1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
|
#ifdef SALONEINSTLIB
/*
* A very small subset of icclib, copied to here.
* This is just enough to support the standalone instruments
*/
/*
* Argyll Color Correction System
*
* Author: Graeme W. Gill
* Date: 28/9/97
*
* Copyright 1997 - 2013 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU GENERAL PUBLIC LICENSE Version 2 or later :-
* see the License2.txt file for licencing details.
*/
#include "sa_config.h"
#include "numsup.h"
#include "sa_conv.h"
#include <stdio.h>
#include <stdlib.h>
sa_XYZNumber sa_D50 = {
0.9642, 1.0000, 0.8249
};
sa_XYZNumber sa_D65 = {
0.9505, 1.0000, 1.0890
};
sa_XYZNumber sa_D50_100 = {
96.42, 100.00, 82.49
};
sa_XYZNumber sa_D65_100 = {
95.05, 100.00, 108.90
};
unsigned int sa_CSSig2nchan(icColorSpaceSignature sig) {
switch(sig) {
case icSigXYZData:
return 3;
case icSigLabData:
return 3;
case icSigLuvData:
return 3;
case icSigYCbCrData:
return 3;
case icSigYxyData:
return 3;
case icSigRgbData:
return 3;
case icSigGrayData:
return 1;
case icSigHsvData:
return 3;
case icSigHlsData:
return 3;
case icSigCmykData:
return 4;
case icSigCmyData:
return 3;
case icSig2colorData:
return 2;
case icSig3colorData:
return 3;
case icSig4colorData:
return 4;
case icSig5colorData:
case icSigMch5Data:
return 5;
case icSig6colorData:
case icSigMch6Data:
return 6;
case icSig7colorData:
case icSigMch7Data:
return 7;
case icSig8colorData:
case icSigMch8Data:
return 8;
case icSig9colorData:
return 9;
case icSig10colorData:
return 10;
case icSig11colorData:
return 11;
case icSig12colorData:
return 12;
case icSig13colorData:
return 13;
case icSig14colorData:
return 14;
case icSig15colorData:
return 15;
#ifdef NEVER
/* Non-standard and Pseudo spaces */
case icmSigYData:
return 1;
case icmSigLData:
return 1;
case icmSigL8Data:
return 1;
case icmSigLV2Data:
return 1;
case icmSigLV4Data:
return 1;
case icmSigPCSData:
return 3;
case icmSigLab8Data:
return 3;
case icmSigLabV2Data:
return 3;
case icmSigLabV4Data:
return 3;
#endif /* NEVER */
default:
break;
}
return 0;
}
void sa_SetUnity3x3(double mat[3][3]) {
int i, j;
for (j = 0; j < 3; j++) {
for (i = 0; i < 3; i++) {
if (i == j)
mat[j][i] = 1.0;
else
mat[j][i] = 0.0;
}
}
}
void sa_Cpy3x3(double dst[3][3], double src[3][3]) {
int i, j;
for (j = 0; j < 3; j++) {
for (i = 0; i < 3; i++)
dst[j][i] = src[j][i];
}
}
void sa_MulBy3x3(double out[3], double mat[3][3], double in[3]) {
double tt[3];
tt[0] = mat[0][0] * in[0] + mat[0][1] * in[1] + mat[0][2] * in[2];
tt[1] = mat[1][0] * in[0] + mat[1][1] * in[1] + mat[1][2] * in[2];
tt[2] = mat[2][0] * in[0] + mat[2][1] * in[1] + mat[2][2] * in[2];
out[0] = tt[0];
out[1] = tt[1];
out[2] = tt[2];
}
void sa_Mul3x3_2(double dst[3][3], double src1[3][3], double src2[3][3]) {
int i, j, k;
double td[3][3]; /* Temporary dest */
for (j = 0; j < 3; j++) {
for (i = 0; i < 3; i++) {
double tt = 0.0;
for (k = 0; k < 3; k++)
tt += src1[j][k] * src2[k][i];
td[j][i] = tt;
}
}
/* Copy result out */
for (j = 0; j < 3; j++)
for (i = 0; i < 3; i++)
dst[j][i] = td[j][i];
}
/* Matrix Inversion by Richard Carling from "Graphics Gems", Academic Press, 1990 */
#define det2x2(a, b, c, d) (a * d - b * c)
static void adjoint(
double out[3][3],
double in[3][3]
) {
double a1, a2, a3, b1, b2, b3, c1, c2, c3;
/* assign to individual variable names to aid */
/* selecting correct values */
a1 = in[0][0]; b1 = in[0][1]; c1 = in[0][2];
a2 = in[1][0]; b2 = in[1][1]; c2 = in[1][2];
a3 = in[2][0]; b3 = in[2][1]; c3 = in[2][2];
/* row column labeling reversed since we transpose rows & columns */
out[0][0] = det2x2(b2, b3, c2, c3);
out[1][0] = - det2x2(a2, a3, c2, c3);
out[2][0] = det2x2(a2, a3, b2, b3);
out[0][1] = - det2x2(b1, b3, c1, c3);
out[1][1] = det2x2(a1, a3, c1, c3);
out[2][1] = - det2x2(a1, a3, b1, b3);
out[0][2] = det2x2(b1, b2, c1, c2);
out[1][2] = - det2x2(a1, a2, c1, c2);
out[2][2] = det2x2(a1, a2, b1, b2);
}
static double sa_Det3x3(double in[3][3]) {
double a1, a2, a3, b1, b2, b3, c1, c2, c3;
double ans;
a1 = in[0][0]; b1 = in[0][1]; c1 = in[0][2];
a2 = in[1][0]; b2 = in[1][1]; c2 = in[1][2];
a3 = in[2][0]; b3 = in[2][1]; c3 = in[2][2];
ans = a1 * det2x2(b2, b3, c2, c3)
- b1 * det2x2(a2, a3, c2, c3)
+ c1 * det2x2(a2, a3, b2, b3);
return ans;
}
#define SA__SMALL_NUMBER 1.e-8
int sa_Inverse3x3(double out[3][3], double in[3][3]) {
int i, j;
double det;
/* calculate the 3x3 determinant
* if the determinant is zero,
* then the inverse matrix is not unique.
*/
det = sa_Det3x3(in);
if ( fabs(det) < SA__SMALL_NUMBER)
return 1;
/* calculate the adjoint matrix */
adjoint(out, in);
/* scale the adjoint matrix to get the inverse */
for (i = 0; i < 3; i++)
for(j = 0; j < 3; j++)
out[i][j] /= det;
return 0;
}
#undef SA__SMALL_NUMBER
#undef det2x2
/* - - - - - - - - - - - - - - - - - - - - - - - - */
/* Transpose a 3x3 matrix */
void sa_Transpose3x3(double out[3][3], double in[3][3]) {
int i, j;
if (out != in) {
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
out[i][j] = in[j][i];
} else {
double tt[3][3];
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
tt[i][j] = in[j][i];
for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
out[i][j] = tt[i][j];
}
}
/* Scale a 3 vector by the given ratio */
void sa_Scale3(double out[3], double in[3], double rat) {
out[0] = in[0] * rat;
out[1] = in[1] * rat;
out[2] = in[2] * rat;
}
/* Clamp a 3 vector to be +ve */
void sa_Clamp3(double out[3], double in[3]) {
int i;
for (i = 0; i < 3; i++)
out[i] = in[i] < 0.0 ? 0.0 : in[i];
}
/* Return the normal Delta E given two Lab values */
double sa_LabDE(double *Lab0, double *Lab1) {
double rv = 0.0, tt;
tt = Lab0[0] - Lab1[0];
rv += tt * tt;
tt = Lab0[1] - Lab1[1];
rv += tt * tt;
tt = Lab0[2] - Lab1[2];
rv += tt * tt;
return sqrt(rv);
}
/* Return the CIE94 Delta E color difference measure, squared */
double sa_CIE94sq(double Lab0[3], double Lab1[3]) {
double desq, dhsq;
double dlsq, dcsq;
double c12;
{
double dl, da, db;
dl = Lab0[0] - Lab1[0];
dlsq = dl * dl; /* dl squared */
da = Lab0[1] - Lab1[1];
db = Lab0[2] - Lab1[2];
/* Compute normal Lab delta E squared */
desq = dlsq + da * da + db * db;
}
{
double c1, c2, dc;
/* Compute chromanance for the two colors */
c1 = sqrt(Lab0[1] * Lab0[1] + Lab0[2] * Lab0[2]);
c2 = sqrt(Lab1[1] * Lab1[1] + Lab1[2] * Lab1[2]);
c12 = sqrt(c1 * c2); /* Symetric chromanance */
/* delta chromanance squared */
dc = c1 - c2;
dcsq = dc * dc;
}
/* Compute delta hue squared */
if ((dhsq = desq - dlsq - dcsq) < 0.0)
dhsq = 0.0;
{
double sc, sh;
/* Weighting factors for delta chromanance & delta hue */
sc = 1.0 + 0.045 * c12;
sh = 1.0 + 0.015 * c12;
return dlsq + dcsq/(sc * sc) + dhsq/(sh * sh);
}
}
/* Return the CIE94 Delta E color difference measure */
double sa_CIE94(double Lab0[3], double Lab1[3]) {
return sqrt(sa_CIE94sq(Lab0, Lab1));
}
/* Return the CIE94 Delta E color difference measure for two XYZ values */
double sa_XYZCIE94(sa_XYZNumber *w, double *in0, double *in1) {
double lab0[3], lab1[3];
sa_XYZ2Lab(w, lab0, in0);
sa_XYZ2Lab(w, lab1, in1);
return sqrt(sa_CIE94sq(lab0, lab1));
}
/* CIE XYZ to perceptual CIE 1976 L*a*b* */
void
sa_XYZ2Lab(sa_XYZNumber *w, double *out, double *in) {
double X = in[0], Y = in[1], Z = in[2];
double x,y,z,fx,fy,fz;
x = X/w->X;
y = Y/w->Y;
z = Z/w->Z;
if (x > 0.008856451586)
fx = pow(x,1.0/3.0);
else
fx = 7.787036979 * x + 16.0/116.0;
if (y > 0.008856451586)
fy = pow(y,1.0/3.0);
else
fy = 7.787036979 * y + 16.0/116.0;
if (z > 0.008856451586)
fz = pow(z,1.0/3.0);
else
fz = 7.787036979 * z + 16.0/116.0;
out[0] = 116.0 * fy - 16.0;
out[1] = 500.0 * (fx - fy);
out[2] = 200.0 * (fy - fz);
}
void sa_Lab2XYZ(sa_XYZNumber *w, double *out, double *in) {
double L = in[0], a = in[1], b = in[2];
double x,y,z,fx,fy,fz;
fy = (L + 16.0)/116.0;
fx = a/500.0 + fy;
fz = fy - b/200.0;
if (fy > 24.0/116.0)
y = pow(fy,3.0);
else
y = (fy - 16.0/116.0)/7.787036979;
if (fx > 24.0/116.0)
x = pow(fx,3.0);
else
x = (fx - 16.0/116.0)/7.787036979;
if (fz > 24.0/116.0)
z = pow(fz,3.0);
else
z = (fz - 16.0/116.0)/7.787036979;
out[0] = x * w->X;
out[1] = y * w->Y;
out[2] = z * w->Z;
}
void sa_Yxy2XYZ(double *out, double *in) {
double Y = in[0];
double x = in[1];
double y = in[2];
double z = 1.0 - x - y;
double sum;
if (y < 1e-9) {
out[0] = out[1] = out[2] = 0.0;
} else {
sum = Y/y;
out[0] = x * sum;
out[1] = Y;
out[2] = z * sum;
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - */
/* Object for computing RFC 1321 MD5 checksums. */
/* Derived from Colin Plumb's 1993 public domain code. */
/* Reset the checksum */
static void sa_MD5_reset(sa_MD5 *p) {
p->tlen = 0;
p->sum[0] = 0x67452301;
p->sum[1] = 0xefcdab89;
p->sum[2] = 0x98badcfe;
p->sum[3] = 0x10325476;
p->fin = 0;
}
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
#define MD5STEP(f, w, x, y, z, pp, xtra, s) \
data = (pp)[0] + ((pp)[3] << 24) + ((pp)[2] << 16) + ((pp)[1] << 8); \
w += f(x, y, z) + data + xtra; \
w = (w << s) | (w >> (32-s)); \
w += x;
/* Add another 64 bytes to the checksum */
static void sa_MD5_accume(sa_MD5 *p, ORD8 *in) {
ORD32 data, a, b, c, d;
a = p->sum[0];
b = p->sum[1];
c = p->sum[2];
d = p->sum[3];
MD5STEP(F1, a, b, c, d, in + (4 * 0), 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in + (4 * 1), 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in + (4 * 2), 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in + (4 * 3), 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in + (4 * 4), 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in + (4 * 5), 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in + (4 * 6), 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in + (4 * 7), 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in + (4 * 8), 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in + (4 * 9), 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in + (4 * 10), 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in + (4 * 11), 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in + (4 * 12), 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in + (4 * 13), 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in + (4 * 14), 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in + (4 * 15), 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in + (4 * 1), 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in + (4 * 6), 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in + (4 * 11), 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in + (4 * 0), 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in + (4 * 5), 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in + (4 * 10), 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in + (4 * 15), 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in + (4 * 4), 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in + (4 * 9), 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in + (4 * 14), 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in + (4 * 3), 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in + (4 * 8), 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in + (4 * 13), 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in + (4 * 2), 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in + (4 * 7), 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in + (4 * 12), 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in + (4 * 5), 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in + (4 * 8), 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in + (4 * 11), 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in + (4 * 14), 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in + (4 * 1), 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in + (4 * 4), 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in + (4 * 7), 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in + (4 * 10), 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in + (4 * 13), 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in + (4 * 0), 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in + (4 * 3), 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in + (4 * 6), 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in + (4 * 9), 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in + (4 * 12), 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in + (4 * 15), 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in + (4 * 2), 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in + (4 * 0), 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in + (4 * 7), 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in + (4 * 14), 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in + (4 * 5), 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in + (4 * 12), 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in + (4 * 3), 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in + (4 * 10), 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in + (4 * 1), 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in + (4 * 8), 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in + (4 * 15), 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in + (4 * 6), 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in + (4 * 13), 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in + (4 * 4), 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in + (4 * 11), 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in + (4 * 2), 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in + (4 * 9), 0xeb86d391, 21);
p->sum[0] += a;
p->sum[1] += b;
p->sum[2] += c;
p->sum[3] += d;
}
#undef F1
#undef F2
#undef F3
#undef F4
#undef MD5STEP
/* Add some bytes */
static void sa_MD5_add(sa_MD5 *p, ORD8 *ibuf, unsigned int len) {
unsigned int bs;
if (p->fin)
return; /* This is actually an error */
bs = p->tlen; /* Current bytes added */
p->tlen = bs + len; /* Update length after adding this buffer */
bs &= 0x3f; /* Bytes already in buffer */
/* Deal with any existing partial bytes in p->buf */
if (bs) {
ORD8 *np = (ORD8 *)p->buf + bs; /* Next free location in partial buffer */
bs = 64 - bs; /* Free space in partial buffer */
if (len < bs) { /* Not enought new to make a full buffer */
memmove(np, ibuf, len);
return;
}
memmove(np, ibuf, bs); /* Now got one full buffer */
sa_MD5_accume(p, np);
ibuf += bs;
len -= bs;
}
/* Deal with input data 64 bytes at a time */
while (len >= 64) {
sa_MD5_accume(p, ibuf);
ibuf += 64;
len -= 64;
}
/* Deal with any remaining bytes */
memmove(p->buf, ibuf, len);
}
/* Finalise the checksum and return the result. */
static void sa_MD5_get(sa_MD5 *p, ORD8 chsum[16]) {
int i;
unsigned count;
ORD32 bits1, bits0;
ORD8 *pp;
if (p->fin == 0) {
/* Compute number of bytes processed mod 64 */
count = p->tlen & 0x3f;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
pp = p->buf + count;
*pp++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64, allowing 8 bytes for length in bits. */
if (count < 8) { /* Not enough space for padding and length */
memset(pp, 0, count);
sa_MD5_accume(p, p->buf);
/* Now fill the next block with 56 bytes */
memset(p->buf, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(pp, 0, count - 8);
}
/* Compute number of bits */
bits1 = 0x7 & (p->tlen >> (32 - 3));
bits0 = p->tlen << 3;
/* Append number of bits */
p->buf[64 - 8] = bits0 & 0xff;
p->buf[64 - 7] = (bits0 >> 8) & 0xff;
p->buf[64 - 6] = (bits0 >> 16) & 0xff;
p->buf[64 - 5] = (bits0 >> 24) & 0xff;
p->buf[64 - 4] = bits1 & 0xff;
p->buf[64 - 3] = (bits1 >> 8) & 0xff;
p->buf[64 - 2] = (bits1 >> 16) & 0xff;
p->buf[64 - 1] = (bits1 >> 24) & 0xff;
sa_MD5_accume(p, p->buf);
p->fin = 1;
}
/* Return the result, lsb to msb */
pp = chsum;
for (i = 0; i < 4; i++) {
*pp++ = p->sum[i] & 0xff;
*pp++ = (p->sum[i] >> 8) & 0xff;
*pp++ = (p->sum[i] >> 16) & 0xff;
*pp++ = (p->sum[i] >> 24) & 0xff;
}
}
/* Delete the instance */
static void sa_MD5_del(sa_MD5 *p) {
/* This object */
if (p != NULL)
free(p);
}
/* Create a new MD5 checksumming object, with a reset checksum value */
/* Return it or NULL if there is an error */
sa_MD5 *new_sa_MD5() {
sa_MD5 *p;
if ((p = (sa_MD5 *)calloc(1,sizeof(sa_MD5))) == NULL)
return NULL;
p->reset = sa_MD5_reset;
p->add = sa_MD5_add;
p->get = sa_MD5_get;
p->del = sa_MD5_del;
p->reset(p);
return p;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - */
/* A sub-set of ludecomp code from numlib */
int sa_lu_decomp(double **a, int n, int *pivx, double *rip) {
int i, j;
double *rscale, RSCALE[10];
if (n <= 10)
rscale = RSCALE;
else
rscale = dvector(0, n-1);
for (i = 0; i < n; i++) {
double big;
for (big = 0.0, j=0; j < n; j++) {
double temp;
temp = fabs(a[i][j]);
if (temp > big)
big = temp;
}
if (fabs(big) <= DBL_MIN) {
if (rscale != RSCALE)
free_dvector(rscale, 0, n-1);
return 1;
}
rscale[i] = 1.0/big;
}
for (*rip = 1.0, j = 0; j < n; j++) {
double big;
int k, bigi = 0;
for (i = 0; i < j; i++) {
double sum;
sum = a[i][j];
for (k = 0; k < i; k++)
sum -= a[i][k] * a[k][j];
a[i][j] = sum;
}
for (big = 0.0, i = j; i < n; i++) {
double sum, temp;
sum = a[i][j];
for (k = 0; k < j; k++)
sum -= a[i][k] * a[k][j];
a[i][j] = sum;
temp = rscale[i] * fabs(sum);
if (temp >= big) {
big = temp;
bigi = i;
}
}
if (j != bigi) {
{
double *temp;
temp = a[bigi];
a[bigi] = a[j];
a[j] = temp;
}
*rip = -(*rip);
rscale[bigi] = rscale[j];
}
pivx[j] = bigi;
if (fabs(a[j][j]) <= DBL_MIN) {
if (rscale != RSCALE)
free_dvector(rscale, 0, n-1);
return 1;
}
if (j != (n-1)) {
double temp;
temp = 1.0/a[j][j];
for (i = j+1; i < n; i++)
a[i][j] *= temp;
}
}
if (rscale != RSCALE)
free_dvector(rscale, 0, n-1);
return 0;
}
void sa_lu_backsub(double **a, int n, int *pivx, double *b) {
int i, j;
int nvi;
for (nvi = -1, i = 0; i < n; i++) {
int px;
double sum;
px = pivx[i];
sum = b[px];
b[px] = b[i];
if (nvi >= 0) {
for (j = nvi; j < i; j++)
sum -= a[i][j] * b[j];
} else {
if (sum != 0.0)
nvi = i;
}
b[i] = sum;
}
for (i = (n-1); i >= 0; i--) {
double sum;
sum = b[i];
for (j = i+1; j < n; j++)
sum -= a[i][j] * b[j];
b[i] = sum/a[i][i];
}
}
int sa_lu_invert(double **a, int n) {
int i, j;
double rip;
int *pivx, PIVX[10];
double **y;
if (n <= 10)
pivx = PIVX;
else
pivx = ivector(0, n-1);
if (sa_lu_decomp(a, n, pivx, &rip)) {
if (pivx != PIVX)
free_ivector(pivx, 0, n-1);
return 1;
}
y = dmatrix(0, n-1, 0, n-1);
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
y[i][j] = a[i][j];
}
}
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
a[i][j] = 0.0;
a[i][i] = 1.0;
sa_lu_backsub(y, n, pivx, a[i]);
}
free_dmatrix(y, 0, n-1, 0, n-1);
if (pivx != PIVX)
free_ivector(pivx, 0, n-1);
return 0;
}
int sa_lu_psinvert(double **out, double **in, int m, int n) {
int rv = 0;
double **tr;
double **sq;
tr = dmatrix(0, n-1, 0, m-1);
matrix_trans(tr, in, m, n);
if (m > n) {
sq = dmatrix(0, n-1, 0, n-1);
if ((rv = matrix_mult(sq, n, n, tr, n, m, in, m, n)) == 0) {
if ((rv = sa_lu_invert(sq, n)) == 0) {
rv = matrix_mult(out, n, m, sq, n, n, tr, n, m);
}
}
free_dmatrix(sq, 0, n-1, 0, n-1);
} else {
sq = dmatrix(0, m-1, 0, m-1);
if ((rv = matrix_mult(sq, m, m, in, m, n, tr, n, m)) == 0) {
if ((rv = sa_lu_invert(sq, m)) == 0) {
rv = matrix_mult(out, n, m, tr, n, m, sq, m, m);
}
}
free_dmatrix(sq, 0, m-1, 0, m-1);
}
free_dmatrix(tr, 0, n-1, 0, m-1);
return rv;
}
#endif /* SALONEINSTLIB */
|