1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/*
* Author: Graeme W. Gill
* Date: 16/8/13
* Version: 1.00
*
* Copyright 2013, 2014 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUB LICENSE Version 3 :-
* see the License.txt file for licencing details.
*
*/
/* BT.1886 type input offset transfer curve, */
/* + general gamma + input + output offset curve support. */
#include <sys/types.h>
#include <string.h>
#include <ctype.h>
#ifdef __sun
#include <unistd.h>
#endif
#if defined(__IBMC__) && defined(_M_IX86)
#include <float.h>
#endif
#include "numlib.h"
#include "icc.h" /* definitions for this library */
#include "bt1886.h" /* definitions for this library */
#undef DEBUG
/* BT.1886 support */
/* This is both a EOTF curve, and a white point */
/* adjustment. */
/* Compute technical gamma from effective gamma in BT.1886 style */
/* Info for optimization */
typedef struct {
double wp; /* 100% input target */
double thyr; /* 50% input target */
double bp; /* 0% input target */
} gam_fits;
/* gamma + input offset function handed to powell() */
static double gam_fit(void *dd, double *v) {
gam_fits *gf = (gam_fits *)dd;
double gamma = v[0];
double a, b;
double rv = 0.0;
double t1, t2;
if (gamma < 0.0) {
rv += 100.0 * -gamma;
gamma = 1e-4;
}
t1 = pow(gf->bp, 1.0/gamma);
t2 = pow(gf->wp, 1.0/gamma);
b = t1/(t2 - t1); /* Offset */
a = pow(t2 - t1, gamma); /* Gain */
/* Comput 50% output for this technical gamma */
/* (All values are without output offset being added in) */
t1 = a * pow((0.5 + b), gamma);
t1 = t1 - gf->thyr;
rv += t1 * t1;
return rv;
}
/* Given the effective gamma and the output offset Y, */
/* return the technical gamma needed for the correct 50% response. */
static double xicc_tech_gamma(
double egamma, /* effective gamma needed */
double off, /* Output offset required */
double outoprop /* Prop. of offset to be accounted for on output */
) {
gam_fits gf;
double outo;
double op[1], sa[1], rv;
if (off <= 0.0) {
return egamma;
}
/* We set up targets without outo being added */
outo = off * outoprop; /* Offset acounted for in output */
gf.bp = off - outo; /* Black value for 0 % input */
gf.wp = 1.0 - outo; /* White value for 100% input */
gf.thyr = pow(0.5, egamma) - outo; /* Advetised 50% target */
op[0] = egamma;
sa[0] = 0.1;
if (powell(&rv, 1, op, sa, 1e-6, 500, gam_fit, (void *)&gf, NULL, NULL) != 0)
warning("Computing effective gamma and input offset is inaccurate");
return op[0];
}
/* Set the bt1886_info to a default do nothing state */
void bt1886_setnop(bt1886_info *p) {
icmXYZ2XYZ(p->w, icmD50);
p->ingo = 0.0;
p->outsc = 1.0;
p->outo = 0.0;
p->outL = 0.0;
p->tab[0] = 0.0;
p->tab[1] = 0.0;
}
/* Setup the bt1886_info for the given target black point, proportion of */
/* offset to be accounted for on output, and gamma. */
/* wp XYZ simply sets the L*a*b* reference */
/* Pure BT.1886 will have outopro = 0.0 and gamma = 2.4 */
void bt1886_setup(
bt1886_info *p,
icmXYZNumber *w, /* wp used for L*a*b* conversion */
double *XYZbp, /* normalised bp used for black offset and black point hue "bend" */
double outoprop, /* 0..1 proportion of output black point compensation */
double gamma, /* technical or effective gamma */
int effg /* nz if effective gamma, z if technical gamma */
) {
double Lab[3], ino, bkipow, wtipow;
icmXYZ2XYZ(p->w, *w);
#ifdef DEBUG
a1logd(g_log, 2, "bt1886_setup wp.Y %f, bp.Y %f, outprop %f, gamma %f, effg %d", p->w.Y, XYZbp[1], outoprop, gamma, effg);
#endif
if (effg) {
p->gamma = xicc_tech_gamma(gamma, XYZbp[1], outoprop);
#ifdef DEBUG
a1logd(g_log, 2, "bt1886_setup tgamma %f", p->gamma);
#endif
} else {
p->gamma = gamma;
}
icmXYZ2Lab(&p->w, Lab, XYZbp);
p->outL = Lab[0]; /* For bp blend comp. */
p->tab[0] = Lab[1]; /* a* b* correction needed */
p->tab[1] = Lab[2];
#ifdef DEBUG
a1logd(g_log, 2, "bt1886_setup bend Lab = %f %f %f", p->outL, p->tab[0], p->tab[1]);
#endif
if (XYZbp[1] < 0.0)
XYZbp[1] = 0.0;
p->outo = XYZbp[1] * outoprop; /* Offset acounted for in output */
ino = XYZbp[1] - p->outo; /* Balance of offset accounted for in input */
bkipow = pow(ino, 1.0/p->gamma); /* Input offset black to 1/pow */
wtipow = pow((1.0 - p->outo), 1.0/p->gamma); /* Input offset white to 1/pow */
#ifdef DEBUG
a1logd(g_log, 2, "bt1886_setup outo %f, ino %f, bkipow %f, wtipow %f", p->outo, ino, bkipow, wtipow);
#endif
p->ingo = bkipow/(wtipow - bkipow); /* non-linear Y that makes input offset */
/* proportion of black point */
p->outsc = pow(wtipow - bkipow, p->gamma); /* Scale to make input of 1 map to */
/* 1.0 - p->outo */
#ifdef DEBUG
a1logd(g_log, 2, "bt1886_setup ingo %f, outsc %f", p->ingo, p->outsc);
#endif
}
/* Apply BT.1886 eotf curve to the device RGB value */
/* to produce a linear light RGB. We pass xvYCC out of range values through. */
void bt1886_fwd_curve(bt1886_info *p, double *out, double *in) {
int j;
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 Dev RGB in %f %f %f, pow %f\n", in[0],in[1],in[2], p->gamma);
a1logd(g_log, 2, "outo %f, outsc %f, pow %f\n", p->outo, p->outsc, 1.0/p->gamma);
a1logd(g_log, 2, "ingo %f, pow %f, outsc %f, outo %f\n", p->ingo, p->gamma, p->outsc,p->outo);
#endif
for (j = 0; j < 3; j++) {
int neg = 0;
double vv = in[j];
if (vv < 0.0) { /* Allow for xvYCC */
neg = 1;
vv = -vv;
}
/* Apply input offset */
vv += p->ingo;
/* Apply power and scale */
if (vv > 0.0)
vv = p->outsc * pow(vv, p->gamma);
/* Apply output portion of offset */
vv += p->outo;
if (neg)
vv = -vv;
out[j] = vv;
}
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 linear RGB out %f %f %f\n", out[0],out[1],out[2]);
#endif
}
/* Apply inverse BT.1886 eotf curve to the linear light RGB to produce */
/* device RGB values. We pass xvYCC out of range values through. */
void bt1886_bwd_curve(bt1886_info *p, double *out, double *in) {
int j;
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 linear RGB in %f %f %f\n", in[0],in[1],in[2]);
a1logd(g_log, 2, "outo %f, outsc %f, pow %f, ingo %f\n", p->outo, p->outsc, 1.0/p->gamma,p->ingo);
#endif
for (j = 0; j < 3; j++) {
int neg = 0;
double vv = in[j];
if (vv < 0.0) { /* Allow for xvYCC */
neg = 1;
vv = -vv;
}
/* Un-apply output portion of offset */
vv -= p->outo;
/* Un-apply power and scale */
if (vv > 0.0)
vv = pow(vv/p->outsc, 1.0/p->gamma);
/* Un-apply input offset */
vv -= p->ingo;
if (neg)
vv = -vv;
out[j] = vv;
}
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 Dev RGB out %f %f %f\n", in[0],in[1],in[2]);
#endif
}
/* Apply BT.1886 processing black point hue adjustment to the XYZ value */
void bt1886_wp_adjust(bt1886_info *p, double *out, double *in) {
double vv;
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 XYZ wp adj. in %f %f %f\n", in[0],in[1],in[2]);
#endif
icmXYZ2Lab(&p->w, out, in);
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 Lab wp adj. in %f %f %f\n", out[0],out[1],out[2]);
#endif
/* Blend ab to required black point offset p->tab[] as L approaches black. */
vv = (out[0] - p->outL)/(100.0 - p->outL); /* 0 at bp, 1 at wp */
vv = 1.0 - vv;
if (vv < 0.0)
vv = 0.0;
else if (vv > 1.0)
vv = 1.0;
vv = pow(vv, 40.0);
out[1] += vv * p->tab[0];
out[2] += vv * p->tab[1];
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 Lab after wp adj. %f %f %f\n", out[0],out[1],out[2]);
#endif
icmLab2XYZ(&p->w, out, out);
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 XYZ after wp adj. %f %f %f\n", out[0],out[1],out[2]);
#endif
}
/* Apply inverse BT.1886 processing black point hue adjustment to the XYZ value */
void bt1886_inv_wp_adjust(bt1886_info *p, double *out, double *in) {
double vv;
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 XYZ inv. wp adj. in %f %f %f\n", in[0],in[1],in[2]);
#endif
icmXYZ2Lab(&p->w, out, in);
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 Lab inv. wp adj. in %f %f %f\n", out[0],out[1],out[2]);
#endif
/* Blend ab to required black point offset p->tab[] as L approaches black. */
vv = (out[0] - p->outL)/(100.0 - p->outL); /* 0 at bp, 1 at wp */
vv = 1.0 - vv;
if (vv < 0.0)
vv = 0.0;
else if (vv > 1.0)
vv = 1.0;
vv = pow(vv, 40.0);
out[1] -= vv * p->tab[0];
out[2] -= vv * p->tab[1];
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 Lab after inv. wp adj. %f %f %f\n", out[0],out[1],out[2]);
#endif
icmLab2XYZ(&p->w, out, out);
#ifdef DEBUG
a1logd(g_log, 2, "bt1886 XYZ after inv. wp adj. %f %f %f\n", out[0],out[1],out[2]);
#endif
}
|