
Mini-XML Programmers Manual
Version 2.7

MICHAEL R. SWEET

Mini-XML Programmers Manual, Version
2.7

Copyright © 2003-2011 by Michael R. Sweet

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Library General Public License, Version 2. A copy of
this license is included in Appendix A - Mini-XML License.

Table of Contents
Introduction...1

Organization of This Document....................3
Notation Conventions...................................4
Abbreviations..5
Other References...6
Legal Stuff..6

Building, Installing, and Packaging Mini-XML.......7
Compiling Mini-XML.....................................7

Compiling with Visual C++....................8
Compiling with Command-Line Tools...8

Installing Mini-XML.......................................8
Creating Mini-XML Packages.......................9

Getting Started with Mini-XML...............................11
The Basics..12
Nodes...12

CDATA Nodes.....................................14
Custom Nodes....................................14
Comment Nodes.................................14
Element Nodes....................................15
Integer Nodes......................................15
Opaque Nodes....................................15
Text Nodes..15
Processing Instruction Nodes.............16
Real Number Nodes............................16
XML Declaration Nodes......................17

Creating XML Documents..........................18
Loading XML..20
Saving XML..21

Controlling Line Wrapping...................23
Memory Management................................23
Finding and Iterating Nodes.......................24

Mini-XML Programmers Manual, Version 2.7

i

Table of Contents
Getting Started with Mini-XML

Finding Specific Nodes...............................27

More Mini-XML Programming Techniques...........29
Load Callbacks...29
Save Callbacks...31
Custom Data Types....................................34
Changing Node Values..............................38
Formatted Text...38
Indexing..39
SAX (Stream) Loading of Documents........41

Using the mxmldoc Utility......................................45
The Basics..45

Creating Man Pages...........................46
Creating Xcode Documentation

 Sets...47
Commenting Your Code.............................47
Titles, Sections, and Introductions.............49

Mini-XML License...51

Release Notes...71

Library Reference...71
Contents...72
Functions..73

mxmlAdd...73
mxmlDelete...74
mxmlElementDeleteAttr......................76
mxmlElementGetAttr...........................76
mxmlElementSetAttr...........................77
mxmlElementSetAttrf..........................77

Mini-XML Programmers Manual, Version 2.7

ii

Table of Contents
Library Reference

mxmlEntityAddCallback......................78
mxmlEntityGetName...........................79
mxmlEntityGetValue............................80
mxmlEntityRemoveCallback...............80
mxmlFindElement...............................81
mxmlFindPath.....................................81
mxmlGetCDATA..................................81
mxmlGetCustom.................................82
mxmlGetElement.................................83
mxmlGetFirstChild...............................83
mxmlGetInteger...................................83
mxmlGetLastChild...............................85
mxmlGetNextSibling............................85
mxmlGetOpaque.................................88
mxmlGetParent...................................88
mxmlGetPrevSibling............................89
mxmlGetReal......................................89
mxmlGetRefCount...............................90
mxmlGetText.......................................90
mxmlGetType......................................91
mxmlGetUserData...............................92
mxmlIndexDelete................................92
mxmlIndexEnum.................................93
mxmlIndexFind....................................94
mxmlIndexGetCount...........................94
mxmlIndexNew....................................95
mxmlIndexReset.................................96
mxmlLoadFd.......................................97
mxmlLoadFile......................................98
mxmlLoadString..................................98
mxmlNewCDATA................................99
mxmlNewCustom................................99

Mini-XML Programmers Manual, Version 2.7

iii

Table of Contents
Library Reference

mxmlNewElement.............................100
mxmlNewInteger...............................101
mxmlNewOpaque..............................101
mxmlNewReal...................................102
mxmlNewText...................................103
mxmlNewTextf..................................103
mxmlNewXML...................................104
mxmlRelease....................................105
mxmlRemove....................................105
mxmlRetain.......................................106
mxmlSAXLoadFd..............................106
mxmlSAXLoadFile.............................107
mxmlSAXLoadString.........................108
mxmlSaveAllocString........................108
mxmlSaveFd.....................................109
mxmlSaveFile....................................110
mxmlSaveString................................111
mxmlSetCDATA................................112
mxmlSetCustom................................113
mxmlSetCustomHandlers.................114
mxmlSetElement...............................115
mxmlSetErrorCallback......................115
mxmlSetInteger.................................116
mxmlSetOpaque...............................117
mxmlSetReal.....................................118
mxmlSetText.....................................119
mxmlSetTextf....................................120
mxmlSetUserData.............................120
mxmlSetWrapMargin.........................121
mxmlWalkNext..................................122
mxmlWalkPrev..................................122

Data Types...124

Mini-XML Programmers Manual, Version 2.7

iv

Table of Contents
Library Reference

mxml_custom_destroy_cb_t.............125
mxml_custom_load_cb_t..................126
mxml_custom_save_cb_t..................128
mxml_entity_cb_t..............................129
mxml_error_cb_t...............................130
mxml_index_t....................................131
mxml_load_cb_t................................131
mxml_node_t.....................................132
mxml_save_cb_t...............................133
mxml_sax_cb_t.................................134
mxml_sax_event_t............................134
mxml_type_t......................................135

Constants...135
mxml_sax_event_e...........................136
mxml_type_e.....................................137

XML Schema...138

Mini-XML Programmers Manual, Version 2.7

v

Mini-XML Programmers Manual, Version 2.7

vi

Introduction

This programmers manual describes Mini-XML
version 2.7, a small XML parsing library that you can
use to read and write XML data files in your C and
C++ applications.

Mini-XML was initially developed for the Gutenprint
project to replace the rather large and unwieldy
libxml2 library with something substantially smaller
and easier-to-use. It all began one morning in June of
2003 when Robert posted the following sentence to
the developer's list:

It's bad enough that we require
libxml2, but rolling our own XML
parser is a bit more than we can
handle.

Introduction 1

http://gutenprint.sf.net/

I then replied with:

Given the limited scope of what you
use in XML, it should be trivial to
code a mini-XML API in a few
hundred lines of code.

I took my own challenge and coded furiously for two
days to produced the initial public release of
Mini-XML, total lines of code: 696. Robert promptly
integrated Mini-XML into Gutenprint and removed
libxml2.

Thanks to lots of feedback and support from various
developers, Mini-XML has evolved since then to
provide a more complete XML implementation and
now stands at a whopping 3,965 lines of code,
compared to 103,893 lines of code for libxml2 version
2.6.9.

Aside from Gutenprint, Mini-XML is used for the
following projects/software applications:

CUPS•
ZynAddSubFX•

Please email me (mxml @ easysw . com) if you would
like your project added or removed from this list, or if
you have any comments/quotes you would like me to
publish about your experiences with Mini-XML.

Mini-XML Programmers Manual, Version 2.7

2 Introduction

http://www.cups.org/
http://zynaddsubfx.sourceforge.net

Organization of This Document

This manual is organized into the following chapters
and appendices:

Chapter 1, "Building, Installing, and
Packaging Mini-XML", provides compilation,
installation, and packaging instructions for
Mini-XML.

•

Chapter 2, "Getting Started with Mini-XML",
shows how to use the Mini-XML library in
your programs.

•

Chapter 3, "More Mini-XML Programming
Techniques", shows additional ways to use
the Mini-XML library.

•

Chapter 4, "Using the mxmldoc Utility",
describes how to use the mxmldoc(1)
program to generate software
documentation.

•

Appendix A, "Mini-XML License", provides
the terms and conditions for using and
distributing Mini-XML.

•

Appendix B, "Release Notes", lists the
changes in each release of Mini-XML.

•

Appendix C, "Library Reference", contains a
complete reference for Mini-XML, generated
by mxmldoc.

•

Appendix D, "XML Schema", shows the XML
schema used for the XML files produced by
mxmldoc.

•

Mini-XML Programmers Manual, Version 2.7

Organization of This Document 3

Notation Conventions

Various font and syntax conventions are used in this
guide. Examples and their meanings and uses are
explained below:

mxmldoc

mxmldoc(1)

The names of commands; the first mention
of a command or function in a chapter is
followed by a manual page section number.

/var
/etc/hosts

File and directory names.

Request ID is Printer-123

Screen output.

lp -d printer filename ENTER
Literal user input; special keys like ENTER are
in ALL CAPS.

12.3
Numbers in the text are written using the
period (.) to indicate the decimal point.

Mini-XML Programmers Manual, Version 2.7

4 Notation Conventions

Abbreviations

The following abbreviations are used throughout this
manual:

Gb
Gigabytes, or 1073741824 bytes

kb
Kilobytes, or 1024 bytes

Mb
Megabytes, or 1048576 bytes

UTF-8, UTF-16
Unicode Transformation Format, 8-bit or
16-bit

W3C
World Wide Web Consortium

XML
Extensible Markup Language

Mini-XML Programmers Manual, Version 2.7

Abbreviations 5

Other References

The Unicode Standard, Version 4.0, Addison-Wesley,
ISBN 0-321-18578-1

The definition of the Unicode character set
which is used for XML.

Extensible Markup Language (XML) 1.0 (Third
Edition)

The XML specification from the World Wide
Web Consortium (W3C)

Legal Stuff

The Mini-XML library is copyright 2003-2011 by
Michael Sweet. License terms are described in
Appendix A - Mini-XML License.

Mini-XML Programmers Manual, Version 2.7

6 Other References

http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/

Building,
Installing, and

Packaging
Mini-XML

This chapter describes how to build, install, and
package Mini-XML on your system from the source
archive. You will need an ANSI/ISO-C compatible
compiler to build Mini-XML - GCC works, as do most
vendors' C compilers. If you are building Mini-XML on
Windows, we recommend using the Visual C++
environment with the supplied solution file. For other
operating systems, you'll need a POSIX-compatible
shell and make program in addition to the C compiler.

Compiling Mini-XML

Mini-XML comes with both an autoconf-based
configure script and a Visual C++ solution that can be
used to compile the library and associated tools.

Building, Installing, and Packaging Mini-XML 7

Compiling with Visual C++

Open the mxml.sln solution in the vcnet folder.
Choose the desired build configuration, "Debug" (the
default) or "Release", and then choose Build Solution
from the Build menu.

Compiling with Command-Line Tools

Type the following command to configure the
Mini-XML source code for your system:

./configure ENTER

The default install prefix is /usr/local, which can be
overridden using the --prefix option:

./configure --prefix=/foo ENTER

Other configure options can be found using the
--help option:

./configure --help ENTER

Once you have configured the software, use the
make(1) program to do the build and run the test
program to verify that things are working, as follows:

make ENTER

Installing Mini-XML

If you are using Visual C++, copy the mxml.lib and
and mxml.h files to the Visual C++ lib and include
directories, respectively.

Mini-XML Programmers Manual, Version 2.7

8 Compiling with Visual C++

Otherwise, use the make command with the install
target to install Mini-XML in the configured directories:

make install ENTER

Creating Mini-XML Packages

Mini-XML includes two files that can be used to create
binary packages. The first file is mxml.spec which is
used by the rpmbuild(8) software to create Red Hat
Package Manager ("RPM") packages which are
commonly used on Linux. Since rpmbuild wants to
compile the software on its own, you can provide it
with the Mini-XML tar file to build the package:

rpmbuild -ta mxml-version.tar.gz ENTER

The second file is mxml.list which is used by the
epm(1) program to create software packages in a
variety of formats. The epm program is available from
the following URL:

http://www.epmhome.org/

Use the make command with the epm target to create
portable and native packages for your system:

make epm ENTER

The packages are stored in a subdirectory named dist
for your convenience. The portable packages utilize
scripts and tar files to install the software on the target
system. After extracting the package archive, use the
mxml.install script to install the software.

Mini-XML Programmers Manual, Version 2.7

Installing Mini-XML 9

http://www.epmhome.org/

The native packages will be in the local OS's native
format: RPM for Red Hat Linux, DPKG for Debian
Linux, PKG for Solaris, and so forth. Use the
corresponding commands to install the native
packages.

Mini-XML Programmers Manual, Version 2.7

10 Creating Mini-XML Packages

Getting Started
with Mini-XML

This chapter describes how to write programs that
use Mini-XML to access data in an XML file. Mini-XML
provides the following functionality:

Functions for creating and managing XML
documents in memory.

•

Reading of UTF-8 and UTF-16 encoded
XML files and strings.

•

Writing of UTF-8 encoded XML files and
strings.

•

Support for arbitrary element names,
attributes, and attribute values with no preset
limits, just available memory.

•

Support for integer, real, opaque ("CDATA"),
and text data types in "leaf" nodes.

•

"Find", "index", and "walk" functions for
easily accessing data in an XML document.

•

Getting Started with Mini-XML 11

Mini-XML doesn't do validation or other types of
processing on the data based upon schema files or
other sources of definition information, nor does it
support character entities other than those required
by the XML specification.

The Basics

Mini-XML provides a single header file which you
include:

 #include <mxml.h>

The Mini-XML library is included with your program
using the -lmxml option:

gcc -o myprogram myprogram.c -lmxml ENTER

If you have the pkg-config(1) software installed, you
can use it to determine the proper compiler and linker
options for your installation:

pkg-config --cflags mxml ENTER

pkg-config --libs mxml ENTER

Nodes

Every piece of information in an XML file is stored in
memory in "nodes". Nodes are defined by the
mxml_node_t structure. Each node has a typed value,
optional user data, a parent node, sibling nodes
(previous and next), and potentially child nodes.

For example, if you have an XML file like the
following:

Mini-XML Programmers Manual, Version 2.7

12 The Basics

 <?xml version="1.0" encoding="utf-8"?>
 <data>
 <node>val1</node>
 <node>val2</node>
 <node>val3</node>
 <group>
 <node>val4</node>
 <node>val5</node>
 <node>val6</node>
 </group>
 <node>val7</node>
 <node>val8</node>
 </data>

the node tree for the file would look like the following
in memory:

 ?xml version="1.0" encoding="utf-8"?
 |
 data
 |
 node - node - node - group - node - node
 | | | | | |
 val1 val2 val3 | val7 val8
 |
 node - node - node
 | | |
 val4 val5 val6

where "-" is a pointer to the sibling node and "|" is a
pointer to the first child or parent node.

The mxmlGetType function gets the type of a node, one
of MXML_CUSTOM, MXML_ELEMENT, MXML_INTEGER,
MXML_OPAQUE, MXML_REAL, or MXML_TEXT. The parent
and sibling nodes are accessed using the
mxmlGetParent, mxmlGetNext, and mxmlGetPrevious
functions. The mxmlGetUserData function gets any
user data associated with the node.

Mini-XML Programmers Manual, Version 2.7

Nodes 13

CDATA Nodes

CDATA (MXML_ELEMENT) nodes are created using the
mxmlNewCDATA function. The mxmlGetCDATA function
retrieves the CDATA string pointer for a node.

Note:

CDATA nodes are currently stored
in memory as special elements.
This will be changed in a future
major release of Mini-XML.

Custom Nodes

Custom (MXML_CUSTOM) nodes are created using the
mxmlNewCustom function or using a custom load
callback specified using the mxmlSetCustomHandlers
function. The mxmlGetCustom function retrieves the
custom value pointer for a node.

Comment Nodes

Comment (MXML_ELEMENT) nodes are created using the
mxmlNewElement function. The mxmlGetElement
function retrieves the comment string pointer for a
node, including the surrounding "!--" and "--"
characters.

Note:

Comment nodes are currently
stored in memory as special
elements. This will be changed in a
future major release of Mini-XML.

Mini-XML Programmers Manual, Version 2.7

14 CDATA Nodes

Element Nodes

Element (MXML_ELEMENT) nodes are created using the
mxmlNewElement function. The mxmlGetElement
function retrieves the element name, the
mxmlElementGetAttr function retrieves the value string
for a named attribute associated with the element,
and the mxmlGetFirstChild and mxmlGetLastChild
functions retrieve the first and last child nodes for the
element, respectively.

Integer Nodes

Integer (MXML_INTEGER) nodes are created using the
mxmlNewInteger function. The mxmlGetInteger
function retrieves the integer value for a node.

Opaque Nodes

Opaque (MXML_OPAQUE) nodes are created using the
mxmlNewOpaque function. The mxmlGetOpaque function
retrieves the opaque string pointer for a node.
Opaque nodes are like string nodes but preserve all
whitespace between nodes.

Text Nodes

Text (MXML_TEXT) nodes are created using the
mxmlNewText and mxmlNewTextf functions. Each text
node consists of a text string and (leading)
whitespace value - the mxmlGetText function retrieves
the text string pointer and whitespace value for a
node.

Mini-XML Programmers Manual, Version 2.7

Element Nodes 15

Processing Instruction Nodes

Processing instruction (MXML_ELEMENT) nodes are
created using the mxmlNewElement function. The
mxmlGetElement function retrieves the processing
instruction string for a node, including the surrounding
"?" characters.

Note:

Processing instruction nodes are
currently stored in memory as
special elements. This will be
changed in a future major release
of Mini-XML.

Real Number Nodes

Real number (MXML_REAL) nodes are created using the
mxmlNewReal function. The mxmlGetReal function
retrieves the CDATA string pointer for a node.

Mini-XML Programmers Manual, Version 2.7

16 Processing Instruction Nodes

XML Declaration Nodes

XML declaration (MXML_ELEMENT) nodes are created
using the mxmlNewXML function. The mxmlGetElement
function retrieves the XML declaration string for a
node, including the surrounding "?" characters.

Note:

XML declaration nodes are
currently stored in memory as
special elements. This will be
changed in a future major release
of Mini-XML.

Mini-XML Programmers Manual, Version 2.7

XML Declaration Nodes 17

Creating XML Documents

You can create and update XML documents in
memory using the various mxmlNew functions. The
following code will create the XML document
described in the previous section:

 mxml_node_t *xml; /* <?xml ... ?> */
 mxml_node_t *data; /* <data> */
 mxml_node_t *node; /* <node> */
 mxml_node_t *group; /* <group> */

 xml = mxmlNewXML("1.0");

 data = mxmlNewElement(xml, "data");

 node = mxmlNewElement(data, "node");
 mxmlNewText(node, 0, "val1");
 node = mxmlNewElement(data, "node");
 mxmlNewText(node, 0, "val2");
 node = mxmlNewElement(data, "node");
 mxmlNewText(node, 0, "val3");

 group = mxmlNewElement(data, "group");

 node = mxmlNewElement(group, "node");
 mxmlNewText(node, 0, "val4");
 node = mxmlNewElement(group, "node");
 mxmlNewText(node, 0, "val5");
 node = mxmlNewElement(group, "node");
 mxmlNewText(node, 0, "val6");

 node = mxmlNewElement(data, "node");
 mxmlNewText(node, 0, "val7");
 node = mxmlNewElement(data, "node");
 mxmlNewText(node, 0, "val8");

Mini-XML Programmers Manual, Version 2.7

18 Creating XML Documents

We start by creating the declaration node common to
all XML files using the mxmlNewXML function:

 xml = mxmlNewXML("1.0");

We then create the <data> node used for this
document using the mxmlNewElement function. The first
argument specifies the parent node (xml) while the
second specifies the element name (data):

 data = mxmlNewElement(xml, "data");

Each <node>...</node> in the file is created using the
mxmlNewElement and mxmlNewText functions. The first
argument of mxmlNewText specifies the parent node
(node). The second argument specifies whether
whitespace appears before the text - 0 or false in this
case. The last argument specifies the actual text to
add:

 node = mxmlNewElement(data, "node");
 mxmlNewText(node, 0, "val1");

The resulting in-memory XML document can then be
saved or processed just like one loaded from disk or a
string.

Mini-XML Programmers Manual, Version 2.7

Creating XML Documents 19

Loading XML

You load an XML file using the mxmlLoadFile function:

 FILE *fp;
 mxml_node_t *tree;

 fp = fopen("filename.xml", "r");
 tree = mxmlLoadFile(NULL, fp,
 MXML_TEXT_CALLBACK);
 fclose(fp);

The first argument specifies an existing XML parent
node, if any. Normally you will pass NULL for this
argument unless you are combining multiple XML
sources. The XML file must contain a complete XML
document including the ?xml element if the parent
node is NULL.

The second argument specifies the stdio file to read
from, as opened by fopen() or popen(). You can also
use stdin if you are implementing an XML filter
program.

The third argument specifies a callback function which
returns the value type of the immediate children for a
new element node: MXML_CUSTOM, MXML_IGNORE,
MXML_INTEGER, MXML_OPAQUE, MXML_REAL, or MXML_TEXT.
Load callbacks are described in detail in Chapter 3.
The example code uses the MXML_TEXT_CALLBACK
constant which specifies that all data nodes in the
document contain whitespace-separated text values.
Other standard callbacks include
MXML_IGNORE_CALLBACK, MXML_INTEGER_CALLBACK,
MXML_OPAQUE_CALLBACK, and MXML_REAL_CALLBACK.

Mini-XML Programmers Manual, Version 2.7

20 Loading XML

The mxmlLoadString function loads XML node trees
from a string:

 char buffer[8192];
 mxml_node_t *tree;

 ...
 tree = mxmlLoadString(NULL, buffer,
 MXML_TEXT_CALLBACK);

The first and third arguments are the same as used
for mxmlLoadFile(). The second argument specifies
the string or character buffer to load and must be a
complete XML document including the ?xml element if
the parent node is NULL.

Saving XML

You save an XML file using the mxmlSaveFile
function:

 FILE *fp;
 mxml_node_t *tree;

 fp = fopen("filename.xml", "w");
 mxmlSaveFile(tree, fp, MXML_NO_CALLBACK);
 fclose(fp);

The first argument is the XML node tree to save. It
should normally be a pointer to the top-level ?xml
node in your XML document.

The second argument is the stdio file to write to, as
opened by fopen() or popen(). You can also use
stdout if you are implementing an XML filter program.

Mini-XML Programmers Manual, Version 2.7

Saving XML 21

The third argument is the whitespace callback to use
when saving the file. Whitespace callbacks are
covered in detail in Chapter 3. The previous example
code uses the MXML_NO_CALLBACK constant to specify
that no special whitespace handling is required.

The mxmlSaveAllocString, and mxmlSaveString
functions save XML node trees to strings:

 char buffer[8192];
 char *ptr;
 mxml_node_t *tree;

 ...
 mxmlSaveString(tree, buffer, sizeof(buffer),
 MXML_NO_CALLBACK);

 ...
 ptr = mxmlSaveAllocString(tree, MXML_NO_CALLBACK);

The first and last arguments are the same as used for
mxmlSaveFile(). The mxmlSaveString function takes
pointer and size arguments for saving the XML
document to a fixed-size buffer, while
mxmlSaveAllocString() returns a string buffer that
was allocated using malloc().

Mini-XML Programmers Manual, Version 2.7

22 Saving XML

Controlling Line Wrapping

When saving XML documents, Mini-XML normally
wraps output lines at column 75 so that the text is
readable in terminal windows. The mxmlSetWrapMargin
function overrides the default wrap margin:

 /* Set the margin to 132 columns */
 mxmlSetWrapMargin(132);

 /* Disable wrapping */
 mxmlSetWrapMargin(0);

Memory Management

Once you are done with the XML data, use the
mxmlDelete function to recursively free the memory
that is used for a particular node or the entire tree:

 mxmlDelete(tree);

You can also use reference counting to manage
memory usage. The mxmlRetain and mxmlRelease
functions increment and decrement a node's use
count, respectively. When the use count goes to 0,
mxmlRelease will automatically call mxmlDelete to
actually free the memory used by the node tree. New
nodes automatically start with a use count of 1.

Mini-XML Programmers Manual, Version 2.7

Controlling Line Wrapping 23

Finding and Iterating Nodes

The mxmlWalkPrev and mxmlWalkNextfunctions can be
used to iterate through the XML node tree:

 mxml_node_t *node;

 node = mxmlWalkPrev(current, tree,
 MXML_DESCEND);

 node = mxmlWalkNext(current, tree,
 MXML_DESCEND);

In addition, you can find a named element/node using
the mxmlFindElement function:

 mxml_node_t *node;

 node = mxmlFindElement(tree, tree, "name",
 "attr", "value",
 MXML_DESCEND);

The name, attr, and value arguments can be passed
as NULL to act as wildcards, e.g.:

 /* Find the first "a" element */
 node = mxmlFindElement(tree, tree, "a",
 NULL, NULL,
 MXML_DESCEND);

 /* Find the first "a" element with "href"
 attribute */
 node = mxmlFindElement(tree, tree, "a",
 "href", NULL,
 MXML_DESCEND);

Mini-XML Programmers Manual, Version 2.7

24 Finding and Iterating Nodes

 /* Find the first "a" element with "href"
 to a URL */
 node = mxmlFindElement(tree, tree, "a",
 "href",
 "http://www.easysw.com/",
 MXML_DESCEND);

 /* Find the first element with a "src"
 attribute */
 node = mxmlFindElement(tree, tree, NULL,
 "src", NULL,
 MXML_DESCEND);

 /* Find the first element with a "src"
 = "foo.jpg" */
 node = mxmlFindElement(tree, tree, NULL,
 "src", "foo.jpg",
 MXML_DESCEND);

You can also iterate with the same function:

 mxml_node_t *node;

 for (node = mxmlFindElement(tree, tree,
 "name",
 NULL, NULL,
 MXML_DESCEND);
 node != NULL;
 node = mxmlFindElement(node, tree,
 "name",
 NULL, NULL,
 MXML_DESCEND))
 {
 ... do something ...
 }

Mini-XML Programmers Manual, Version 2.7

Finding and Iterating Nodes 25

The MXML_DESCEND argument can actually be one of
three constants:

MXML_NO_DESCEND means to not to look at any
child nodes in the element hierarchy, just
look at siblings at the same level or parent
nodes until the top node or top-of-tree is
reached.

The previous node from "group" would be
the "node" element to the left, while the next
node from "group" would be the "node"
element to the right.

•

MXML_DESCEND_FIRST means that it is OK to
descend to the first child of a node, but not to
descend further when searching. You'll
normally use this when iterating through
direct children of a parent node, e.g. all of
the "node" and "group" elements under the
"?xml" parent node in the example above.

This mode is only applicable to the search
function; the walk functions treat this as
MXML_DESCEND since every call is a first time.

•

MXML_DESCEND means to keep descending
until you hit the bottom of the tree. The
previous node from "group" would be the
"val3" node and the next node would be the
first node element under "group".

If you were to walk from the root node "?xml"
to the end of the tree with mxmlWalkNext(),
the order would be:

•

Mini-XML Programmers Manual, Version 2.7

26 Finding and Iterating Nodes

?xml data node val1 node val2 node val3
group node val4 node val5 node val6 node
val7 node val8

If you started at "val8" and walked using
mxmlWalkPrev(), the order would be
reversed, ending at "?xml".

Finding Specific Nodes

You can find specific nodes in the tree using the
mxmlFindPath, for example:

 mxml_node_t *value;

 value = mxmlFindPath(tree, "path/to/*/foo/bar");

The second argument is a "path" to the parent node.
Each component of the path is separated by a slash
(/) and represents a named element in the document
tree or a wildcard (*) path representing 0 or more
intervening nodes.

Mini-XML Programmers Manual, Version 2.7

Finding Specific Nodes 27

Mini-XML Programmers Manual, Version 2.7

28 Finding Specific Nodes

More Mini-XML
Programming

Techniques

This chapter shows additional ways to use the
Mini-XML library in your programs.

Load Callbacks

Chapter 2 introduced the mxmlLoadFile() and
mxmlLoadString() functions. The last argument to
these functions is a callback function which is used to
determine the value type of each data node in an
XML document.

Mini-XML defines several standard callbacks for
simple XML data files:

MXML_INTEGER_CALLBACK - All data nodes
contain whitespace-separated integers.

•

More Mini-XML Programming Techniques 29

MXML_OPAQUE_CALLBACK - All data nodes
contain opaque strings ("CDATA").

•

MXML_REAL_CALLBACK - All data nodes contain
whitespace-separated floating-point
numbers.

•

MXML_TEXT_CALLBACK - All data nodes contain
whitespace-separated strings.

•

You can provide your own callback functions for more
complex XML documents. Your callback function will
receive a pointer to the current element node and
must return the value type of the immediate children
for that element node: MXML_INTEGER, MXML_OPAQUE,
MXML_REAL, or MXML_TEXT. The function is called after
the element and its attributes have been read, so you
can look at the element name, attributes, and attribute
values to determine the proper value type to return.

The following callback function looks for an attribute
named "type" or the element name to determine the
value type for its child nodes:

 mxml_type_t
 type_cb(mxml_node_t *node)
 {
 const char *type;

 /*
 * You can lookup attributes and/or use the
 * element name, hierarchy, etc...
 */

 type = mxmlElementGetAttr(node, "type");
 if (type == NULL)
 type = mxmlGetElement(node);

 if (!strcmp(type, "integer"))
 return (MXML_INTEGER);
 else if (!strcmp(type, "opaque"))

Mini-XML Programmers Manual, Version 2.7

30 Load Callbacks

 return (MXML_OPAQUE);
 else if (!strcmp(type, "real"))
 return (MXML_REAL);
 else
 return (MXML_TEXT);
 }

To use this callback function, simply use the name
when you call any of the load functions:

 FILE *fp;
 mxml_node_t *tree;

 fp = fopen("filename.xml", "r");
 tree = mxmlLoadFile(NULL, fp, type_cb);
 fclose(fp);

Save Callbacks

Chapter 2 also introduced the mxmlSaveFile(),
mxmlSaveString(), and mxmlSaveAllocString()
functions. The last argument to these functions is a
callback function which is used to automatically insert
whitespace in an XML document.

Your callback function will be called up to four times
for each element node with a pointer to the node and
a "where" value of MXML_WS_BEFORE_OPEN,
MXML_WS_AFTER_OPEN, MXML_WS_BEFORE_CLOSE, or
MXML_WS_AFTER_CLOSE. The callback function should
return NULL if no whitespace should be added and the
string to insert (spaces, tabs, carriage returns, and
newlines) otherwise.

The following whitespace callback can be used to add
whitespace to XHTML output to make it more
readable in a standard text editor:

Mini-XML Programmers Manual, Version 2.7

Save Callbacks 31

 const char *
 whitespace_cb(mxml_node_t *node,
 int where)
 {
 const char *name;

 /*
 * We can conditionally break to a new line
 * before or after any element. These are
 * just common HTML elements...
 */

 name = mxmlGetElement(node);

 if (!strcmp(name, "html") ||
 !strcmp(name, "head") ||
 !strcmp(name, "body") ||
 !strcmp(name, "pre") ||
 !strcmp(name, "p") ||
 !strcmp(name, "h1") ||
 !strcmp(name, "h2") ||
 !strcmp(name, "h3") ||
 !strcmp(name, "h4") ||
 !strcmp(name, "h5") ||
 !strcmp(name, "h6"))
 {
 /*
 * Newlines before open and after
 * close...
 */

 if (where == MXML_WS_BEFORE_OPEN ||
 where == MXML_WS_AFTER_CLOSE)
 return ("\n");
 }
 else if (!strcmp(name, "dl") ||
 !strcmp(name, "ol") ||
 !strcmp(name, "ul"))
 {
 /*
 * Put a newline before and after list
 * elements...
 */

Mini-XML Programmers Manual, Version 2.7

32 Save Callbacks

 return ("\n");
 }
 else if (!strcmp(name, "dd") ||
 !strcmp(name, "dt") ||
 !strcmp(name, "li"))
 {
 /*
 * Put a tab before 's, * <dd>'s,
 * and <dt>'s, and a newline after them...
 */

 if (where == MXML_WS_BEFORE_OPEN)
 return ("\t");
 else if (where == MXML_WS_AFTER_CLOSE)
 return ("\n");
 }

 /*
 * Return NULL for no added whitespace...
 */

 return (NULL);
 }

To use this callback function, simply use the name
when you call any of the save functions:

 FILE *fp;
 mxml_node_t *tree;

 fp = fopen("filename.xml", "w");
 mxmlSaveFile(tree, fp, whitespace_cb);
 fclose(fp);

Mini-XML Programmers Manual, Version 2.7

Save Callbacks 33

Custom Data Types

Mini-XML supports custom data types via global load
and save callbacks. Only a single set of callbacks can
be active at any time, however your callbacks can
store additional information in order to support
multiple custom data types as needed. The
MXML_CUSTOM node type identifies custom data nodes.

The load callback receives a pointer to the current
data node and a string of opaque character data from
the XML source with character entities converted to
the corresponding UTF-8 characters. For example, if
we wanted to support a custom date/time type whose
value is encoded as "yyyy-mm-ddThh:mm:ssZ" (ISO
format), the load callback would look like the
following:

 typedef struct
 {
 unsigned year, /* Year */
 month, /* Month */
 day, /* Day */
 hour, /* Hour */
 minute, /* Minute */
 second; /* Second */
 time_t unix; /* UNIX time */
 } iso_date_time_t;

 int
 load_custom(mxml_node_t *node,
 const char *data)
 {
 iso_date_time_t *dt;
 struct tm tmdata;

 /*
 * Allocate data structure...
 */

Mini-XML Programmers Manual, Version 2.7

34 Custom Data Types

 dt = calloc(1, sizeof(iso_date_time_t));

 /*
 * Try reading 6 unsigned integers from the
 * data string...
 */

 if (sscanf(data, "%u-%u-%uT%u:%u:%uZ",
 &(dt->year), &(dt->month),
 &(dt->day), &(dt->hour),
 &(dt->minute),
 &(dt->second)) != 6)
 {
 /*
 * Unable to read numbers, free the data
 * structure and return an error...
 */

 free(dt);

 return (-1);
 }

 /*
 * Range check values...
 */

 if (dt->month <1 || dt->month > 12 ||
 dt->day <1 || dt->day > 31 ||
 dt->hour <0 || dt->hour > 23 ||
 dt->minute <0 || dt->minute > 59 ||
 dt->second <0 || dt->second > 59)
 {
 /*
 * Date information is out of range...
 */

 free(dt);

 return (-1);
 }

Mini-XML Programmers Manual, Version 2.7

Custom Data Types 35

 /*
 * Convert ISO time to UNIX time in
 * seconds...
 */

 tmdata.tm_year = dt->year - 1900;
 tmdata.tm_mon = dt->month - 1;
 tmdata.tm_day = dt->day;
 tmdata.tm_hour = dt->hour;
 tmdata.tm_min = dt->minute;
 tmdata.tm_sec = dt->second;

 dt->unix = gmtime(&tmdata);

 /*
 * Assign custom node data and destroy
 * function pointers...
 */

 mxmlSetCustom(node, data, destroy);

 /*
 * Return with no errors...
 */

 return (0);
 }

The function itself can return 0 on success or -1 if it is
unable to decode the custom data or the data
contains an error. Custom data nodes contain a void
pointer to the allocated custom data for the node and
a pointer to a destructor function which will free the
custom data when the node is deleted.

Mini-XML Programmers Manual, Version 2.7

36 Custom Data Types

The save callback receives the node pointer and
returns an allocated string containing the custom data
value. The following save callback could be used for
our ISO date/time type:

 char *
 save_custom(mxml_node_t *node)
 {
 char data[255];
 iso_date_time_t *dt;

 dt = (iso_date_time_t *)mxmlGetCustom(node);

 snprintf(data, sizeof(data),
 "%04u-%02u-%02uT%02u:%02u:%02uZ",
 dt->year, dt->month, dt->day,
 dt->hour, dt->minute, dt->second);

 return (strdup(data));
 }

You register the callback functions using the
mxmlSetCustomHandlers() function:

 mxmlSetCustomHandlers(load_custom,
save_custom);

Mini-XML Programmers Manual, Version 2.7

Custom Data Types 37

Changing Node Values

All of the examples so far have concentrated on
creating and loading new XML data nodes. Many
applications, however, need to manipulate or change
the nodes during their operation, so Mini-XML
provides functions to change node values safely and
without leaking memory.

Existing nodes can be changed using the
mxmlSetElement(), mxmlSetInteger(),
mxmlSetOpaque(), mxmlSetReal(), mxmlSetText(), and
mxmlSetTextf() functions. For example, use the
following function call to change a text node to contain
the text "new" with leading whitespace:

 mxml_node_t *node;

 mxmlSetText(node, 1, "new");

Formatted Text

The mxmlNewTextf() and mxmlSetTextf() functions
create and change text nodes, respectively, using
printf-style format strings and arguments. For
example, use the following function call to create a
new text node containing a constructed filename:

 mxml_node_t *node;

 node = mxmlNewTextf(node, 1, "%s/%s",
 path, filename);

Mini-XML Programmers Manual, Version 2.7

38 Changing Node Values

Indexing

Mini-XML provides functions for managing indices of
nodes. The current implementation provides the same
functionality as mxmlFindElement(). The advantage of
using an index is that searching and enumeration of
elements is significantly faster. The only disadvantage
is that each index is a static snapshot of the XML
document, so indices are not well suited to XML data
that is updated more often than it is searched. The
overhead of creating an index is approximately equal
to walking the XML document tree. Nodes in the index
are sorted by element name and attribute value.

Indices are stored in mxml_index_t structures. The
mxmlIndexNew() function creates a new index:

 mxml_node_t *tree;
 mxml_index_t *ind;

 ind = mxmlIndexNew(tree, "element",
 "attribute");

The first argument is the XML node tree to index.
Normally this will be a pointer to the ?xml element.

The second argument contains the element to index;
passing NULL indexes all element nodes
alphabetically.

The third argument contains the attribute to index;
passing NULL causes only the element name to be
indexed.

Once the index is created, the mxmlIndexEnum(),
mxmlIndexFind(), and mxmlIndexReset() functions

Mini-XML Programmers Manual, Version 2.7

Indexing 39

are used to access the nodes in the index. The
mxmlIndexReset() function resets the "current" node
pointer in the index, allowing you to do new searches
and enumerations on the same index. Typically you
will call this function prior to your calls to
mxmlIndexEnum() and mxmlIndexFind().

The mxmlIndexEnum() function enumerates each of
the nodes in the index and can be used in a loop as
follows:

 mxml_node_t *node;

 mxmlIndexReset(ind);

 while ((node = mxmlIndexEnum(ind)) != NULL)
 {
 // do something with node
 }

The mxmlIndexFind() function locates the next
occurrence of the named element and attribute value
in the index. It can be used to find all matching
elements in an index, as follows:

 mxml_node_t *node;

 mxmlIndexReset(ind);

 while ((node = mxmlIndexFind(ind, "element",
 "attr-value"))
 != NULL)
 {
 // do something with node
 }

The second and third arguments represent the
element name and attribute value, respectively. A
NULL pointer is used to return all elements or attributes

Mini-XML Programmers Manual, Version 2.7

40 Indexing

in the index. Passing NULL for both the element name
and attribute value is equivalent to calling
mxmlIndexEnum.

When you are done using the index, delete it using
the mxmlIndexDelete() function:

 mxmlIndexDelete(ind);

SAX (Stream) Loading of
Documents

Mini-XML supports an implementation of the Simple
API for XML (SAX) which allows you to load and
process an XML document as a stream of nodes.
Aside from allowing you to process XML documents
of any size, the Mini-XML implementation also allows
you to retain portions of the document in memory for
later processing.

The mxmlSAXLoadFd, mxmlSAXLoadFile, and
mxmlSAXLoadString functions provide the SAX loading
APIs. Each function works like the corresponding
mxmlLoad function but uses a callback to process each
node as it is read.

The callback function receives the node, an event
code, and a user data pointer you supply:

 void
 sax_cb(mxml_node_t *node,
 mxml_sax_event_t event,
 void *data)
 {
 ... do something ...
 }

Mini-XML Programmers Manual, Version 2.7

SAX (Stream) Loading of Documents 41

The event will be one of the following:

MXML_SAX_CDATA - CDATA was just read•
MXML_SAX_COMMENT - A comment was just
read

•

MXML_SAX_DATA - Data (custom, integer,
opaque, real, or text) was just read

•

MXML_SAX_DIRECTIVE - A processing directive
was just read

•

MXML_SAX_ELEMENT_CLOSE - A close element
was just read (</element>)

•

MXML_SAX_ELEMENT_OPEN - An open element
was just read (<element>)

•

Elements are released after the close element is
processed. All other nodes are released after they are
processed. The SAX callback can retain the node
using the mxmlRetain function. For example, the
following SAX callback will retain all nodes, effectively
simulating a normal in-memory load:

 void
 sax_cb(mxml_node_t *node,
 mxml_sax_event_t event,
 void *data)
 {
 if (event != MXML_SAX_ELEMENT_CLOSE)
 mxmlRetain(node);
 }

More typically the SAX callback will only retain a small
portion of the document that is needed for
post-processing. For example, the following SAX
callback will retain the title and headings in an XHTML
file. It also retains the (parent) elements like <html>,
<head>, and <body>, and processing directives like
<?xml ... ?> and <!DOCTYPE ... >:

Mini-XML Programmers Manual, Version 2.7

42 SAX (Stream) Loading of Documents

 void
 sax_cb(mxml_node_t *node,
 mxml_sax_event_t event,
 void *data)
 {
 if (event == MXML_SAX_ELEMENT_OPEN)
 {
 /*
 * Retain headings and titles...
 */

 char *name = mxmlGetElement(node);

 if (!strcmp(name, "html") ||
 !strcmp(name, "head") ||
 !strcmp(name, "title") ||
 !strcmp(name, "body") ||
 !strcmp(name, "h1") ||
 !strcmp(name, "h2") ||
 !strcmp(name, "h3") ||
 !strcmp(name, "h4") ||
 !strcmp(name, "h5") ||
 !strcmp(name, "h6"))
 mxmlRetain(node);
 }
 else if (event == MXML_SAX_DIRECTIVE)
 mxmlRetain(node);
 else if (event == MXML_SAX_DATA)
 {
 if (mxmlGetRefCount(mxmlGetParent(node)) > 1)
 {
 /*
 * If the parent was retained, then retain
 * this data node as well.
 */

 mxmlRetain(node);
 }
 }
 }

The resulting skeleton document tree can then be

Mini-XML Programmers Manual, Version 2.7

SAX (Stream) Loading of Documents 43

searched just like one loaded using the mxmlLoad
functions. For example, a filter that reads an XHTML
document from stdin and then shows the title and
headings in the document would look like:

 mxml_node_t *doc, *title, *body, *heading;

 doc = mxmlSAXLoadFd(NULL, 0,
 MXML_TEXT_CALLBACK,

sax_cb, NULL);

 title = mxmlFindElement(doc, doc, "title",
 NULL, NULL,
 MXML_DESCEND);

 if (title)
 print_children(title);

 body = mxmlFindElement(doc, doc, "body",
 NULL, NULL,
 MXML_DESCEND);

 if (body)
 {
 for (heading = mxmlGetFirstChild(body);
 heading;
 heading = mxmlGetNextSibling(heading))
 print_children(heading);
 }

Mini-XML Programmers Manual, Version 2.7

44 SAX (Stream) Loading of Documents

Using the
mxmldoc Utility

This chapter describes how to use mxmldoc(1)
program to automatically generate documentation
from C and C++ source files.

The Basics

Originally developed to generate the Mini-XML and
CUPS API documentation, mxmldoc is now a
general-purpose utility which scans C and C++ source
files to produce HTML and man page documentation
along with an XML file representing the functions,
types, and definitions in those source files. Unlike
popular documentation generators like Doxygen or
Javadoc, mxmldoc uses in-line comments rather than
comment headers, allowing for more "natural" code
documentation.

Using the mxmldoc Utility 45

By default, mxmldoc produces HTML documentation.
For example, the following command will scan all of
the C source and header files in the current directory
and produce a HTML documentation file called
filename.html:

mxmldoc *.h *.c >filename.html ENTER

You can also specify an XML file to create which
contains all of the information from the source files.
For example, the following command creates an XML
file called filename.xml in addition to the HTML file:

mxmldoc filename.xml *.h *.c >filename.html ENTER

The --no-output option disables the normal HTML
output:

mxmldoc --no-output filename.xml *.h *.c ENTER

You can then run mxmldoc again with the XML file
alone to generate the HTML documentation:

mxmldoc filename.xml >filename.html ENTER

Creating Man Pages

The --man filename option tells mxmldoc to create a
man page instead of HTML documentation, for
example:

mxmldoc --man filename filename.xml \

 >filename.man ENTER

mxmldoc --man filename *.h *.c \

 >filename.man ENTER

Mini-XML Programmers Manual, Version 2.7

46 The Basics

Creating Xcode Documentation Sets

The --docset directory.docset option tells mxmldoc
to create an Xcode documentation set containing the
HTML documentation, for example:

mxmldoc --docset foo.docset *.h *.c foo.xml ENTER

Xcode documentation sets can only be built on Mac
OS X with Xcode 3.0 or higher installed.

Commenting Your Code

As noted previously, mxmldoc looks for in-line
comments to describe the functions, types, and
constants in your code. Mxmldoc will document all
public names it finds in your source files - any names
starting with the underscore character (_) or names
that are documented with the @private@ directive are
treated as private and are not documented.

Comments appearing directly before a function or
type definition are used to document that function or
type. Comments appearing after argument, definition,
return type, or variable declarations are used to
document that argument, definition, return type, or
variable. For example, the following code excerpt
defines a key/value structure and a function that
creates a new instance of that structure:

 /* A key/value pair. This is used with the
 dictionary structure. */

 struct keyval
 {
 char *key; /* Key string */
 char *val; /* Value string */

Mini-XML Programmers Manual, Version 2.7

Creating Xcode Documentation Sets 47

 };

 /* Create a new key/value pair. */

 struct keyval * /* New key/value pair */
 new_keyval(
 const char *key, /* Key string */
 const char *val) /* Value string */
 {
 ...
 }

Mxmldoc also knows to remove extra asterisks (*) from
the comment string, so the comment string:

 /*
 * Compute the value of PI.
 *
 * The function connects to an Internet server
 * that streams audio of mathematical monks
 * chanting the first 100 digits of PI.
 */

will be shown as:

 Compute the value of PI.

 The function connects to an Internet server
 that streams audio of mathematical monks
 chanting the first 100 digits of PI.

Comments can also include the following special
@name ...@ directive strings:

@deprecated@ - flags the item as deprecated
to discourage its use

•

@private@ - flags the item as private so it will
not be included in the documentation

•

@since ...@ - flags the item as new since a
particular release. The text following the

•

Mini-XML Programmers Manual, Version 2.7

48 Commenting Your Code

@since up to the closing @ is highlighted in
the generated documentation, e.g. @since
Mini-XML 2.7@.

Titles, Sections, and Introductions

Mxmldoc also provides options to set the title, section,
and introduction text for the generated
documentation. The --title text option specifies the
title for the documentation. The title string is usually
put in quotes:

mxmldoc filename.xml \
 --title "My Famous Documentation" \

 >filename.html ENTER

The --section name option specifies the section for
the documentation. For HTML documentation, the
name is placed in a HTML comment such as:

 <!-- SECTION: name -->

For man pages, the section name is usually just a
number ("3"), or a number followed by a vendor name
("3acme"). The section name is used in the .TH
directive in the man page:

 .TH mylibrary 3acme "My Title" ...

The default section name for man page output is "3".
There is no default section name for HTML output.

Finally, the --intro filename option specifies a file to
embed after the title and section but before the
generated documentation. For HTML documentation,
the file must consist of valid HTML without the usual

Mini-XML Programmers Manual, Version 2.7

Titles, Sections, and Introductions 49

DOCTYPE, html, and body elements. For man page
documentation, the file must consist of valid nroff(1)
text.

Mini-XML Programmers Manual, Version 2.7

50 Titles, Sections, and Introductions

Mini-XML License

The Mini-XML library and included programs are
provided under the terms of the GNU Library General
Public License version 2 (LGPL2) with the following
exceptions:

1. Static linking of applications to the Mini-XML library
does not constitute a derivative work and does not
require the author to provide source code for the
application, use the shared Mini-XML libraries, or link
their applications against a user-supplied version of
Mini-XML.

If you link the application to a modified version of
Mini-XML, then the changes to Mini-XML must be
provided under the terms of the LGPL2 in sections 1,
2, and 4.

Mini-XML License 51

2. You do not have to provide a copy of the Mini-XML
license with programs that are linked to the Mini-XML
library, nor do you have to identify the Mini-XML
license in your program or documentation as required
by section 6 of the LGPL2.

GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright (C) 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA
02111-1307, USA

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not

allowed.
[This is the first released version of the library GPL. It
is numbered 2 because it goes with version 2 of the

ordinary GPL.]

Preamble

The licenses for most software are designed to take
away your freedom to share and change it. By
contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and
change free software--to make sure the software is
free for all its users.

This license, the Library General Public License,
applies to some specially designated Free Software
Foundation software, and to any other libraries whose
authors decide to use it. You can use it for your
libraries, too.

Mini-XML Programmers Manual, Version 2.7

52 Mini-XML License

When we speak of free software, we are referring to
freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to
distribute copies of free software (and charge for this
service if you wish), that you receive source code or
can get it if you want it, that you can change the
software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions
that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions
translate to certain responsibilities for you if you
distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library,
whether gratis or for a fee, you must give the
recipients all the rights that we gave you. You must
make sure that they, too, receive or can get the
source code. If you link a program with the library, you
must provide complete object files to the recipients so
that they can relink them with the library, after making
changes to the library and recompiling it. And you
must show them these terms so they know their
rights.

Our method of protecting your rights has two steps:
(1) copyright the library, and (2) offer you this license
which gives you legal permission to copy, distribute
and/or modify the library.

Also, for each distributor's protection, we want to
make certain that everyone understands that there is
no warranty for this free library. If the library is
modified by someone else and passed on, we want its
recipients to know that what they have is not the

Mini-XML Programmers Manual, Version 2.7

Mini-XML License 53

original version, so that any problems introduced by
others will not reflect on the original authors'
reputations.

Finally, any free program is threatened constantly by
software patents. We wish to avoid the danger that
companies distributing free software will individually
obtain patent licenses, thus in effect transforming the
program into proprietary software. To prevent this, we
have made it clear that any patent must be licensed
for everyone's free use or not licensed at all.

Most GNU software, including some libraries, is
covered by the ordinary GNU General Public License,
which was designed for utility programs. This license,
the GNU Library General Public License, applies to
certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in
full, and don't assume that anything in it is the same
as in the ordinary license.

The reason we have a separate public license for
some libraries is that they blur the distinction we
usually make between modifying or adding to a
program and simply using it. Linking a program with a
library, without changing the library, is in some sense
simply using the library, and is analogous to running a
utility program or application program. However, in a
textual and legal sense, the linked executable is a
combined work, a derivative of the original library, and
the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary
General Public License for libraries did not effectively
promote software sharing, because most developers
did not use the libraries. We concluded that weaker

Mini-XML Programmers Manual, Version 2.7

54 Mini-XML License

conditions might promote sharing better.

However, unrestricted linking of non-free programs
would deprive the users of those programs of all
benefit from the free status of the libraries
themselves. This Library General Public License is
intended to permit developers of non-free programs to
use free libraries, while preserving your freedom as a
user of such programs to change the free libraries
that are incorporated in them. (We have not seen how
to achieve this as regards changes in header files, but
we have achieved it as regards changes in the actual
functions of the Library.) The hope is that this will lead
to faster development of free libraries.

The precise terms and conditions for copying,
distribution and modification follow. Pay close
attention to the difference between a "work based on
the libary" and a "work that uses the library". The
former contains code derived from the library, while
the latter only works together with the library.

Note that it is possible for a library to be covered by
the ordinary General Public License rather than by
this special one.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software
library which contains a notice placed by the copyright
holder or other authorized party saying it may be
distributed under the terms of this Library General
Public License (also called "this License"). Each
licensee is addressed as "you".

Mini-XML Programmers Manual, Version 2.7

Mini-XML License 55

A "library" means a collection of software functions
and/or data prepared so as to be conveniently linked
with application programs (which use some of those
functions and data) to form executables.

The "Library", below, refers to any such software
library or work which has been distributed under these
terms. A "work based on the Library" means either the
Library or any derivative work under copyright law:
that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications
and/or translated straightforwardly into another
language. (Hereinafter, translation is included without
limitation in the term "modification".)

"Source code" for a work means the preferred form of
the work for making modifications to it. For a library,
complete source code means all the source code for
all modules it contains, plus any associated interface
definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and
modification are not covered by this License; they are
outside its scope. The act of running a program using
the Library is not restricted, and output from such a
program is covered only if its contents constitute a
work based on the Library (independent of the use of
the Library in a tool for writing it). Whether that is true
depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the
Library's complete source code as you receive it, in
any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate

Mini-XML Programmers Manual, Version 2.7

56 Mini-XML License

copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and to
the absence of any warranty; and distribute a copy of
this License along with the Library.

You may charge a fee for the physical act of
transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library
or any portion of it, thus forming a work based on the
Library, and copy and distribute such modifications or
work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) The modified work must itself be a
software library.

b) You must cause the files modified to carry
prominent notices stating that you changed
the files and the date of any change.

c) You must cause the whole of the work to
be licensed at no charge to all third parties
under the terms of this License.

d) If a facility in the modified Library refers to
a function or a table of data to be supplied by
an application program that uses the facility,
other than as an argument passed when the
facility is invoked, then you must make a
good faith effort to ensure that, in the event
an application does not supply such function
or table, the facility still operates, and
performs whatever part of its purpose
remains meaningful.

Mini-XML Programmers Manual, Version 2.7

Mini-XML License 57

(For example, a function in a library to
compute square roots has a purpose that is
entirely well-defined independent of the
application. Therefore, Subsection 2d
requires that any application-supplied
function or table used by this function must
be optional: if the application does not supply
it, the square root function must still compute
square roots.)

These requirements apply to the modified work as a
whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably
considered independent and separate works in
themselves, then this License, and its terms, do not
apply to those sections when you distribute them as
separate works. But when you distribute the same
sections as part of a whole which is a work based on
the Library, the distribution of the whole must be on
the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights
or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on
the Library.

In addition, mere aggregation of another work not
based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or
distribution medium does not bring the other work
under the scope of this License.

Mini-XML Programmers Manual, Version 2.7

58 Mini-XML License

3. You may opt to apply the terms of the ordinary
GNU General Public License instead of this License
to a given copy of the Library. To do this, you must
alter all the notices that refer to this License, so that
they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a
newer version than version 2 of the ordinary GNU
General Public License has appeared, then you can
specify that version instead if you wish.) Do not make
any other change in these notices.

Once this change is made in a given copy, it is
irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent
copies and derivative works made from that copy.

This option is useful when you wish to copy part of the
code of the Library into a program that is not a library.

4. You may copy and distribute the Library (or a
portion or derivative of it, under Section 2) in object
code or executable form under the terms of Sections
1 and 2 above provided that you accompany it with
the complete corresponding machine-readable source
code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily
used for software interchange.

If distribution of object code is made by offering
access to copy from a designated place, then offering
equivalent access to copy the source code from the
same place satisfies the requirement to distribute the
source code, even though third parties are not
compelled to copy the source along with the object
code.

Mini-XML Programmers Manual, Version 2.7

Mini-XML License 59

5. A program that contains no derivative of any
portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a
"work that uses the Library". Such a work, in isolation,
is not a derivative work of the Library, and therefore
falls outside the scope of this License.

However, linking a "work that uses the Library" with
the Library creates an executable that is a derivative
of the Library (because it contains portions of the
Library), rather than a "work that uses the library". The
executable is therefore covered by this License.
Section 6 states terms for distribution of such
executables.

When a "work that uses the Library" uses material
from a header file that is part of the Library, the object
code for the work may be a derivative work of the
Library even though the source code is not. Whether
this is true is especially significant if the work can be
linked without the Library, or if the work is itself a
library. The threshold for this to be true is not
precisely defined by law.

If such an object file uses only numerical parameters,
data structure layouts and accessors, and small
macros and small inline functions (ten lines or less in
length), then the use of the object file is unrestricted,
regardless of whether it is legally a derivative work.
(Executables containing this object code plus portions
of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library,
you may distribute the object code for the work under
the terms of Section 6. Any executables containing
that work also fall under Section 6, whether or not

Mini-XML Programmers Manual, Version 2.7

60 Mini-XML License

they are linked directly with the Library itself.

6. As an exception to the Sections above, you may
also compile or link a "work that uses the Library" with
the Library to produce a work containing portions of
the Library, and distribute that work under terms of
your choice, provided that the terms permit
modification of the work for the customer's own use
and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the
work that the Library is used in it and that the Library
and its use are covered by this License. You must
supply a copy of this License. If the work during
execution displays copyright notices, you must
include the copyright notice for the Library among
them, as well as a reference directing the user to the
copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete
corresponding machine-readable source
code for the Library including whatever
changes were used in the work (which must
be distributed under Sections 1 and 2
above); and, if the work is an executable
linked with the Library, with the complete
machine-readable "work that uses the
Library", as object code and/or source code,
so that the user can modify the Library and
then relink to produce a modified executable
containing the modified Library. (It is
understood that the user who changes the
contents of definitions files in the Library will
not necessarily be able to recompile the

Mini-XML Programmers Manual, Version 2.7

Mini-XML License 61

application to use the modified definitions.)

b) Accompany the work with a written offer,
valid for at least three years, to give the
same user the materials specified in
Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

c) If distribution of the work is made by
offering access to copy from a designated
place, offer equivalent access to copy the
above specified materials from the same
place.

d) Verify that the user has already received a
copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the "work that
uses the Library" must include any data and utility
programs needed for reproducing the executable from
it. However, as a special exception, the source code
distributed need not include anything that is normally
distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the
operating system on which the executable runs,
unless that component itself accompanies the
executable.

It may happen that this requirement contradicts the
license restrictions of other proprietary libraries that
do not normally accompany the operating system.
Such a contradiction means you cannot use both
them and the Library together in an executable that
you distribute.

Mini-XML Programmers Manual, Version 2.7

62 Mini-XML License

7. You may place library facilities that are a work
based on the Library side-by-side in a single library
together with other library facilities not covered by this
License, and distribute such a combined library,
provided that the separate distribution of the work
based on the Library and of the other library facilities
is otherwise permitted, and provided that you do
these two things:

a) Accompany the combined library with a
copy of the same work based on the Library,
uncombined with any other library facilities.
This must be distributed under the terms of
the Sections above.

b) Give prominent notice with the combined
library of the fact that part of it is a work
based on the Library, and explaining where
to find the accompanying uncombined form
of the same work.

8. You may not copy, modify, sublicense, link with, or
distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy,
modify, sublicense, link with, or distribute the Library
is void, and will automatically terminate your rights
under this License. However, parties who have
received copies, or rights, from you under this License
will not have their licenses terminated so long as such
parties remain in full compliance.

9. You are not required to accept this License, since
you have not signed it. However, nothing else grants
you permission to modify or distribute the Library or
its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by

Mini-XML Programmers Manual, Version 2.7

Mini-XML License 63

modifying or distributing the Library (or any work
based on the Library), you indicate your acceptance
of this License to do so, and all its terms and
conditions for copying, distributing or modifying the
Library or works based on it.

10. Each time you redistribute the Library (or any
work based on the Library), the recipient automatically
receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any
further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or
allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License
and any other pertinent obligations, then as a
consequence you may not distribute the Library at all.
For example, if a patent license would not permit
royalty-free redistribution of the Library by all those
who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of
the Library.

If any portion of this section is held invalid or
unenforceable under any particular circumstance, the
balance of the section is intended to apply, and the
section as a whole is intended to apply in other

Mini-XML Programmers Manual, Version 2.7

64 Mini-XML License

circumstances.

It is not the purpose of this section to induce you to
infringe any patents or other property right claims or
to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free
software distribution system which is implemented by
public license practices. Many people have made
generous contributions to the wide range of software
distributed through that system in reliance on
consistent application of that system; it is up to the
author/donor to decide if he or she is willing to
distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear
what is believed to be a consequence of the rest of
this License.

12. If the distribution and/or use of the Library is
restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder
who places the Library under this License may add an
explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only
in or among countries not thus excluded. In such
case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish
revised and/or new versions of the Library General
Public License from time to time. Such new versions
will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Mini-XML Programmers Manual, Version 2.7

Mini-XML License 65

Each version is given a distinguishing version
number. If the Library specifies a version number of
this License which applies to it and "any later version",
you have the option of following the terms and
conditions either of that version or of any later version
published by the Free Software Foundation. If the
Library does not specify a license version number,
you may choose any version ever published by the
Free Software Foundation.

14. If you wish to incorporate parts of the Library into
other free programs whose distribution conditions are
incompatible with these, write to the author to ask for
permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE
OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE LIBRARY
"AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU.

Mini-XML Programmers Manual, Version 2.7

66 Mini-XML License

SHOULD THE LIBRARY PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY
APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE
THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER
PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of
the greatest possible use to the public, we
recommend making it free software that everyone can
redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public
License).

To apply these terms, attach the following notices to
the library. It is safest to attach them to the start of

Mini-XML Programmers Manual, Version 2.7

Mini-XML License 67

each source file to most effectively convey the
exclusion of warranty; and each file should have at
least the "copyright" line and a pointer to where the
full notice is found.

one line to give the library's name and an
idea of what it does.
Copyright (C) year name of author

This library is free software; you can
redistribute it and/or modify it under the
terms of the GNU Lesser General Public
License as published by the Free Software
Foundation; either version 2.1 of the
License, or (at your option) any later version.

This library is distributed in the hope that it
will be useful, but WITHOUT ANY
WARRANTY; without even the implied
warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License
for more details.

You should have received a copy of the
GNU Lesser General Public License along
with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by
electronic and paper mail.

You should also get your employer (if you work as a
programmer) or your school, if any, to sign a
"copyright disclaimer" for the library, if necessary.

Mini-XML Programmers Manual, Version 2.7

68 Mini-XML License

Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all
copyright interest in the library `Frob' (a
library for tweaking knobs) written by James
Random Hacker.

signature of Ty Coon, 1 April 1990 Ty Coon,
President of Vice

That's all there is to it!

Mini-XML Programmers Manual, Version 2.7

Mini-XML License 69

Mini-XML Programmers Manual, Version 2.7

70 Mini-XML License

Release Notes

Changes in Mini-XML 2.7

Added 64-bit configurations to the VC++
project files (STR #129)

•

Fixed conformance of mxmldoc's HTML and
CSS output.

•

Added data accessor ("get") functions and
made the mxml_node_t and mxml_index_t
structures private but still available in the
Mini-XML header to preserve source
compatibility (STR #118)

•

Updated the source headers to reference the
Mini-XML license and its exceptions to the
LGPL2 (STR #108)

•

Added a new mxmlFindPath() function to find
the value node of a named element (STR

•

Release Notes 71

#110)
Building a static version of the library did not
work on Windows (STR #112)

•

The shared library did not include a
destructor for the thread- specific data key
on UNIX-based operating systems (STR
#103)

•

mxmlLoad* did not error out on XML with
multiple root nodes (STR #101)

•

Fixed an issue with the _mxml_vstrdupf
function (STR #107)

•

mxmlSave* no longer write all siblings of the
passed node, just that node and its children
(STR #109)

•

Changes in Mini-XML 2.6

Documentation fixes (STR #91, STR #92)•
The mxmldoc program did not handle
typedef comments properly (STR #72)

•

Added support for "long long" printf formats.•
The XML parser now ignores BOMs in
UTF-8 XML files (STR #89)

•

The mxmldoc program now supports
generating Xcode documentation sets.

•

mxmlSave*() did not output UTF-8 correctly
on some platforms.

•

mxmlNewXML() now adds encoding="utf-8"
in the ?xml directive to avoid problems with
non-conformant XML parsers that assume
something other than UTF-8 as the default
encoding.

•

Wrapping was not disabled when
mxmlSetWrapMargin(0) was called, and
"<?xml ... ?>" was always followed by a

•

Mini-XML Programmers Manual, Version 2.7

72 Changes in Mini-XML 2.7

newline (STR #76)
The mxml.pc.in file was broken (STR #79)•
The mxmldoc program now handles "typedef
enum name {} name" correctly (STR #72)

•

Changes in Mini-XML 2.5

The mxmldoc program now makes greater
use of CSS and supports a --css option to
embed an alternate stylesheet.

•

The mxmldoc program now supports
--header and --footer options to insert
documentation content before and after the
generated content.

•

The mxmldoc program now supports a
--framed option to generate framed HTML
output.

•

The mxmldoc program now creates a table
of contents including any headings in the
--intro file when generating HTML output.

•

The man pages and man page output from
mxmldoc did not use "\-" for dashes (STR
#68)

•

The debug version of the Mini-XML DLL
could not be built (STR #65)

•

Processing instructions and directives did
not work when not at the top level of a
document (STR #67)

•

Spaces around the "=" in attributes were not
supported (STR #67)

•

Changes in Mini-XML 2.4

Fixed shared library build problems on
HP-UX and Mac OS X.

•

Mini-XML Programmers Manual, Version 2.7

Changes in Mini-XML 2.6 73

The mxmldoc program did not output
argument descriptions for functions properly.

•

All global settings (custom, error, and entity
callbacks and the wrap margin) are now
managed separately for each thread.

•

Added mxmlElementDeleteAttr() function
(STR #59)

•

mxmlElementSetAttrf() did not work (STR
#57)

•

mxmlLoad*() incorrectly treated declarations
as parent elements (STR #56)

•

mxmlLoad*() incorrectly allowed attributes
without values (STR #47)

•

Fixed Visual C++ build problems (STR #49)•
mxmlLoad*() did not return NULL when an
element contained an error (STR #46)

•

Added support for the apos character entity
(STR #54)

•

Fixed whitespace detection with Unicode
characters (STR #48)

•

mxmlWalkNext() and mxmlWalkPrev() did
not work correctly when called with a node
with no children as the top node (STR #53)

•

Changes in Mini-XML 2.3

Added two exceptions to the LGPL to
support static linking of applications against
Mini-XML

•

The mxmldoc utility can now generate man
pages, too.

•

Added a mxmlNewXML() function•
Added a mxmlElementSetAttrf() function
(STR #43)

•

Mini-XML Programmers Manual, Version 2.7

74 Changes in Mini-XML 2.4

Added a snprintf() emulation function for the
test program (STR #32)

•

Added the
_CRT_SECURE_NO_DEPRECATE
definition when building on VC++ 2005 (STR
#36)

•

mxmlLoad*() did not detect missing >
characters in elements (STR #41)

•

mxmlLoad*() did not detect missing close
tags at the end of an XML document (STR
#45)

•

Added user_data and ref_count members to
mxml_node_t structure

•

Added mxmlReleaseNode() and
mxmlRetainNode() APIs for
reference-counted nodes

•

Added mxmlSetWrapMargin() to control the
wrapping of XML output

•

Added conditional check for EINTR error
code for certain Windows compilers that do
not define it (STR #33)

•

The mxmldoc program now generates
correct HTML 4.0 output - previously it
generated invalid XHTML

•

The mxmldoc program now supports
"@deprecated@, "@private@", and "@since
version@" comments

•

Fixed function and enumeration type bugs in
mxmldoc

•

Fixed the XML schema for mxmldoc•
The mxmldoc program now supports --intro,
--section, and --title options

•

The mxmlLoad*() functions could leak a
node on an error (STR #27)

•

The mxml_vsnprintf() function could get in an
infinite loop on a buffer overflow (STR #25)

•

Mini-XML Programmers Manual, Version 2.7

Changes in Mini-XML 2.3 75

Added new mxmlNewCDATA() and
mxmlSetCDATA() functions to create and set
CDATA nodes, which are really just special
element nodes

•

Added new MXML_IGNORE type and
MXML_IGNORE_CB callback to ignore
non-element nodes, e.g. whitespace

•

mxmlLoad*() did not treat custom data as
opaque, so whitespace characters would be
lost

•

Changes in Mini-XML 2.2.2

mxmlLoad*() did not treat custom data as
opaque, so whitespace characters would be
lost.

•

Changes in Mini-XML 2.2.1

mxmlLoadFd(), mxmlLoadFile(), and
mxmlLoadString() now correctly return NULL
on error (STR #21)

•

mxmlNewInteger(), mxmlNewOpaque(),
mxmlNewReal(), mxmlNewText(), and
mxmlNewTextf() incorrectly required a
parent node (STR #22)

•

Fixed an XML output bug in mxmldoc.•
The "make install" target now uses the install
command to set the proper permissions on
UNIX/Linux/OSX.

•

Fixed a MingW/Cygwin compilation problem
(STR #18)

•

Mini-XML Programmers Manual, Version 2.7

76 Changes in Mini-XML 2.2.2

Changes in Mini-XML 2.2

Added shared library support (STR #17)•
mxmlLoad*() now returns an error when an
XML stream contains illegal control
characters (STR #10)

•

mxmlLoad*() now returns an error when an
element contains two attributes with the
same name in conformance with the XML
spec (STR #16)

•

Added support for CDATA (STR #14, STR
#15)

•

Updated comment and processing
instruction handling - no entity support per
XML specification.

•

Added checking for invalid comment
termination ("--->" is not allowed)

•

Changes in Mini-XML 2.1

Added support for custom data nodes (STR
#6)

•

Now treat UTF-8 sequences which are
longer than necessary as an error (STR #4)

•

Fixed entity number support (STR #8)•
Fixed mxmlLoadString() bug with UTF-8
(STR #7)

•

Fixed entity lookup bug (STR #5)•
Added mxmlLoadFd() and mxmlSaveFd()
functions.

•

Fixed multi-word UTF-16 handling.•

Mini-XML Programmers Manual, Version 2.7

Changes in Mini-XML 2.2 77

Changes in Mini-XML 2.0

New programmers manual.•
Added Visual C++ project files for Microsoft
Windows users.

•

Added optimizations to mxmldoc,
mxmlSaveFile(), and mxmlIndexNew() (STR
#2)

•

mxmlEntityAddCallback() now returns an
integer status (STR #2)

•

Added UTF-16 support (input only; all output
is UTF-8)

•

Added index functions to build a searchable
index of XML nodes.

•

Added character entity callback interface to
support additional character entities beyond
those defined in the XHTML specification.

•

Added support for XHTML character entities.•
The mxmldoc utility now produces XML
output which conforms to an updated XML
schema, described in the file
"doc/mxmldoc.xsd".

•

Changed the whitespace callback interface
to return strings instead of a single
character, allowing for greater control over
the formatting of XML files written using
Mini-XML. THIS CHANGE WILL REQUIRE
CHANGES TO YOUR 1.x CODE IF YOU
USE WHITESPACE CALLBACKS.

•

The mxmldoc utility now produces XML
output which conforms to an updated XML
schema, described in the file
"doc/mxmldoc.xsd".

•

Changed the whitespace callback interface
to return strings instead of a single

•

Mini-XML Programmers Manual, Version 2.7

78 Changes in Mini-XML 2.0

character, allowing for greater control over
the formatting of XML files written using
Mini-XML. THIS CHANGE WILL REQUIRE
CHANGES TO YOUR 1.x CODE IF YOU
USE WHITESPACE CALLBACKS.
The mxmldoc utility is now capable of
documenting C++ classes, functions, and
structures, and correctly handles C++
comments.

•

Added new modular tests for mxmldoc.•
Updated the mxmldoc output to be more
compatible with embedding in manuals
produced with HTMLDOC.

•

The makefile incorrectly included a "/"
separator between the destination path and
install path. This caused problems when
building and installing with MingW.

•

Changes in Mini-XML 1.3

Fixes for mxmldoc.•
Added support for reading standard HTML
entity names.

•

mxmlLoadString/File() did not decode
character entities in element names, attribute
names, or attribute values.

•

mxmlLoadString/File() would crash when
loading non- conformant XML data under an
existing parent (top) node.

•

Fixed several bugs in the mxmldoc utility.•
Added new error callback function to catch a
variety of errors and log them to someplace
other than stderr.

•

The mxmlElementSetAttr() function now
allows for NULL attribute values.

•

Mini-XML Programmers Manual, Version 2.7

Changes in Mini-XML 1.3 79

The load and save functions now properly
handle quoted element and attribute name
strings properly, e.g. for !DOCTYPE
declarations.

•

Changes in Mini-XML 1.2

Added new "set" methods to set the value of
a node.

•

Added new formatted text methods
mxmlNewTextf() and mxmlSetTextf() to
create/set a text node value using printf-style
formats.

•

Added new standard callbacks for use with
the mxmlLoad functions.

•

Updated the HTML documentation to include
examples of the walk and load function
output.

•

Added --with/without-ansi configure option to
control the strdup() function check.

•

Added --with/without-snprintf configure
option to control the snprintf() and vsnprintf()
function checks.

•

Changes in Mini-XML 1.1.2

The mxml(3) man page wasn't updated for
the string functions.

•

mxmlSaveString() returned the wrong
number of characters.

•

mxml_add_char() updated the buffer pointer
in the wrong place.

•

Mini-XML Programmers Manual, Version 2.7

80 Changes in Mini-XML 1.2

Changes in Mini-XML 1.1.1

The private mxml_add_ch() function did not
update the start-of-buffer pointer which could
cause a crash when using
mxmlSaveString().

•

The private mxml_write_ws() function called
putc() instead of using the proper callback
which could cause a crash when using
mxmlSaveString().

•

Added a mxmlSaveAllocString()
convenience function for saving an XML
node tree to an allocated string.

•

Changes in Mini-XML 1.1

The mxmlLoadFile() function now uses
dynamically allocated string buffers for
element names, attribute names, and
attribute values. Previously they were
capped at 16383, 255, and 255 bytes,
respectively.

•

Added a new mxmlLoadString() function for
loading an XML node tree from a string.

•

Added a new mxmlSaveString() function for
saving an XML node tree to a string.

•

Add emulation of strdup() if the local platform
does not provide the function.

•

Changes in Mini-XML 1.0

The mxmldoc program now handles function
arguments, structures, unions,
enumerations, classes, and typedefs

•

Mini-XML Programmers Manual, Version 2.7

Changes in Mini-XML 1.1.1 81

properly.
Documentation provided via mxmldoc and
more in-line comments in the code.

•

Added man pages and packaging files.•

Changes in Mini-XML 0.93

New mxmldoc example program that is also
used to create and update code
documentation using XML and produce
HTML reference pages.

•

Added mxmlAdd() and mxmlRemove()
functions to add and remove nodes from a
tree. This provides more flexibility over
where the nodes are inserted and allows
nodes to be moved within the tree as
needed.

•

mxmlLoadFile() now correctly handles
comments.

•

mxmlLoadFile() now supports the required
"gt", "quot", and "nbsp" character entities.

•

mxmlSaveFile() now uses newlines as
whitespace when valid to do so.

•

mxmlFindElement() now also takes attribute
name and attribute value string arguments to
limit the search to specific elements with
attributes and/or values.

•

NULL pointers can be used as "wildcards".
Added uninstall target to makefile, and
auto-reconfig if Makefile.in or configure.in
are changed.

•

mxmlFindElement(), mxmlWalkNext(), and
mxmlWalkPrev() now all provide "descend"
arguments to control whether they descend

•

Mini-XML Programmers Manual, Version 2.7

82 Changes in Mini-XML 1.0

into child nodes in the tree.
Fixed some whitespace issues in
mxmlLoadFile().

•

Fixed Unicode output and whitespace issues
in mxmlSaveFile().

•

mxmlSaveFile() now supports a whitespace
callback to provide more human-readable
XML output under program control.

•

Changes in Mini-XML 0.92

mxmlSaveFile() didn't return a value on
success.

•

Changes in Mini-XML 0.91

mxmlWalkNext() would go into an infinite
loop.

•

Changes in Mini-XML 0.9

Initial public release.•

Mini-XML Programmers Manual, Version 2.7

Changes in Mini-XML 0.93 83

Mini-XML Programmers Manual, Version 2.7

84 Changes in Mini-XML 0.9

Library Reference

Contents

Functions
mxmlAdd♦
mxmlDelete♦
mxmlElementDeleteAttr♦
mxmlElementGetAttr♦
mxmlElementSetAttr♦
mxmlElementSetAttrf♦
mxmlEntityAddCallback♦
mxmlEntityGetName♦
mxmlEntityGetValue♦
mxmlEntityRemoveCallback♦
mxmlFindElement♦
mxmlFindPath♦
mxmlGetCDATA♦

•

Library Reference 85

mxmlGetCustom♦
mxmlGetElement♦
mxmlGetFirstChild♦
mxmlGetInteger♦
mxmlGetLastChild♦
mxmlGetNextSibling♦
mxmlGetOpaque♦
mxmlGetParent♦
mxmlGetPrevSibling♦
mxmlGetReal♦
mxmlGetRefCount♦
mxmlGetText♦
mxmlGetType♦
mxmlGetUserData♦
mxmlIndexDelete♦
mxmlIndexEnum♦
mxmlIndexFind♦
mxmlIndexGetCount♦
mxmlIndexNew♦
mxmlIndexReset♦
mxmlLoadFd♦
mxmlLoadFile♦
mxmlLoadString♦
mxmlNewCDATA♦
mxmlNewCustom♦
mxmlNewElement♦
mxmlNewInteger♦
mxmlNewOpaque♦
mxmlNewReal♦
mxmlNewText♦
mxmlNewTextf♦
mxmlNewXML♦
mxmlRelease♦
mxmlRemove♦
mxmlRetain♦
mxmlSAXLoadFd♦

Mini-XML Programmers Manual, Version 2.7

86 Contents

mxmlSAXLoadFile♦
mxmlSAXLoadString♦
mxmlSaveAllocString♦
mxmlSaveFd♦
mxmlSaveFile♦
mxmlSaveString♦
mxmlSetCDATA♦
mxmlSetCustom♦
mxmlSetCustomHandlers♦
mxmlSetElement♦
mxmlSetErrorCallback♦
mxmlSetInteger♦
mxmlSetOpaque♦
mxmlSetReal♦
mxmlSetText♦
mxmlSetTextf♦
mxmlSetUserData♦
mxmlSetWrapMargin♦
mxmlWalkNext♦
mxmlWalkPrev♦

Data Types
mxml_custom_destroy_cb_t♦
mxml_custom_load_cb_t♦
mxml_custom_save_cb_t♦
mxml_entity_cb_t♦
mxml_error_cb_t♦
mxml_index_t♦
mxml_load_cb_t♦
mxml_node_t♦
mxml_save_cb_t♦
mxml_sax_cb_t♦
mxml_sax_event_t♦
mxml_type_t♦

•

Constants
mxml_sax_event_e♦
mxml_type_e♦

•

Mini-XML Programmers Manual, Version 2.7

Contents 87

Functions

mxmlAdd

Add a node to a tree.

void mxmlAdd (
 mxml_node_t *parent,
 int where,
 mxml_node_t *child,
 mxml_node_t *node
);

Parameters

parent
Parent node

where
Where to add, MXML_ADD_BEFORE or
MXML_ADD_AFTER

child
Child node for where or
MXML_ADD_TO_PARENT

node
Node to add

Discussion

Adds the specified node to the parent. If the child
argument is not NULL, puts the new node before or
after the specified child depending on the value of the
where argument. If the child argument is NULL, puts
the new node at the beginning of the child list
(MXML_ADD_BEFORE) or at the end of the child list
(MXML_ADD_AFTER). The constant

Mini-XML Programmers Manual, Version 2.7

88 Functions

MXML_ADD_TO_PARENT can be used to specify a
NULL child pointer.

mxmlDelete

Delete a node and all of its children.

void mxmlDelete (
 mxml_node_t *node
);

Parameters

node
Node to delete

Discussion

If the specified node has a parent, this function first
removes the node from its parent using the
mxmlRemove() function.

mxmlElementDeleteAttr

Delete an attribute.

void mxmlElementDeleteAttr (
 mxml_node_t *node,
 const char *name
);

Parameters

node
Element

Mini-XML Programmers Manual, Version 2.7

mxmlAdd 89

name
Attribute name

mxmlElementGetAttr

Get an attribute.

const char *mxmlElementGetAttr (
 mxml_node_t *node,
 const char *name
);

Parameters

node
Element node

name
Name of attribute

Return Value

Attribute value or NULL

Discussion

This function returns NULL if the node is not an
element or the named attribute does not exist.

mxmlElementSetAttr

Set an attribute.

void mxmlElementSetAttr (
 mxml_node_t *node,
 const char *name,

Mini-XML Programmers Manual, Version 2.7

90 Mini-XML 2.4 mxmlElementDeleteAttr

 const char *value
);

Parameters

node
Element node

name
Name of attribute

value
Attribute value

Discussion

If the named attribute already exists, the value of the
attribute is replaced by the new string value. The
string value is copied into the element node. This
function does nothing if the node is not an element.

mxmlElementSetAttrf

Set an attribute with a formatted value.

void mxmlElementSetAttrf (
 mxml_node_t *node,
 const char *name,
 const char *format,
 ...
);

Parameters

node
Element node

name
Name of attribute

Mini-XML Programmers Manual, Version 2.7

mxmlElementSetAttr 91

format
Printf-style attribute value

...
Additional arguments as needed

Discussion

If the named attribute already exists, the value of the
attribute is replaced by the new formatted string. The
formatted string value is copied into the element
node. This function does nothing if the node is not an
element.

mxmlEntityAddCallback

Add a callback to convert entities to Unicode.

int mxmlEntityAddCallback (
 mxml_entity_cb_t cb
);

Parameters

cb
Callback function to add

Return Value

0 on success, -1 on failure

mxmlEntityGetName

Get the name that corresponds to the character value.

Mini-XML Programmers Manual, Version 2.7

92 Mini-XML 2.3 mxmlElementSetAttrf

const char *mxmlEntityGetName (
 int val
);

Parameters

val
Character value

Return Value

Entity name or NULL

Discussion

If val does not need to be represented by a named
entity, NULL is returned.

mxmlEntityGetValue

Get the character corresponding to a named entity.

int mxmlEntityGetValue (
 const char *name
);

Parameters

name
Entity name

Return Value

Character value or -1 on error

Mini-XML Programmers Manual, Version 2.7

mxmlEntityGetName 93

Discussion

The entity name can also be a numeric constant. -1 is
returned if the name is not known.

mxmlEntityRemoveCallback

Remove a callback.

void mxmlEntityRemoveCallback (
 mxml_entity_cb_t cb
);

Parameters

cb
Callback function to remove

mxmlFindElement

Find the named element.

mxml_node_t *mxmlFindElement (
 mxml_node_t *node,
 mxml_node_t *top,
 const char *name,
 const char *attr,
 const char *value,
 int descend
);

Parameters

node
Current node

Mini-XML Programmers Manual, Version 2.7

94 mxmlEntityGetValue

top
Top node

name
Element name or NULL for any

attr
Attribute name, or NULL for none

value
Attribute value, or NULL for any

descend
Descend into tree - MXML_DESCEND,
MXML_NO_DESCEND, or
MXML_DESCEND_FIRST

Return Value

Element node or NULL

Discussion

The search is constrained by the name, attribute
name, and value; any NULL names or values are
treated as wildcards, so different kinds of searches
can be implemented by looking for all elements of a
given name or all elements with a specific attribute.
The descend argument determines whether the
search descends into child nodes; normally you will
use MXML_DESCEND_FIRST for the initial search
and MXML_NO_DESCEND to find additional direct
descendents of the node. The top node argument
constrains the search to a particular node's children.

mxmlFindPath

Find a node with the given path.

Mini-XML Programmers Manual, Version 2.7

mxmlFindElement 95

mxml_node_t *mxmlFindPath (
 mxml_node_t *top,
 const char *path
);

Parameters

top
Top node

path
Path to element

Return Value

Found node or NULL

Discussion

The "path" is a slash-separated list of element names.
The name "*" is considered a wildcard for one or more
levels of elements. For example, "foo/one/two",
"bar/two/one", "*/one", and so forth.

The first child node of the found node is returned if the
given node has children and the first child is a value
node.

mxmlGetCDATA

Get the value for a CDATA node.

const char *mxmlGetCDATA (
 mxml_node_t *node
);

Mini-XML Programmers Manual, Version 2.7

96 Mini-XML 2.7 mxmlFindPath

Parameters

node
Node to get

Return Value

CDATA value or NULL

Discussion

NULL is returned if the node is not a CDATA element.

mxmlGetCustom

Get the value for a custom node.

const void *mxmlGetCustom (
 mxml_node_t *node
);

Parameters

node
Node to get

Return Value

Custom value or NULL

Discussion

NULL is returned if the node (or its first child) is not a
custom value node.

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.7 mxmlGetCDATA 97

mxmlGetElement

Get the name for an element node.

const char *mxmlGetElement (
 mxml_node_t *node
);

Parameters

node
Node to get

Return Value

Element name or NULL

Discussion

NULL is returned if the node is not an element node.

mxmlGetFirstChild

Get the first child of an element node.

mxml_node_t *mxmlGetFirstChild (
 mxml_node_t *node
);

Parameters

node
Node to get

Mini-XML Programmers Manual, Version 2.7

98 Mini-XML 2.7 mxmlGetElement

Return Value

First child or NULL

Discussion

NULL is returned if the node is not an element node or
if the node has no children.

mxmlGetInteger

Get the integer value from the specified node or its
first child.

int mxmlGetInteger (
 mxml_node_t *node
);

Parameters

node
Node to get

Return Value

Integer value or 0

Discussion

0 is returned if the node (or its first child) is not an
integer value node.

mxmlGetLastChild

Get the last child of an element node.

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.7 mxmlGetFirstChild 99

mxml_node_t *mxmlGetLastChild (
 mxml_node_t *node
);

Parameters

node
Node to get

Return Value

Last child or NULL

Discussion

NULL is returned if the node is not an element node or
if the node has no children.

mxmlGetNextSibling

Return the node type...

mxml_node_t *mxmlGetNextSibling (
 mxml_node_t *node
);

Parameters

node
Node to get

Return Value

Get the next node for the current parent.

Mini-XML Programmers Manual, Version 2.7

100 Mini-XML 2.7 mxmlGetLastChild

NULL is returned if this is the last child for the current
parent.

mxmlGetOpaque

Get an opaque string value for a node or its first child.

const char *mxmlGetOpaque (
 mxml_node_t *node
);

Parameters

node
Node to get

Return Value

Opaque string or NULL

Discussion

NULL is returned if the node (or its first child) is not an
opaque value node.

mxmlGetParent

Get the parent node.

mxml_node_t *mxmlGetParent (
 mxml_node_t *node
);

Mini-XML Programmers Manual, Version 2.7

mxmlGetNextSibling 101

Parameters

node
Node to get

Return Value

Parent node or NULL

Discussion

NULL is returned for a root node.

mxmlGetPrevSibling

Get the previous node for the current parent.

mxml_node_t *mxmlGetPrevSibling (
 mxml_node_t *node
);

Parameters

node
Node to get

Return Value

Previous node or NULL

Discussion

NULL is returned if this is the first child for the current
parent.

Mini-XML Programmers Manual, Version 2.7

102 Mini-XML 2.7 mxmlGetParent

mxmlGetReal

Get the real value for a node or its first child.

double mxmlGetReal (
 mxml_node_t *node
);

Parameters

node
Node to get

Return Value

Real value or 0.0

Discussion

0.0 is returned if the node (or its first child) is not a
real value node.

mxmlGetRefCount

Get the current reference (use) count for a node.

int mxmlGetRefCount (
 mxml_node_t *node
);

Parameters

node
Node

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.7 mxmlGetReal 103

Return Value

Reference count

Discussion

The initial reference count of new nodes is 1. Use the
mxmlRetain and mxmlRelease functions to increment
and decrement a node's reference count. .

mxmlGetText

Get the text value for a node or its first child.

const char *mxmlGetText (
 mxml_node_t *node,
 int *whitespace
);

Parameters

node
Node to get

whitespace
1 if string is preceded by whitespace, 0
otherwise

Return Value

Text string or NULL

Discussion

NULL is returned if the node (or its first child) is not a
text node. The "whitespace" argument can be NULL.

Mini-XML Programmers Manual, Version 2.7

104 Mini-XML 2.7 mxmlGetRefCount

mxmlGetType

Get the node type.

mxml_type_t mxmlGetType (
 mxml_node_t *node
);

Parameters

node
Node to get

Return Value

Type of node

Discussion

MXML_IGNORE is returned if "node" is NULL.

mxmlGetUserData

Get the user data pointer for a node.

void *mxmlGetUserData (
 mxml_node_t *node
);

Parameters

node
Node to get

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.7 mxmlGetType 105

Return Value

User data pointer

mxmlIndexDelete

Delete an index.

void mxmlIndexDelete (
 mxml_index_t *ind
);

Parameters

ind
Index to delete

mxmlIndexEnum

Return the next node in the index.

mxml_node_t *mxmlIndexEnum (
 mxml_index_t *ind
);

Parameters

ind
Index to enumerate

Return Value

Next node or NULL if there is none

Mini-XML Programmers Manual, Version 2.7

106 Mini-XML 2.7 mxmlGetUserData

Discussion

Nodes are returned in the sorted order of the index.

mxmlIndexFind

Find the next matching node.

mxml_node_t *mxmlIndexFind (
 mxml_index_t *ind,
 const char *element,
 const char *value
);

Parameters

ind
Index to search

element
Element name to find, if any

value
Attribute value, if any

Return Value

Node or NULL if none found

Discussion

You should call mxmlIndexReset() prior to using this
function for the first time with a particular set of
"element" and "value" strings. Passing NULL for both
"element" and "value" is equivalent to calling
mxmlIndexEnum().

Mini-XML Programmers Manual, Version 2.7

mxmlIndexEnum 107

mxmlIndexGetCount

Get the number of nodes in an index.

int mxmlIndexGetCount (
 mxml_index_t *ind
);

Parameters

ind
Index of nodes

Return Value

Number of nodes in index

mxmlIndexNew

Create a new index.

mxml_index_t *mxmlIndexNew (
 mxml_node_t *node,
 const char *element,
 const char *attr
);

Parameters

node
XML node tree

element
Element to index or NULL for all

attr
Attribute to index or NULL for none

Mini-XML Programmers Manual, Version 2.7

108 Mini-XML 2.7 mxmlIndexGetCount

Return Value

New index

Discussion

The index will contain all nodes that contain the
named element and/or attribute. If both "element" and
"attr" are NULL, then the index will contain a sorted
list of the elements in the node tree. Nodes are sorted
by element name and optionally by attribute value if
the "attr" argument is not NULL.

mxmlIndexReset

Reset the enumeration/find pointer in the index and
return the first node in the index.

mxml_node_t *mxmlIndexReset (
 mxml_index_t *ind
);

Parameters

ind
Index to reset

Return Value

First node or NULL if there is none

Discussion

This function should be called prior to using
mxmlIndexEnum() or mxmlIndexFind() for the first
time.

Mini-XML Programmers Manual, Version 2.7

mxmlIndexNew 109

mxmlLoadFd

Load a file descriptor into an XML node tree.

mxml_node_t *mxmlLoadFd (
 mxml_node_t *top,
 int fd,
 mxml_load_cb_t cb
);

Parameters

top
Top node

fd
File descriptor to read from

cb
Callback function or MXML_NO_CALLBACK

Return Value

First node or NULL if the file could not be read.

Discussion

The nodes in the specified file are added to the
specified top node. If no top node is provided, the
XML file MUST be well-formed with a single parent
node like <?xml> for the entire file. The callback
function returns the value type that should be used for
child nodes. If MXML_NO_CALLBACK is specified
then all child nodes will be either MXML_ELEMENT
or MXML_TEXT nodes.

The constants MXML_INTEGER_CALLBACK,
MXML_OPAQUE_CALLBACK,

Mini-XML Programmers Manual, Version 2.7

110 mxmlLoadFd

MXML_REAL_CALLBACK, and
MXML_TEXT_CALLBACK are defined for loading
child nodes of the specified type.

mxmlLoadFile

Load a file into an XML node tree.

mxml_node_t *mxmlLoadFile (
 mxml_node_t *top,
 FILE *fp,
 mxml_load_cb_t cb
);

Parameters

top
Top node

fp
File to read from

cb
Callback function or MXML_NO_CALLBACK

Return Value

First node or NULL if the file could not be read.

Discussion

The nodes in the specified file are added to the
specified top node. If no top node is provided, the
XML file MUST be well-formed with a single parent
node like <?xml> for the entire file. The callback
function returns the value type that should be used for
child nodes. If MXML_NO_CALLBACK is specified
then all child nodes will be either MXML_ELEMENT

Mini-XML Programmers Manual, Version 2.7

mxmlLoadFile 111

or MXML_TEXT nodes.

The constants MXML_INTEGER_CALLBACK,
MXML_OPAQUE_CALLBACK,
MXML_REAL_CALLBACK, and
MXML_TEXT_CALLBACK are defined for loading
child nodes of the specified type.

mxmlLoadString

Load a string into an XML node tree.

mxml_node_t *mxmlLoadString (
 mxml_node_t *top,
 const char *s,
 mxml_load_cb_t cb
);

Parameters

top
Top node

s
String to load

cb
Callback function or MXML_NO_CALLBACK

Return Value

First node or NULL if the string has errors.

Discussion

The nodes in the specified string are added to the
specified top node. If no top node is provided, the
XML string MUST be well-formed with a single parent

Mini-XML Programmers Manual, Version 2.7

112 mxmlLoadString

node like <?xml> for the entire string. The callback
function returns the value type that should be used for
child nodes. If MXML_NO_CALLBACK is specified
then all child nodes will be either MXML_ELEMENT
or MXML_TEXT nodes.

The constants MXML_INTEGER_CALLBACK,
MXML_OPAQUE_CALLBACK,
MXML_REAL_CALLBACK, and
MXML_TEXT_CALLBACK are defined for loading
child nodes of the specified type.

mxmlNewCDATA

Create a new CDATA node.

mxml_node_t *mxmlNewCDATA (
 mxml_node_t *parent,
 const char *data
);

Parameters

parent
Parent node or MXML_NO_PARENT

data
Data string

Return Value

New node

Discussion

The new CDATA node is added to the end of the
specified parent's child list. The constant

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.3 mxmlNewCDATA 113

MXML_NO_PARENT can be used to specify that the
new CDATA node has no parent. The data string
must be nul-terminated and is copied into the new
node. CDATA nodes use the MXML_ELEMENT type.

mxmlNewCustom

Create a new custom data node.

mxml_node_t *mxmlNewCustom (
 mxml_node_t *parent,
 void *data,
 mxml_custom_destroy_cb_t destroy
);

Parameters

parent
Parent node or MXML_NO_PARENT

data
Pointer to data

destroy
Function to destroy data

Return Value

New node

Discussion

The new custom node is added to the end of the
specified parent's child list. The constant
MXML_NO_PARENT can be used to specify that the
new element node has no parent. NULL can be
passed when the data in the node is not dynamically
allocated or is separately managed.

Mini-XML Programmers Manual, Version 2.7

114 Mini-XML 2.1 mxmlNewCustom

mxmlNewElement

Create a new element node.

mxml_node_t *mxmlNewElement (
 mxml_node_t *parent,
 const char *name
);

Parameters

parent
Parent node or MXML_NO_PARENT

name
Name of element

Return Value

New node

Discussion

The new element node is added to the end of the
specified parent's child list. The constant
MXML_NO_PARENT can be used to specify that the
new element node has no parent.

mxmlNewInteger

Create a new integer node.

mxml_node_t *mxmlNewInteger (
 mxml_node_t *parent,
 int integer
);

Mini-XML Programmers Manual, Version 2.7

mxmlNewElement 115

Parameters

parent
Parent node or MXML_NO_PARENT

integer
Integer value

Return Value

New node

Discussion

The new integer node is added to the end of the
specified parent's child list. The constant
MXML_NO_PARENT can be used to specify that the
new integer node has no parent.

mxmlNewOpaque

Create a new opaque string.

mxml_node_t *mxmlNewOpaque (
 mxml_node_t *parent,
 const char *opaque
);

Parameters

parent
Parent node or MXML_NO_PARENT

opaque
Opaque string

Mini-XML Programmers Manual, Version 2.7

116 mxmlNewInteger

Return Value

New node

Discussion

The new opaque node is added to the end of the
specified parent's child list. The constant
MXML_NO_PARENT can be used to specify that the
new opaque node has no parent. The opaque string
must be nul-terminated and is copied into the new
node.

mxmlNewReal

Create a new real number node.

mxml_node_t *mxmlNewReal (
 mxml_node_t *parent,
 double real
);

Parameters

parent
Parent node or MXML_NO_PARENT

real
Real number value

Return Value

New node

Mini-XML Programmers Manual, Version 2.7

mxmlNewOpaque 117

Discussion

The new real number node is added to the end of the
specified parent's child list. The constant
MXML_NO_PARENT can be used to specify that the
new real number node has no parent.

mxmlNewText

Create a new text fragment node.

mxml_node_t *mxmlNewText (
 mxml_node_t *parent,
 int whitespace,
 const char *string
);

Parameters

parent
Parent node or MXML_NO_PARENT

whitespace
1 = leading whitespace, 0 = no whitespace

string
String

Return Value

New node

Discussion

The new text node is added to the end of the
specified parent's child list. The constant
MXML_NO_PARENT can be used to specify that the
new text node has no parent. The whitespace

Mini-XML Programmers Manual, Version 2.7

118 mxmlNewReal

parameter is used to specify whether leading
whitespace is present before the node. The text string
must be nul-terminated and is copied into the new
node.

mxmlNewTextf

Create a new formatted text fragment node.

mxml_node_t *mxmlNewTextf (
 mxml_node_t *parent,
 int whitespace,
 const char *format,
 ...
);

Parameters

parent
Parent node or MXML_NO_PARENT

whitespace
1 = leading whitespace, 0 = no whitespace

format
Printf-style frmat string

...
Additional args as needed

Return Value

New node

Discussion

The new text node is added to the end of the
specified parent's child list. The constant
MXML_NO_PARENT can be used to specify that the

Mini-XML Programmers Manual, Version 2.7

mxmlNewText 119

new text node has no parent. The whitespace
parameter is used to specify whether leading
whitespace is present before the node. The format
string must be nul-terminated and is formatted into the
new node.

mxmlNewXML

Create a new XML document tree.

mxml_node_t *mxmlNewXML (
 const char *version
);

Parameters

version
Version number to use

Return Value

New ?xml node

Discussion

The "version" argument specifies the version number
to put in the ?xml element node. If NULL, version 1.0
is assumed.

mxmlRelease

Release a node.

int mxmlRelease (
 mxml_node_t *node

Mini-XML Programmers Manual, Version 2.7

120 mxmlNewTextf

);

Parameters

node
Node

Return Value

New reference count

Discussion

When the reference count reaches zero, the node
(and any children) is deleted via mxmlDelete().

mxmlRemove

Remove a node from its parent.

void mxmlRemove (
 mxml_node_t *node
);

Parameters

node
Node to remove

Discussion

Does not free memory used by the node - use
mxmlDelete() for that. This function does nothing if
the node has no parent.

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.3 mxmlRelease 121

mxmlRetain

Retain a node.

int mxmlRetain (
 mxml_node_t *node
);

Parameters

node
Node

Return Value

New reference count

mxmlSAXLoadFd

Load a file descriptor into an XML node tree using a
SAX callback.

mxml_node_t *mxmlSAXLoadFd (
 mxml_node_t *top,
 int fd,
 mxml_load_cb_t cb,
 mxml_sax_cb_t sax_cb,
 void *sax_data
);

Parameters

top
Top node

fd

Mini-XML Programmers Manual, Version 2.7

122 Mini-XML 2.3 mxmlRetain

File descriptor to read from
cb

Callback function or MXML_NO_CALLBACK
sax_cb

SAX callback or MXML_NO_CALLBACK
sax_data

SAX user data

Return Value

First node or NULL if the file could not be read.

Discussion

The nodes in the specified file are added to the
specified top node. If no top node is provided, the
XML file MUST be well-formed with a single parent
node like <?xml> for the entire file. The callback
function returns the value type that should be used for
child nodes. If MXML_NO_CALLBACK is specified
then all child nodes will be either MXML_ELEMENT
or MXML_TEXT nodes.

The constants MXML_INTEGER_CALLBACK,
MXML_OPAQUE_CALLBACK,
MXML_REAL_CALLBACK, and
MXML_TEXT_CALLBACK are defined for loading
child nodes of the specified type.

The SAX callback must call mxmlRetain() for any
nodes that need to be kept for later use. Otherwise,
nodes are deleted when the parent node is closed or
after each data, comment, CDATA, or directive node.

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.3 mxmlSAXLoadFd 123

mxmlSAXLoadFile

Load a file into an XML node tree using a SAX
callback.

mxml_node_t *mxmlSAXLoadFile (
 mxml_node_t *top,
 FILE *fp,
 mxml_load_cb_t cb,
 mxml_sax_cb_t sax_cb,
 void *sax_data
);

Parameters

top
Top node

fp
File to read from

cb
Callback function or MXML_NO_CALLBACK

sax_cb
SAX callback or MXML_NO_CALLBACK

sax_data
SAX user data

Return Value

First node or NULL if the file could not be read.

Discussion

The nodes in the specified file are added to the
specified top node. If no top node is provided, the
XML file MUST be well-formed with a single parent
node like <?xml> for the entire file. The callback

Mini-XML Programmers Manual, Version 2.7

124 Mini-XML 2.3 mxmlSAXLoadFile

function returns the value type that should be used for
child nodes. If MXML_NO_CALLBACK is specified
then all child nodes will be either MXML_ELEMENT
or MXML_TEXT nodes.

The constants MXML_INTEGER_CALLBACK,
MXML_OPAQUE_CALLBACK,
MXML_REAL_CALLBACK, and
MXML_TEXT_CALLBACK are defined for loading
child nodes of the specified type.

The SAX callback must call mxmlRetain() for any
nodes that need to be kept for later use. Otherwise,
nodes are deleted when the parent node is closed or
after each data, comment, CDATA, or directive node.

mxmlSAXLoadString

Load a string into an XML node tree using a SAX
callback.

mxml_node_t *mxmlSAXLoadString (
 mxml_node_t *top,
 const char *s,
 mxml_load_cb_t cb,
 mxml_sax_cb_t sax_cb,
 void *sax_data
);

Parameters

top
Top node

s
String to load

cb

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.3 mxmlSAXLoadString 125

Callback function or MXML_NO_CALLBACK
sax_cb

SAX callback or MXML_NO_CALLBACK
sax_data

SAX user data

Return Value

First node or NULL if the string has errors.

Discussion

The nodes in the specified string are added to the
specified top node. If no top node is provided, the
XML string MUST be well-formed with a single parent
node like <?xml> for the entire string. The callback
function returns the value type that should be used for
child nodes. If MXML_NO_CALLBACK is specified
then all child nodes will be either MXML_ELEMENT
or MXML_TEXT nodes.

The constants MXML_INTEGER_CALLBACK,
MXML_OPAQUE_CALLBACK,
MXML_REAL_CALLBACK, and
MXML_TEXT_CALLBACK are defined for loading
child nodes of the specified type.

The SAX callback must call mxmlRetain() for any
nodes that need to be kept for later use. Otherwise,
nodes are deleted when the parent node is closed or
after each data, comment, CDATA, or directive node.

mxmlSaveAllocString

Save an XML tree to an allocated string.

Mini-XML Programmers Manual, Version 2.7

126 Mini-XML 2.3 mxmlSAXLoadString

char *mxmlSaveAllocString (
 mxml_node_t *node,
 mxml_save_cb_t cb
);

Parameters

node
Node to write

cb
Whitespace callback or
MXML_NO_CALLBACK

Return Value

Allocated string or NULL

Discussion

This function returns a pointer to a string containing
the textual representation of the XML node tree. The
string should be freed using the free() function when
you are done with it. NULL is returned if the node
would produce an empty string or if the string cannot
be allocated.

The callback argument specifies a function that
returns a whitespace string or NULL before and after
each element. If MXML_NO_CALLBACK is specified,
whitespace will only be added before MXML_TEXT
nodes with leading whitespace and before attribute
names inside opening element tags.

Mini-XML Programmers Manual, Version 2.7

mxmlSaveAllocString 127

mxmlSaveFd

Save an XML tree to a file descriptor.

int mxmlSaveFd (
 mxml_node_t *node,
 int fd,
 mxml_save_cb_t cb
);

Parameters

node
Node to write

fd
File descriptor to write to

cb
Whitespace callback or
MXML_NO_CALLBACK

Return Value

0 on success, -1 on error.

Discussion

The callback argument specifies a function that
returns a whitespace string or NULL before and after
each element. If MXML_NO_CALLBACK is specified,
whitespace will only be added before MXML_TEXT
nodes with leading whitespace and before attribute
names inside opening element tags.

Mini-XML Programmers Manual, Version 2.7

128 mxmlSaveFd

mxmlSaveFile

Save an XML tree to a file.

int mxmlSaveFile (
 mxml_node_t *node,
 FILE *fp,
 mxml_save_cb_t cb
);

Parameters

node
Node to write

fp
File to write to

cb
Whitespace callback or
MXML_NO_CALLBACK

Return Value

0 on success, -1 on error.

Discussion

The callback argument specifies a function that
returns a whitespace string or NULL before and after
each element. If MXML_NO_CALLBACK is specified,
whitespace will only be added before MXML_TEXT
nodes with leading whitespace and before attribute
names inside opening element tags.

Mini-XML Programmers Manual, Version 2.7

mxmlSaveFile 129

mxmlSaveString

Save an XML node tree to a string.

int mxmlSaveString (
 mxml_node_t *node,
 char *buffer,
 int bufsize,
 mxml_save_cb_t cb
);

Parameters

node
Node to write

buffer
String buffer

bufsize
Size of string buffer

cb
Whitespace callback or
MXML_NO_CALLBACK

Return Value

Size of string

Discussion

This function returns the total number of bytes that
would be required for the string but only copies
(bufsize - 1) characters into the specified buffer.

The callback argument specifies a function that
returns a whitespace string or NULL before and after
each element. If MXML_NO_CALLBACK is specified,

Mini-XML Programmers Manual, Version 2.7

130 mxmlSaveString

whitespace will only be added before MXML_TEXT
nodes with leading whitespace and before attribute
names inside opening element tags.

mxmlSetCDATA

Set the element name of a CDATA node.

int mxmlSetCDATA (
 mxml_node_t *node,
 const char *data
);

Parameters

node
Node to set

data
New data string

Return Value

0 on success, -1 on failure

Discussion

The node is not changed if it (or its first child) is not a
CDATA element node.

mxmlSetCustom

Set the data and destructor of a custom data node.

int mxmlSetCustom (
 mxml_node_t *node,

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.3 mxmlSetCDATA 131

 void *data,
 mxml_custom_destroy_cb_t destroy
);

Parameters

node
Node to set

data
New data pointer

destroy
New destructor function

Return Value

0 on success, -1 on failure

Discussion

The node is not changed if it (or its first child) is not a
custom node.

mxmlSetCustomHandlers

Set the handling functions for custom data.

void mxmlSetCustomHandlers (
 mxml_custom_load_cb_t load,
 mxml_custom_save_cb_t save
);

Parameters

load
Load function

save

Mini-XML Programmers Manual, Version 2.7

132 Mini-XML 2.1 mxmlSetCustom

Save function

Discussion

The load function accepts a node pointer and a data
string and must return 0 on success and non-zero on
error.

The save function accepts a node pointer and must
return a malloc'd string on success and NULL on
error.

mxmlSetElement

Set the name of an element node.

int mxmlSetElement (
 mxml_node_t *node,
 const char *name
);

Parameters

node
Node to set

name
New name string

Return Value

0 on success, -1 on failure

Discussion

The node is not changed if it is not an element node.

Mini-XML Programmers Manual, Version 2.7

mxmlSetCustomHandlers 133

mxmlSetErrorCallback

Set the error message callback.

void mxmlSetErrorCallback (
 mxml_error_cb_t cb
);

Parameters

cb
Error callback function

mxmlSetInteger

Set the value of an integer node.

int mxmlSetInteger (
 mxml_node_t *node,
 int integer
);

Parameters

node
Node to set

integer
Integer value

Return Value

0 on success, -1 on failure

Mini-XML Programmers Manual, Version 2.7

134 mxmlSetErrorCallback

Discussion

The node is not changed if it (or its first child) is not an
integer node.

mxmlSetOpaque

Set the value of an opaque node.

int mxmlSetOpaque (
 mxml_node_t *node,
 const char *opaque
);

Parameters

node
Node to set

opaque
Opaque string

Return Value

0 on success, -1 on failure

Discussion

The node is not changed if it (or its first child) is not an
opaque node.

mxmlSetReal

Set the value of a real number node.

Mini-XML Programmers Manual, Version 2.7

mxmlSetInteger 135

int mxmlSetReal (
 mxml_node_t *node,
 double real
);

Parameters

node
Node to set

real
Real number value

Return Value

0 on success, -1 on failure

Discussion

The node is not changed if it (or its first child) is not a
real number node.

mxmlSetText

Set the value of a text node.

int mxmlSetText (
 mxml_node_t *node,
 int whitespace,
 const char *string
);

Parameters

node
Node to set

whitespace

Mini-XML Programmers Manual, Version 2.7

136 mxmlSetReal

1 = leading whitespace, 0 = no whitespace
string

String

Return Value

0 on success, -1 on failure

Discussion

The node is not changed if it (or its first child) is not a
text node.

mxmlSetTextf

Set the value of a text node to a formatted string.

int mxmlSetTextf (
 mxml_node_t *node,
 int whitespace,
 const char *format,
 ...
);

Parameters

node
Node to set

whitespace
1 = leading whitespace, 0 = no whitespace

format
Printf-style format string

...
Additional arguments as needed

Mini-XML Programmers Manual, Version 2.7

mxmlSetText 137

Return Value

0 on success, -1 on failure

Discussion

The node is not changed if it (or its first child) is not a
text node.

mxmlSetUserData

Set the user data pointer for a node.

int mxmlSetUserData (
 mxml_node_t *node,
 void *data
);

Parameters

node
Node to set

data
User data pointer

Return Value

0 on success, -1 on failure

mxmlSetWrapMargin

Set the wrap margin when saving XML data.

void mxmlSetWrapMargin (
 int column

Mini-XML Programmers Manual, Version 2.7

138 mxmlSetTextf

);

Parameters

column
Column for wrapping, 0 to disable wrapping

Discussion

Wrapping is disabled when "column" is 0.

mxmlWalkNext

Walk to the next logical node in the tree.

mxml_node_t *mxmlWalkNext (
 mxml_node_t *node,
 mxml_node_t *top,
 int descend
);

Parameters

node
Current node

top
Top node

descend
Descend into tree - MXML_DESCEND,
MXML_NO_DESCEND, or
MXML_DESCEND_FIRST

Return Value

Next node or NULL

Mini-XML Programmers Manual, Version 2.7

 Mini-XML 2.3 mxmlSetWrapMargin 139

Discussion

The descend argument controls whether the first child
is considered to be the next node. The top node
argument constrains the walk to the node's children.

mxmlWalkPrev

Walk to the previous logical node in the tree.

mxml_node_t *mxmlWalkPrev (
 mxml_node_t *node,
 mxml_node_t *top,
 int descend
);

Parameters

node
Current node

top
Top node

descend
Descend into tree - MXML_DESCEND,
MXML_NO_DESCEND, or
MXML_DESCEND_FIRST

Return Value

Previous node or NULL

Discussion

The descend argument controls whether the previous
node's last child is considered to be the previous
node. The top node argument constrains the walk to

Mini-XML Programmers Manual, Version 2.7

140 mxmlWalkNext

the node's children.

Data Types

mxml_custom_destroy_cb_t

Custom data destructor

typedef void (*mxml_custom_destroy_cb_t)(void *);

mxml_custom_load_cb_t

Custom data load callback function

typedef int (*mxml_custom_load_cb_t)(mxml_node_t
*, const char *);

mxml_custom_save_cb_t

Custom data save callback function

typedef char
*(*mxml_custom_save_cb_t)(mxml_node_t *);

mxml_entity_cb_t

Entity callback function

typedef int (*mxml_entity_cb_t)(const char *);

mxml_error_cb_t

Error callback function

Mini-XML Programmers Manual, Version 2.7

mxmlWalkPrev 141

typedef void (*mxml_error_cb_t)(const char *);

mxml_index_t

An XML node index.

typedef struct mxml_index_s mxml_index_t;

mxml_load_cb_t

Load callback function

typedef mxml_type_t
(*mxml_load_cb_t)(mxml_node_t *);

mxml_node_t

An XML node.

typedef struct mxml_node_s mxml_node_t;

mxml_save_cb_t

Save callback function

typedef const char *(*mxml_save_cb_t)(mxml_node_t
*, int);

mxml_sax_cb_t

SAX callback function

typedef void (*mxml_sax_cb_t)(mxml_node_t *,
mxml_sax_event_t, void *);

Mini-XML Programmers Manual, Version 2.7

142 mxml_error_cb_t

mxml_sax_event_t

SAX event type.

typedef enum mxml_sax_event_e mxml_sax_event_t;

mxml_type_t

The XML node type.

typedef enum mxml_type_e mxml_type_t;

Constants

mxml_sax_event_e

SAX event type.

Constants

MXML_SAX_CDATA
CDATA node

MXML_SAX_COMMENT
Comment node

MXML_SAX_DATA
Data node

MXML_SAX_DIRECTIVE
Processing directive node

MXML_SAX_ELEMENT_CLOSE
Element closed

MXML_SAX_ELEMENT_OPEN
Element opened

Mini-XML Programmers Manual, Version 2.7

mxml_sax_event_t 143

mxml_type_e

The XML node type.

Constants

MXML_CUSTOM Mini-XML 2.1
Custom data

MXML_ELEMENT
XML element with attributes

MXML_IGNORE Mini-XML 2.3
Ignore/throw away node

MXML_INTEGER
Integer value

MXML_OPAQUE
Opaque string

MXML_REAL
Real value

MXML_TEXT
Text fragment

Mini-XML Programmers Manual, Version 2.7

144 mxml_type_e

XML Schema

This appendix provides the XML schema that is used
for the XML files produced by mxmldoc. This schema
is available on-line at:

 http://www.minixml.org/mxmldoc.xsd

mxmldoc.xsd
<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Mini-XML 2.7 documentation schema for mxmldoc output.
 Copyright 2003-2011 by Michael Sweet.
 </xsd:documentation>
 </xsd:annotation>

 <!-- basic element definitions -->
 <xsd:element name="argument" type="argumentType"/>
 <xsd:element name="class" type="classType"/>
 <xsd:element name="constant" type="constantType"/>
 <xsd:element name="description" type="xsd:string"/>

XML Schema 145

 <xsd:element name="enumeration" type="enumerationType"/>
 <xsd:element name="function" type="functionType"/>
 <xsd:element name="mxmldoc" type="mxmldocType"/>
 <xsd:element name="namespace" type="namespaceType"/>
 <xsd:element name="returnvalue" type="returnvalueType"/>
 <xsd:element name="seealso" type="identifierList"/>
 <xsd:element name="struct" type="structType"/>
 <xsd:element name="typedef" type="typedefType"/>
 <xsd:element name="type" type="xsd:string"/>
 <xsd:element name="union" type="unionType"/>
 <xsd:element name="variable" type="variableType"/>

 <!-- descriptions of complex elements -->
 <xsd:complexType name="argumentType">
 <xsd:sequence>
 <xsd:element ref="type" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="default" type="xsd:string" use="optional"/>
 <xsd:attribute name="name" type="identifier" use="required"/>
 <xsd:attribute name="direction" type="direction" use="optional"
 default="I"/>
 </xsd:complexType>

 <xsd:complexType name="classType">
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="class"/>
 <xsd:element ref="enumeration"/>
 <xsd:element ref="function"/>
 <xsd:element ref="struct"/>
 <xsd:element ref="typedef"/>
 <xsd:element ref="union"/>
 <xsd:element ref="variable"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="name" type="identifier" use="required"/>
 <xsd:attribute name="parent" type="xsd:string" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="constantType">
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="identifier" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="enumerationType">
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="constant" minOccurs="1" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="identifier" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="functionType">
 <xsd:sequence>

Mini-XML Programmers Manual, Version 2.7

146 mxmldoc.xsd

 <xsd:element ref="returnvalue" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="argument" minOccurs="1" maxOccurs="unbounded"/>
 <xsd:element ref="seealso" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="identifier" use="required"/>
 <xsd:attribute name="scope" type="scope" use="optional"/>
 </xsd:complexType>

 <xsd:complexType name="mxmldocType">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="class"/>
 <xsd:element ref="enumeration"/>
 <xsd:element ref="function"/>
 <xsd:element ref="namespace"/>
 <xsd:element ref="struct"/>
 <xsd:element ref="typedef"/>
 <xsd:element ref="union"/>
 <xsd:element ref="variable"/>
 </xsd:choice>
 </xsd:complexType>

 <xsd:complexType name="namespaceType">
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="class"/>
 <xsd:element ref="enumeration"/>
 <xsd:element ref="function"/>
 <xsd:element ref="struct"/>
 <xsd:element ref="typedef"/>
 <xsd:element ref="union"/>
 <xsd:element ref="variable"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="name" type="identifier" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="returnvalueType">
 <xsd:sequence>
 <xsd:element ref="type" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="structType">
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element ref="variable"/>
 <xsd:element ref="function"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="name" type="identifier" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="typedefType">
 <xsd:sequence>

Mini-XML Programmers Manual, Version 2.7

mxmldoc.xsd 147

 <xsd:element ref="type" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="identifier" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="unionType">
 <xsd:sequence>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 <xsd:element ref="variable" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="identifier" use="required"/>
 </xsd:complexType>

 <xsd:complexType name="variableType">
 <xsd:sequence>
 <xsd:element ref="type" minOccurs="1" maxOccurs="1"/>
 <xsd:element ref="description" minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="identifier" use="required"/>
 </xsd:complexType>

 <!-- data types -->
 <xsd:simpleType name="direction">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="I"/>
 <xsd:enumeration value="O"/>
 <xsd:enumeration value="IO"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="identifier">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[a-zA-Z_(.]([a-zA-Z_(.,)* 0-9])*"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="identifierList">
 <xsd:list itemType="identifier"/>
 </xsd:simpleType>

 <xsd:simpleType name="scope">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value=""/>
 <xsd:enumeration value="private"/>
 <xsd:enumeration value="protected"/>
 <xsd:enumeration value="public"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

Mini-XML Programmers Manual, Version 2.7

148 mxmldoc.xsd

	Table of Contents
	Introduction
	Organization of This Document
	Notation Conventions
	Abbreviations
	Other References
	Legal Stuff

	Building, Installing, and Packaging Mini-XML
	Compiling Mini-XML
	Compiling with Visual C++
	Compiling with Command-Line Tools

	Installing Mini-XML
	Creating Mini-XML Packages

	Getting Started with Mini-XML
	The Basics
	Nodes
	CDATA Nodes
	Custom Nodes
	Comment Nodes
	Element Nodes
	Integer Nodes
	Opaque Nodes
	Text Nodes
	Processing Instruction Nodes
	Real Number Nodes
	XML Declaration Nodes

	Creating XML Documents
	Loading XML
	Saving XML
	Controlling Line Wrapping

	Memory Management
	Finding and Iterating Nodes
	Finding Specific Nodes

	More Mini-XML Programming Techniques
	Load Callbacks
	Save Callbacks
	Custom Data Types
	Changing Node Values
	Formatted Text
	Indexing
	SAX (Stream) Loading of Documents

	Using the mxmldoc Utility
	The Basics
	Creating Man Pages
	Creating Xcode Documentation Sets

	Commenting Your Code
	Titles, Sections, and Introductions

	Mini-XML License
	Release Notes
	Changes in Mini-XML 2.7
	Changes in Mini-XML 2.6
	Changes in Mini-XML 2.5
	Changes in Mini-XML 2.4
	Changes in Mini-XML 2.3
	Changes in Mini-XML 2.2.2
	Changes in Mini-XML 2.2.1
	Changes in Mini-XML 2.2
	Changes in Mini-XML 2.1
	Changes in Mini-XML 2.0
	Changes in Mini-XML 1.3
	Changes in Mini-XML 1.2
	Changes in Mini-XML 1.1.2
	Changes in Mini-XML 1.1.1
	Changes in Mini-XML 1.1
	Changes in Mini-XML 1.0
	Changes in Mini-XML 0.93
	Changes in Mini-XML 0.92
	Changes in Mini-XML 0.91
	Changes in Mini-XML 0.9

	Library Reference
	Contents
	Functions
	mxmlAdd
	mxmlDelete
	mxmlElementDeleteAttr
	mxmlElementGetAttr
	mxmlElementSetAttr
	mxmlElementSetAttrf
	mxmlEntityAddCallback
	mxmlEntityGetName
	mxmlEntityGetValue
	mxmlEntityRemoveCallback
	mxmlFindElement
	mxmlFindPath
	mxmlGetCDATA
	mxmlGetCustom
	mxmlGetElement
	mxmlGetFirstChild
	mxmlGetInteger
	mxmlGetLastChild
	mxmlGetNextSibling
	mxmlGetOpaque
	mxmlGetParent
	mxmlGetPrevSibling
	mxmlGetReal
	mxmlGetRefCount
	mxmlGetText
	mxmlGetType
	mxmlGetUserData
	mxmlIndexDelete
	mxmlIndexEnum
	mxmlIndexFind
	mxmlIndexGetCount
	mxmlIndexNew
	mxmlIndexReset
	mxmlLoadFd
	mxmlLoadFile
	mxmlLoadString
	mxmlNewCDATA
	mxmlNewCustom
	mxmlNewElement
	mxmlNewInteger
	mxmlNewOpaque
	mxmlNewReal
	mxmlNewText
	mxmlNewTextf
	mxmlNewXML
	mxmlRelease
	mxmlRemove
	mxmlRetain
	mxmlSAXLoadFd
	mxmlSAXLoadFile
	mxmlSAXLoadString
	mxmlSaveAllocString
	mxmlSaveFd
	mxmlSaveFile
	mxmlSaveString
	mxmlSetCDATA
	mxmlSetCustom
	mxmlSetCustomHandlers
	mxmlSetElement
	mxmlSetErrorCallback
	mxmlSetInteger
	mxmlSetOpaque
	mxmlSetReal
	mxmlSetText
	mxmlSetTextf
	mxmlSetUserData
	mxmlSetWrapMargin
	mxmlWalkNext
	mxmlWalkPrev

	Data Types
	mxml_custom_destroy_cb_t
	mxml_custom_load_cb_t
	mxml_custom_save_cb_t
	mxml_entity_cb_t
	mxml_error_cb_t
	mxml_index_t
	mxml_load_cb_t
	mxml_node_t
	mxml_save_cb_t
	mxml_sax_cb_t
	mxml_sax_event_t
	mxml_type_t

	Constants
	mxml_sax_event_e
	mxml_type_e

	XML Schema
	mxmldoc.xsd

