1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/*
* Argyll Color Correction System
* Multi-dimensional regularized spline data structure
*
* Spline forward interpolation support.
*
* Author: Graeme W. Gill
* Date: 12/10/98
*
* Copyright 1998, Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* TTBD:
Get rid of error() calls - return status instead
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include <time.h>
//#if defined(__IBMC__) && defined(_M_IX86)
//#include <float.h>
//#endif
#include "rspl_imp.h"
#include "numlib.h"
int spline_interp_rspl(rspl *ss, co *cp);
#undef DEBUG
#undef NEVER
#define ALWAYS
/* Convention is to use:
i to index grid points u.a
n to index data points d.a
e to index position dimension di
f to index output function dimension fdi
j misc and cube corners
k misc
*/
/* ====================================================== */
/* Init spline elements in rspl */
void
init_spline(rspl *s) {
s->spline.nm = 0;
s->spline.spline = 0;
s->spline.magic = NULL;
s->spline_interp = spline_interp_rspl;
}
/* Free up the spline interpolation info */
void free_spline(
rspl *s /* Pointer to rspl grid */
) {
if (s->spline.magic != NULL) {
free(s->spline.magic);
}
s->spline.nm = 0;
s->spline.spline = 0;
}
/* ====================================================== */
/* Setup functions first: */
/* Hermite spline, magic matrix */
/* Indexes are: param powers 0, 1, 2, 3; Offset from base vertex 0,1; Dimension mask 0,1 */
static double hmagic[4][2][2] = {
{ { 1.0, 0.0}, { 0.0, 0.0} },
{ { 0.0, 1.0}, { 0.0, 0.0} },
{ {-3.0, -2.0}, { 3.0, -1.0} },
{ { 2.0, 1.0}, {-2.0, 1.0} }
};
/* Allocate and initialize tangency information for each grid point */
static void make_tang(
rspl *s /* Pointer to rspl grid */
) {
int i,p,j;
int di = s->di;
int fdi = s->fdi;
int nig = s->g.no;
float *tp; /* Pointer to tangent values */
int nim, mix; /* Number in magic, magic index */
float *tang_alloc, *tang; /* Tangency info */
float *gt; /* Working grid point */
//printf("~~make_tang called\n");
/* Organized as: tang[[grid]][di combs.][fdi] */
/* Allocate space for tangency info */
if ((tang_alloc = (float *) malloc(sizeof(float) * nig * (((1 << di) * fdi)+G_XTRA))) == NULL)
error("rspl malloc failed - tangecy points");
tang = tang_alloc + G_XTRA; /* Offset for flags and non-mono error */
/* For all grid points */
for (tp = tang, gt = s->g.a, i = 0; i < nig; i++, gt += s->g.pss, tp += G_XTRA) {
int ee;
/* printf("\n~~ grid point %d\n",i); */
/* Look at surrounding grid points in combinations of +- 1 all dimensions */
for (ee = 0; ee < (1 << di); ee++) {
double av[MXRO]; /* average */
int nia = 0; /* Number in average */
int f, ec;
/* printf("Dim combo %d\n",ee); */
/* special case - base value */
if (ee == 0) {
*((int *)(tp-2)) = *((int *)(gt-2)); /* Copy flags */
tp[-1] = gt[-1]; /* Copy ink limit function value */
for (f = 0; f < fdi; f++) {
*tp++ = gt[f];
/* printf("Tang value out %d = %f\n",f,tp[-1]); */
}
continue;
}
for (f = 0; f < fdi; f++)
av[f] = 0.0; /* Init average */
/* For all surroundin grid points in this combination */
for (ec = 0; ec < (1 << di); ec++) {
int xo, io, sgn, e, ex;
/* printf("~~checking out surrounding combo %d\n",ec); */
if (ec & ~ee) {
/* printf("~~being skipped\n"); */
continue; /* Skip invalid combo */
}
xo = io = 0; /* Grid float offset */
sgn = 1; /* Sign */
ex = 0; /* Flag - No extrapolation */
for (e = 0; e < di; e++) { /* For each dimension */
/* printf("~~checking dimension %d\n",e); */
if (!(ee & (1 << e))) {
/* printf("~~dimension not active\n"); */
continue; /* Dimension is not active */
}
if (ec & (1 << e)) {
/* If + dimension is valid */
if (((G_FL(gt,e) & 3) > 0) || (G_FL(gt,e) & 0x4)) {
int to = s->g.fci[e]; /* +1 in dimension */
io += to; /* real/pivot point */
xo += to; /* reflected point */
} else {
ex = 1; /* Use extrapolation */
xo -= s->g.fci[e]; /* -1 in dimension */
}
} else {
sgn = -sgn; /* Reverse sign */
/* If - dimension is valid */
if (((G_FL(gt,e) & 3) > 0) || !(G_FL(gt,e) & 0x4)) {
int to = -s->g.fci[e]; /* -1 in dimension */
io += to; /* real/pivot point */
xo += to; /* reflected point */
} else {
ex = 1; /* Use extrapolation */
xo += s->g.fci[e]; /* +1 in dimension */
}
}
}
/* Add surrounding grid points value into the average */
if (!ex) {
for (f = 0; f < fdi; f++)
av[f] += (double)sgn * gt[io + f];
} else { /* Extrapolate point beyond edge */
/* Use an extrapolation that tries to maintain curvature */
for (f = 0; f < fdi; f++) {
double v0,v1,v2;
v0 = gt[io + f]; /* Pivot point */
v1 = gt[xo + f]; /* Reflection of target in pivot */
v2 = gt[2 * xo - io + f]; /* Reflection +2 */
av[f] += (double)sgn * (3.0 * (v0 - v1) + v2);
}
}
nia++;
}
for (f = 0; f < fdi; f++) {
*tp++ = (float)(av[f]/(double)nia);
/* printf("Tang value out %d = %f, average of %d\n",f,tp[-1],nia); */
}
} /* Next dimension combination */
} /* Next grid point */
/* Create a full sized hermite magic matrix */
/* Organized as: magic[4^di][2^di][2^di] */
/* = [param power combos][cube vertex index][di combos], */
/* but then only store non-zero weight values. */
for (i = 0, nim = 1; i < di; nim *= 10, i++); /* Number of entries needed */
if (s->spline.magic == NULL) { /* Allocate space for magic matrix info */
if ((s->spline.magic = (magic_data *) malloc(sizeof(magic_data) * nim)) == NULL)
error("rspl malloc failed - hermite magic matrix data");
}
mix = 0;
for (p = 0; p < (1 << (2 * di)); p++) { /* For all combinations of parameter powers */
for (i = 0; i < (1 << di); i++) { /* For all corners of cube */
for (j = 0; j < (1 << di); j++) { /* For all dimension combinations */
int ii;
double wgt = 1.0;
for (ii = 0; ii < di; ii++) {
wgt *= hmagic[3&(p>>(2*ii))][1&(i>>ii)][1&(j>>ii)];
}
if (wgt != 0.0) { /* record non-zero weight value */
s->spline.magic[mix].p = p;
s->spline.magic[mix].i = i;
s->spline.magic[mix].j = fdi * j; /* Pre-scale */
s->spline.magic[mix].wgt = (float)wgt;
mix++;
}
}
}
}
/* mix should == nim! */
s->spline.nm = nim;
/* Free basic grid info, and substitute tangency enhanced version */
/* ~~~~!! need to free any other structures in rspl that depend on */
/* ~~~~!! g.pss size, ie. rev stuff ??? */
if (s->g.alloc != NULL)
free((void *)s->g.alloc);
s->g.alloc = tang_alloc;
s->g.a = tang;
/* Adjust index tables */
s->g.pss = (1 << di) * fdi + G_XTRA;
for (i = 0; i < di; i++)
s->g.fci[i] = s->g.ci[i] * s->g.pss; /* In floats */
for (i = 0; i < (1 << di); i++)
s->g.fhi[i] = s->g.hi[i] * s->g.pss; /* In floats */
s->spline.spline = 1;
//printf("~~make_tang finished\n");
}
/* Do a Hermite spline smooth interpolation based on the finest grid */
/* (To do this more accurately, the data point interpolation within */
/* the grid itteration should be of the same order. This increases */
/* itteration complexity quite a bit, so we won't bother for the moment.) */
/* This code is not optimised for speed. */
/* Return 0 if OK, 1 if input was clipped to grid */
int spline_interp_rspl(
rspl *s,
co *cp /* Input value and returned function value */
) {
int e,f,p,i;
int di = s->di;
int fdi = s->fdi;
double ppw[MXRI][4]; /* Parameter powers of 0, 1, 2, 3 */
float *ga[POW2MXRI]; /* Pointers to grid cubes data in tang[] */
magic_data *tp; /* Pointer to items in magic matrix */
int rv = 0;
/* printf("~~smooth interp called\n"); */
/* This is a restricted size function */
if (di > MXRI)
error("rspl: spline can't handle di = %d",di);
if (fdi > MXRO)
error("rspl: spline can't handle fdi = %d",fdi);
if (s->spline.spline == 0) /* Compute tangent info if it doesn't exist */
make_tang(s);
/* Locate grid base point, and position with base cube */
ga[0] = s->g.a; /* Base pointer of cube */
for (e = 0; e < di; e++) {
double t, pe;
int mi, gres_1 = s->g.res[e]-1;
pe = cp->p[e];
if (pe < s->g.l[e]) { /* Clip to grid */
pe = s->g.l[e];
rv = 1;
}
if (pe > s->g.h[e]) {
pe = s->g.h[e];
rv = 1;
}
t = (pe - s->g.l[e])/s->g.w[e];
mi = (int)floor(t); /* Grid coordinate */
if (mi < 0) /* Limit to valid cube base index range */
mi = 0;
else if (mi >= gres_1)
mi = gres_1-1;
ga[0] += s->g.fci[e] * mi; /* Add offset in dimen */
t = t - (double)mi;; /* sub-cube offset = parameter in dimension e */
ppw[e][0] = 1.0; /* Powers of parameter */
ppw[e][1] = t;
ppw[e][2] = t * t;
ppw[e][3] = t * t * t;
}
/* Compute indexes into cube corners in tangent array */
for (i = 1; i < (1 << di); i++)
ga[i] = ga[0] + s->g.fhi[i];
/* Now compute the output values */
for (f = 0; f < fdi; f++) /* Zero output value sums */
cp->v[f] = 0.0;
/* For all non-zero combinations of parameter powers */
{
double ppc = -1000.0; /* Parameter power combination */
for (tp = s->spline.magic, p = -1; tp < &s->spline.magic[s->spline.nm]; tp++) {
double wgt; /* Magic matrix weight */
float *gp; /* Pointer to vertex data */
if (p != tp->p) { /* Param power needs re-calculating */
int pp;
p = tp->p;
for (ppc = 1.0, pp = 0; pp < di; pp++)
ppc *= ppw[pp][3&(p>>(2*pp))]; /* comb. of param powers value */
}
wgt = tp->wgt * ppc; /* matrix times parameter */
gp = ga[tp->i] + tp->j; /* Point to base of vertex data */
for (f = 0; f < fdi; f++) /* For all output values */
cp->v[f] += wgt * gp[f];
}
}
/* printf("~~smooth interp finished\n"); */
return rv;
}
|