e] += 1; /* Inc coordinate */
}
if (gc[e] < gres[e])
break; /* No carry */
gc[e] -= gres[e]; /* Reset coord */
if ((gres[e] & 1) == 0) { /* Compensate for odd grid */
gc[0] ^= 1; /* XOR lsb */
}
}
/* Stop on reaching 0 */
for(e = 0; e < di; e++)
if (gc[e] != 0)
break;
if (e == di)
break; /* Finished */
}
return terr;
}
|