1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
/* Single dimension regularized spline data structure */
/*
* Argyll Color Correction System
* Author: Graeme W. Gill
* Date: 2000/10/29
*
* Copyright 1996 - 2010 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU GENERAL PUBLIC LICENSE Version 2 or later :-
* see the License2.txt file for licencing details.
*
* This is a simple 1D version of rspl, useful for standalone purposes.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include "numsup.h"
#include "rspl1.h"
#undef DEBUG
#ifdef DEBUG
# define DBGA g_log, 0 /* First argument to DBGF() */
# define DBGF(xx) a1logd xx
#else
# define DBGF(xx)
#endif
/* Do an interpolation based on the grid */
/* Use a linear interp between grid points. */
/* If the input is outside the grid range, it will */
/* be clamped to the nearest grid point. */
static int interp(
rspl *t,
co *p
) {
int rv = 0;
double x, y, xx, w1;
int i;
x = p->p[0];
if (x < t->gl) {
x = t->gl;
rv = 1;
} else if (x > t->gh) {
x = t->gh;
rv = 1;
}
xx = (x - t->gl)/t->gw; /* Grid location of point */
i = (int)floor(xx); /* Lower grid of point */
if (i >= (t->nig-2))
i = t->nig-2;
w1 = xx - (double)i; /* Weight to upper grid point */
y = ((1.0 - w1) * t->x[i]) + (w1 * t->x[i+1]);
p->v[0] = y * t->vw + t->vl; /* Rescale the data */
return rv;
}
/* Destructor */
static void del_rspl(rspl *t) {
if (t != NULL) {
if (t->x != NULL)
free_dvector(t->x, 0, t->nig);
free(t);
}
}
/* Initialise the regular spline from scattered data */
/* Return nz on error */
static int fit_rspl_imp(
struct _rspl *t,/* this */
int flags, /* (Not used) */
void *d, /* Array holding position and function values of data points */
int dtp, /* Flag indicating data type, 0 = (co *), 1 = (cow *), 2 = (coww *) */
int ndp, /* Number of data points */
datai glow, /* Grid low scale - will expand to enclose data, NULL = default 0.0 */
datai ghigh, /* Grid high scale - will expand to enclose data, NULL = default 1.0 */
int *gres, /* Spline grid resolution, ncells = gres-1 */
datao vlow, /* Data value low normalize, NULL = default 0.0 */
datao vhigh, /* Data value high normalize - NULL = default 1.0 */
double smooth, /* Smoothing factor, 0.0 = default 1.0 */
double *avgdev, /* (Not used) */
double **ipos /* (not used) */
) {
int n;
double cw;
DBGF((DBGA, "rspl1:fit_rspl_imp() with %d points called, dtp = %d\n",ndp,dtp));
/* Allocate space for interpolation grid */
t->nig = *gres;
if ((t->x = dvector(0, t->nig)) == NULL) {
DBGF((DBGA, "rspl1:Malloc of vector x failed\n"));
return 1;
}
/* Normalize curve weight to grid resolution. */
cw = 0.0000005 * smooth * pow((t->nig-1),4.0) / (t->nig - 2);
DBGF((DBGA, "rspl1:cw = %e\n",cw));
/* cw is multiplied by the sum of grid curvature errors squared to keep */
/* the same ratio with the sum of data position errors squared */
/* Determine the data range */
t->xl = 1e300;
t->xh = -1e300;
t->dl = 1e300;
t->dh = -1e300;
if (dtp == 0) {
co *dd = (co *)d;
for (n = 0; n < ndp; n++) {
if (dd[n].p[0] < t->xl)
t->xl = dd[n].p[0];
if (dd[n].p[0] > t->xh)
t->xh = dd[n].p[0];
if (dd[n].v[0] < t->dl)
t->dl = dd[n].v[0];
if (dd[n].v[0] > t->dh)
t->dh = dd[n].v[0];
DBGF((DBGA, "rspl1:Point %d = %f, %f\n",n,dd[n].p[0],dd[n].v[0]));
}
} else if (dtp == 1) {
cow *dd = (cow *)d;
for (n = 0; n < ndp; n++) {
if (dd[n].p[0] < t->xl)
t->xl = dd[n].p[0];
if (dd[n].p[0] > t->xh)
t->xh = dd[n].p[0];
if (dd[n].v[0] < t->dl)
t->dl = dd[n].v[0];
if (dd[n].v[0] > t->dh)
t->dh = dd[n].v[0];
DBGF((DBGA, "rspl1:Point %d = %f, %f (%f)\n",n,dd[n].p[0],dd[n].v[0],dd[n].w));
}
} else {
DBGF((DBGA, "rspl1:Internal error, unknown dtp value %d\n",dtp));
return 1;
}
t->gl = glow != NULL ? *glow : 0.0;
t->gh = ghigh != NULL ? *ghigh : 1.0;
/* adjust input ranges to encompass data */
if (t->xl < t->gl)
t->gl = t->xl;
if (t->xh > t->gh)
t->gh = t->xh;
/* Set the input and output scaling */
t->gw = (t->gh - t->gl)/(double)(t->nig-1);
t->vl = vlow != NULL ? *vlow : 0.0;
t->vw = ((vhigh != NULL ? *vhigh : 1.0) - t->vl);
DBGF((DBGA, "rspl1:gl %f, gh %f, gw %f, vl %f, vw %f\n",t->gl,t->gh,t->gw,t->vl,t->vw));
/* create smoothed grid data */
{
int n,i,k;
double **A; /* A matrix of interpoint weights */
double *b; /* b vector for RHS of simultabeous equation */
/* We just store the diagonal of the A matrix */
if ((A = dmatrix(0, t->nig, 0, 2)) == NULL) {
DBGF((DBGA, "rspl1:Malloc of matrix A failed\n"));
return 1;
}
if ((b = dvector(0,t->nig)) == NULL) {
free_dvector(b,0,t->nig);
DBGF((DBGA, "rspl1:Malloc of vector b failed\n"));
return 1;
}
/* Initialize the A and b matricies */
for (i = 0; i < t->nig; i++) {
for (k = 0; k < 3; k++)
A[i][k] = 0.0;
t->x[i] = b[i] = 0.0;
}
/* Accumulate data dependent factors */
for (n = 0; n < ndp; n++) {
double bf, cbf;
double xv, yv, wv;
if (dtp == 0) {
co *dd = (co *)d;
xv = dd[n].p[0];
yv = dd[n].v[0];
wv = 1.0;
} else if (dtp == 1) {
cow *dd = (cow *)d;
xv = dd[n].p[0];
yv = dd[n].v[0];
wv = dd[n].w;
} else {
DBGF((DBGA, "rspl1:Internal error, unknown dtp value %d\n",dtp));
return 1;
}
yv = (yv - t->vl)/t->vw; /* Normalize the value */
/* Figure out which grid cell data is in */
i = (int)((xv - t->gl)/t->gw); /* Index of next lowest data point */
bf = ((((double)(i+1) * t->gw) + t->gl) - xv)/t->gw; /* weight to lower grid point */
cbf = 1.0 - bf; /* weight to upper grid point */
b[i] -= 2.0 * bf * -yv * wv; /* dui component due to dn */
A[i][0] += 2.0 * bf * bf * wv; /* dui component due to ui */
A[i][1] += 2.0 * bf * cbf * wv; /* dui component due to ui+1 */
if ((i+1) < t->nig) {
b[i+1] -= 2.0 * cbf * -yv * wv; /* dui component due to dn */
A[i+1][0] += 2.0 * cbf * cbf * wv; /* dui component due to ui */
}
}
/* Accumulate curvature dependent factors */
for (i = 0; i < t->nig; i++) {
if ((i-2) >= 0) { /* Curvature of cell below */
A[i][0] += 2.0 * cw;
}
if ((i-1) >= 0 && (i+1) < t->nig) { /* Curvature of t cell */
A[i][0] += 8.0 * cw;
A[i][1] += -4.0 * cw;
}
if ((i+2) < t->nig) { /* Curvature of cell above */
A[i][0] += 2.0 * cw;
A[i][1] += -4.0 * cw;
A[i][2] += 2.0 * cw;
}
}
#ifdef DEBUG
DBGF((DBGA, "A matrix:\n"));
for (i = 0; i < t->nig; i++) {
for (k = 0; k < 3; k++)
DBGF((DBGA, "A[%d][%d] = %f\n",i,k,A[i][k]));
}
DBGF((DBGA, "b vector:\n"));
for (i = 0; i < t->nig; i++)
DBGF((DBGA, "b[%d] = %f\n",i,b[i]));
#endif /* DEBUG */
/* Apply Cholesky decomposition to A[][] to create L[][] */
for (i = 0; i < t->nig; i++) {
double sm;
for (n = 0; n < 3; n++) {
sm = A[i][n];
for (k = 1; (n+k) < 3 && (i-k) >=0; k++) {
sm -= A[i-k][n+k] * A[i-k][k];
}
if (n == 0) {
if (sm <= 0.0) {
free_dvector(b,0,t->nig);
free_dmatrix(A,0,t->nig,0,2);
DBGF((DBGA, "rspl1:Sum is -ve - loss of accuracy ?\n"));
return 1;
}
A[i][0] = sqrt(sm);
} else {
A[i][n] = sm/A[i][0];
}
}
}
/* Solve L . y = b, storing y in x */
for (i = 0; i < t->nig; i++) {
double sm;
sm = b[i];
for (k = 1; k < 3 && (i-k) >= 0; k++) {
sm -= A[i-k][k] * t->x[i-k];
}
t->x[i] = sm/A[i][0];
}
/* Solve LT . x = y */
for (i = t->nig-1; i >= 0; i--) {
double sm;
sm = t->x[i];
for (k = 1; k < 3 && (i+k) < t->nig; k++) {
sm -= A[i][k] * t->x[i+k];
}
t->x[i] = sm/A[i][0];
}
#ifdef DEBUG
DBGF((DBGA, "Solution vector:\n"));
for (i = 0; i < t->nig; i++) {
DBGF((DBGA, "x[%d] = %f\n",i,t->x[i]));
}
#endif /* DEBUG */
free_dvector(b,0,t->nig);
free_dmatrix(A,0,t->nig,0,2);
}
return 0;
}
/* Initialise from scattered data. */
/* Return nz on error */
static int fit_rspl(
struct _rspl *t,/* this */
int flags, /* (Not used) */
co *d, /* Array holding position and function values of data points */
int ndp, /* Number of data points */
datai glow, /* Grid low scale - will expand to enclose data, NULL = default 0.0 */
datai ghigh, /* Grid high scale - will expand to enclose data, NULL = default 1.0 */
int *gres, /* Spline grid resolution, ncells = gres-1 */
datao vlow, /* Data value low normalize, NULL = default 0.0 */
datao vhigh, /* Data value high normalize - NULL = default 1.0 */
double smooth, /* Smoothing factor, 0.0 = default 1.0 */
double *avgdev, /* (Not used) */
double **ipos /* (not used) */
) {
/* Call implementation with (co *) data */
return fit_rspl_imp(t, flags, (void *)d, 0, ndp, glow, ghigh, gres, vlow, vhigh,
smooth, avgdev, ipos);
}
/* Return a pointer to the resolution array */
static int *get_res(rspl *s) {
return &s->nig;
}
/* Initialise the regular spline from scattered data with weights */
/* Return nz on error */
static int
fit_rspl_w(
rspl *t, /* this */
int flags, /* Combination of flags */
cow *d, /* Array holding position, function and weight values of data points */
int dno, /* Number of data points */
ratai glow, /* Grid low scale - will be expanded to enclose data, NULL = default 0.0 */
ratai ghigh, /* Grid high scale - will be expanded to enclose data, NULL = default 1.0 */
int *gres, /* Spline grid resolution */
ratao vlow, /* Data value low normalize, NULL = default 0.0 */
ratao vhigh, /* Data value high normalize - NULL = default 1.0 */
double smooth, /* Smoothing factor, 0.0 = default 1.0 */
double *avgdev, /* (Not used) */
double **ipos /* (not used) */
) {
/* Call implementation with (cow *) data */
return fit_rspl_imp(t, flags, (void *)d, 1, dno, glow, ghigh, gres, vlow, vhigh,
smooth, avgdev, ipos);
}
/* Initialize the grid from a provided function. */
/* Grid index values are supplied "under" in[] at *((int*)&iv[-e-1]) */
static int set_rspl(
struct _rspl *s,/* this */
int flags, /* (Not used) */
void *cbctx, /* Opaque function context */
void (*func)(void *cbctx, double *out, double *in), /* Function to set from */
datai glow, /* Grid low scale, NULL = default 0.0 */
datai ghigh, /* Grid high scale, NULL = default 1.0 */
int *gres, /* Spline grid resolution for each dimension */
datao vlow, /* Data value low normalize, NULL = default 0.0 */
datao vhigh /* Data value high normalize, NULL = default 1.0 */
) {
int n;
double _iv[2 * MXDI], *iv = &_iv[MXDI]; /* Real index value/table value */
double ov[MXDO];
DBGF((DBGA, "rspl1:set_rspl() callen"));
/* Allocate space for interpolation grid */
s->nig = *gres;
if ((s->x = dvector(0, s->nig)) == NULL) {
DBGF((DBGA, "rspl1:Malloc of vector x failed\n"));
return 1;
}
s->xl = s->gl = glow != NULL ? *glow : 0.0;
s->xh = s->gh = ghigh != NULL ? *ghigh : 1.0;
/* Set the input scaling */
s->gw = (s->gh - s->gl)/(double)(s->nig-1);
/* Set the default output scaling */
s->vl = vlow != NULL ? *vlow : 0.0;
s->vw = ((vhigh != NULL ? *vhigh : 1.0) - s->vl);
DBGF((DBGA, "rspl1:gl %f, gh %f, gw %f, vl %f, vw %f\n",s->gl,s->gh,s->gw,s->vl,s->vw));
/* Lookup the values at the grid points */
for (n = 0; n < s->nig; n++) {
double vv;
/* Compute grid pointer and input sample values */
iv[0] = s->gl + n * s->gw; /* Input sample values */
*((int *)&iv[-1-1]) = n; /* Trick to supply grid index in iv[] */
/* Apply incolor -> outcolor function we want to represent */
func(cbctx, ov, iv);
s->x[n] = (float)ov[0]; /* Set unscaled output value */
if (s->x[n] < s->dl)
s->dl = s->x[n];
if (s->x[n] > s->dh)
s->dh = s->x[n];
}
/* Adjust output scaling */
s->vw += s->vl; /* Convert to high */
if (s->dl < s->vl)
s->vl = s->dl;
if (s->dh < s->vw)
s->vw = s->dh;
s->vw -= s->vl; /* Convert to width */
/* Apply scaling to data */
for (n = 0; n < s->nig; n++) {
s->x[n] = (s->x[n] - s->vl)/s->vw;
}
return 0;
}
/* Construct an empty rspl1 */
/* Return NULL if something goes wrong. */
rspl *new_rspl(int flags, int di, int fdi) {
rspl *t; /* this */
if (flags != RSPL_NOFLAGS || di != 1 || fdi != 1) {
DBGF((DBGA, "rspl1:Can't handle general rspl: flags %d, di %d, do %d\n",flags,di,fdi));
return NULL;
}
if ((t = (rspl *)calloc(1, sizeof(rspl))) == NULL) {
DBGF((DBGA, "rspl1:Malloc of structure failed\n"));
return NULL;
}
/* Initialise the classes methods */
t->interp = interp;
t->fit_rspl = fit_rspl;
t->fit_rspl_w = fit_rspl_w;
t->set_rspl = set_rspl;
t->get_res = get_res;
t->del = del_rspl;
return t;
}
|