1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Argyll Usage Scenarios</title>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
</head>
<body>
<h2><u>Typical usage Scenarios and Examples</u></h2>
Choose a task from the list below. For more details on alternative
options, follow the links to the individual tools being used.<br>
<br>
Note that by default it is assumed that ICC profile have the file
extension <span style="font-weight: bold;">.icm</span>, but that on
Apple OS X and Unix/Linux platforms, the <span style="font-weight:
bold;">.icc</span> extension is expected and should be used.<br>
<h4><a href="#PM1">Profiling Displays</a></h4>
<h4> <a href="#PM1a">Checking you can access your
display<br>
</a></h4>
<h4> <a href="#PM1b">Adjusting and Calibrating a
displays</a></h4>
<h4> <a href="#PM1c">Adjusting, calibrating and
profiling in one step<br>
</a><span style="font-weight: bold;"></span><span
style="font-weight: bold;"></span><span style="text-decoration:
underline;"></span></h4>
<h4> <a href="#PM2">Creating display test values</a></h4>
<h4> <a href="#PM3">Taking readings from a
display</a></h4>
<h4> <a href="#PM4">Creating a display profile</a></h4>
<h4> <span style="text-decoration: underline;"></span><a
href="#PM5">Installing a display profile</a></h4>
<h4> <span style="text-decoration: underline;"></span><a
href="#PM6">Expert tips when measuring displays</a></h4>
<h4> <span style="text-decoration: underline;"></span><a
href="#PM7">Calibrating and profiling a display that doesn't
have VideoLUT access.</a></h4>
<h4><br>
<a href="#PS1">Profiling Scanners and other input devices such as
cameras<br>
</a></h4>
<h4> <a href="#PS2">Types of test charts</a></h4>
<h4> <a href="#PS3">Taking readings from a
scanner</a></h4>
<h4> <a href="#PS4">Creating a scanner profile</a></h4>
<h4><br>
<a href="#PP1">Profiling Printers</a></h4>
<h4> <a href="#PP2">Creating a print profile
test chart</a></h4>
<h4> <a href="Scenarios.html#PP2b">Printing a
print profile test chart</a></h4>
<h4> <a href="#PP3">Reading a print test chart
using an instrument</a></h4>
<h4> <a href="#PP4">Reading a print test chart
using a scanner</a></h4>
<h4> </h4>
<h4> <a href="#PP5">Creating a printer profile<br>
</a></h4>
<h4> <a href="#PP6">Choosing a black generation
curve</a></h4>
<br>
<h4><a href="Scenarios.html#PC1">Calibrating Printers</a></h4>
<h4> <a href="Scenarios.html#PC2">Calibrated
print workflows</a></h4>
<h4> <a href="Scenarios.html#PC3">Creating a
print calibration test chart</a></h4>
<h4> </h4>
<h4> <a href="Scenarios.html#PC4">Creating a
printer calibration<br>
</a></h4>
<h4> <a href="Scenarios.html#PC5">Using a printer
calibration</a></h4>
<h4> <a href="#PC6">How profile ink limits are
handled when calibration is being used<br>
</a></h4>
<h4> <a href="#LP1">Linking Profiles</a></h4>
<p> <b><a href="#LP3">Image dependent gamut
mapping using device links</a></b><br>
</p>
<p> <b><a href="#LP2">Soft Proofing Link</a></b><br>
</p>
<h4> <a href="#TR1">Transforming colorspaces of raster files</a></h4>
<h4><a href="#FR1">Using fakeread to re-create profiles</a></h4>
<h4></h4>
<h4> <a href="#TV1">Creating Video Calibration 3DLuts</a></h4>
<h4><a href="Scenarios.html#TV2">Verifying Video Calibration 3DLuts</a></h4>
<br>
<hr style="width: 100%; height: 2px;"><br>
<h3><a name="PM1"></a>Profiling Displays</h3>
Argyll supports adjusting, calibrating and profiling of displays
using one of a number of instruments - see <a
href="instruments.html">instruments</a> for a current list.
Adjustment and calibration are prior steps to profiling, in which
the display is adjusted using it's screen controls, and then
per channel lookup tables are created to make it meet a well behaved
response of the desired type. The process following that of
creating a display profile is then similar to that of all other
output devices :- first a set of device colorspace test values needs
to be created to exercise the display, then these values need to be
displayed, while taking measurements of the resulting colors using
the instrument. Finally, the device value/measured color values need
to be converted into an ICC profile.<br>
<br>
<h3><a name="PM1a"></a>Checking you can access your display<br>
</h3>
You might first want to check that you are accessing and can
calibrate your display. You can do this using the <a
href="dispwin.html">dispwin</a><span style="font-weight: bold;"></span>
tool<span style="font-weight: bold;">.</span> If you just run <span
style="font-weight: bold;">dispwin</span> it will create a test
window and run through a series of test colors before checking that
the VideoLUT can be accessed by the display. If you invoke the usage
for <span style="font-weight: bold;">dispwin</span> (by giving it
an unrecognized option, e.g. <span style="font-weight: bold;">-?</span>)
then it will show a list of available displays next to the <span
style="font-weight: bold;"><span style="font-weight: bold;">-d</span></span>
flag. Make sure that you are accessing the display you intend to
calibrate and profile, and that the VideoLUT is effective (the <span
style="font-weight: bold;">-r</span> flag can be used to just run
the VideoLUT test). You can also try clearing the VideoLUTs using
the <span style="font-weight: bold;">-c</span> flag, and loading a
deliberately strange looking calibration <span style="font-weight:
bold;">strange.cal</span> that is provided in the Argyll <span
style="font-weight: bold;">ref</span> directory.<br>
<br>
Note that calibrating and/or profiling <span style="font-weight:
bold;">remote</span> displays is possible using X11 or a web
browser (see <span style="font-weight: bold;">-d</span> option of
dispcal and dispread), or by using some external program to send
test colors to a display (see <span style="font-weight: bold;">-C</span>
and <span style="font-weight: bold;">-M</span> options of dispcal
and dispread), but you may want to refer to <a href="#PM7">Calibrating
and profiling a display that doesn't have VideoLUT access</a>.<br>
<br>
<h3><a name="PM1b"></a>Adjusting and Calibrating Displays</h3>
Please read <a href="calvschar.html">What's the difference between
Calibration and Characterization ?</a> if you are unclear as to
the difference .<br>
<br>
<u>Note</u> that if your display has a good luminous response
characteristic, that you may get a better overall result by
adjusting the display curves to your desired white point and
brightness using displcal, and then skipping the creation of
calibration curves. Apart from saving time, this may give an overall
smoother looking result, depending on the<br>
hardware resolution available in the 1D lookup tables used for
calibration. In this case, after adjusting the display, exit from
dispcal and skip to <a
href="file:///D:/src/argyll/doc/Scenarios.html#PM2">Profiling in
several steps: Creating display test values</a>).<br>
<br>
The first step is to decide what the target should be for adjustment
and calibration. This boils down to three things: The desired
brightness, the desired white point, and the desired response curve.
The native brightness and white points of a display may be different
to the desired characteristics for some purposes. For instance, for
graphic arts use, it might be desirable to run with a warmer white
point of about 5000 degrees Kelvin, rather than the default display
white point of 6500 to 9000 Kelvin. Some LCD displays are too bright
to compare to printed material under available lighting, so it might
be desirable to reduce the maximum brightness.<br>
<br>
You can run <a href="dispcal.html#r">dispcal -r</a> to check on how
your display is currently set up. (you may have to run this as <span
style="text-decoration: underline; color: rgb(204, 51, 204);">dispcal
-yl
-r</span> for an LCD display, or <span style="text-decoration:
underline; color: rgb(204, 51, 204);">dispcal -yc -r</span> for a
CRT display with most of the colorimeter instruments. If so, this
will apply to all of the following examples.)<br>
<br>
Once this is done, <a href="dispcal.html">dispcal</a> can be run to
guide you through the display adjustments, and then calibrate it. By
default, the brightness and white point will be kept the same as the
devices natural brightness and white point. The default response
curve is a gamma of 2.4, except for Apple OS X systems prior to 10.6
where a gamma of 1.8 is the default. 2.4 is close to that of
many monitors, and close to that of the sRGB colorspace. <br>
<br>
A typical calibration that leaves the brightness and white point
alone, might be:<br>
<br>
<a href="dispcal.html">dispcal</a> -v TargetA<br>
<br>
which will result in a "TargetA.cal" calibration file, that can then
be used during the profiling stage.<br>
<br>
If the absolutely native response of the display is desired during
profiling, then calibration should be skipped, and the linear.cal
file from the "ref" directory used instead as the argument to the -k
flag of <span style="font-weight: bold;">dispread</span>.<br>
<br>
<b>Dispcal</b> will display a test window in the middle of the
screen, and issue a series of instructions about placing the
instrument on the display. You may need to make sure that the
display cursor is not in the test window, and it may also be
necessary to disable any screensaver and powersavers before starting
the process, although both <span style="font-weight: bold;">dispcal</span>
and <span style="font-weight: bold;">dispread</span> will attempt
to do this for you. It's also highly desirable on CRT's, to clear
your screen of any white or bright background images or windows
(running your shell window with white text on a black background
helps a lot here.), or at least keep any bright areas away from the
test window, and be careful not to change anything on the display
while the readings are taken. Lots of bright images or windows can
affect the ability to measure the black point accurately, and
changing images on the display can cause inconsistency in the
readings, and leading to poor results.<span
style="font-weight: bold;"></span> LCD displays seem to be less
influenced by what else is on the screen.<br>
<br>
If <span style="font-weight: bold;">dispcal</span> is run without
arguments, it will provide a usage screen. The <span
style="font-weight: bold;">-c</span> parameter allows selecting a
communication port for an instrument, or selecting the instrument
you want to use, and the <a href="dispcal.html#d"><span
style="font-weight: bold;">-d</span></a> option allows selecting
a target display on a multi-display system. On some multi-monitor
systems, it may not be possible to independently calibrate and
profile each display if they appear as one single screen to the
operating system, or if it is not possible to set separate video
lookup tables for each display. You can change the position and size
of the test window using the <a href="dispcal.html#P"><span
style="font-weight: bold;">-P</span></a> parameter. You can
determine how best to arrange the test window, as well as whether
each display has separate video lookup capability, by experimenting
with the <a href="dispwin.html">dispwin</a> tool. <br>
<br>
For a more detailed discussion on interactively adjusting the
display controls using <span style="font-weight: bold;">dispcal</span>,
see <a href="dispcal.html#Adjustment">dispcal-adjustment</a>. Once
you have adjusted and calibrated your display, you can move on to
the next step.<br>
<br>
When you have calibrated and profiled your display, you can keep it
calibrated using the <a href="dispcal.html#u">dispcal -u</a>
option.<br>
<br>
<h4><a name="PM1c"></a>Adjusting, calibrating and profiling in one
step.</h4>
If a simple matrix/shaper display profile is all that is desired, <span
style="font-weight: bold;">dispcal</span> can be used to do this,
permitting display adjustment, calibration and profiling all in one
operation. This is done by using the <span style="font-weight:
bold;"><span style="font-weight: bold;">dispcal </span>-o</span>
flag:<br>
<br>
<a href="dispcal.html">dispcal</a> <a href="dispcal.html#v">-v</a>
<a href="dispcal.html#o">-o</a> <a href="dispcal.html#p1">TargetA</a><br>
<br>
This will create both a TargetA.cal file, but also a TargetA.icm
file. See <a href="dispcal.html#o">-o</a> and <a
href="dispcal.html#O">-O</a> for other variations.<br>
<br>
For more flexibility in creating a display profile, the separate
steps of creating characterization test values using <span
style="font-weight: bold;">targen</span>, reading them from the
display using <span style="font-weight: bold;">dispread</span>, and
then creating a profile using <span style="font-weight: bold;">colprof</span>
are used. The following steps illustrate this:<br>
<h4><a name="PM2"></a>Profiling in several steps: Creating display
test values</h4>
If the <span style="font-weight: bold;">dispcal</span> has not been
used to create a display profile at the same time as adjustment and
calibration, then it can be used to create a suitable set of
calibration curves as the first step, or the calibration step can be
omitted, and the display cansimply be profiled.<br>
<br>
The first step in profiling any output device, is to create a set of
device colorspace test values. The important parameters needed are:
<br>
<ul>
<li>What colorspace does the device use ?</li>
<li>How many test patches do I want to use ?</li>
<li>What information do I already have about how the device
behaves ?</li>
</ul>
For a display device, the colorspace will be RGB. The number
of test patches will depend somewhat on what quality profile you
want to make, what type of profile you want to make, and how long
you are prepared to wait when testing the display.<br>
At a minimum, a few hundred values are needed. A matrix/shaper type
of profile can get by with fewer test values, while a LUT based
profile will give better results if more test values are used. A
typical number might be 200-600 or so values, while 1000-2000 is not
an unreasonable number for a high quality characterization of a
display.<br>
<br>
To assist the choice of test patch values, it can help to have a
rough idea of how the device behaves. This could be in the form of
an ICC profile of a similar device, or a lower quality, or previous
profile for that particular device. If one were going to make a very
high quality LUT based profile, then it might be worthwhile to make
up a smaller, preliminary shaper/matrix profile using a few hundred
test points, before embarking on testing the device with several
thousand.<br>
<br>
Lets say that we ultimately want to make a profile for the device
"DisplayA", the simplest approach is to make a set of test values
that is independent of the characteristics of the particular device:<br>
<br>
<a href="targen.html">targen</a> <a href="targen.html#v">-v</a>
<a href="targen.html#d">-d3</a> <a href="targen.html#f">-f500</a>
<a href="targen.html#p1">DisplayA</a><br>
<br>
If there is a preliminary or previous profile called "OldDisplay"
available, and we want to try creating a "pre-conditioned" set of
test values that will more efficiently sample the device response,
then the following would achieve this:<br>
<u><br>
</u><a href="targen.html"> targen</a> <a href="targen.html#v">-v</a>
<a href="targen.html#d">-d3</a> <a href="targen.html#f">-f500</a>
<a href="targen.html#c">-cOldDisplay.icm</a> <a
href="targen.html#p1">DisplayA</a><br>
<br>
The output of <b>targen</b> will be the file DisplayA.ti1,
containing the device space test values, as well as expected CIE
values used for chart recognition purposes.<br>
<br>
<h4><a name="PM3"></a>Profiling in several steps: Taking readings
from a display</h4>
First it is necessary to connect your measurement instrument to your
computer, and check which communication port it is connected to. In
the following example, it is assumed that the instrument is
connected to the default port 1, which is either the first USB
instrument found, or serial port found. Invoking dispread so as to
display the usage information (by using a flag -? or --) will list
the identified serial and USB ports, and their labels.<br>
<br>
<a href="dispread.html">dispread</a> <a href="dispread.html#v">-v</a>
<a href="dispread.html#p1">DisplayA</a><br>
<br>
If we created a calibration for the display using <a
href="dispcal.html">dispcal</a>, then we will want to use this
when we take the display readings (e.g. TargetA.cal from the
calibration example)..<br>
<br>
<a href="dispread.html">dispread</a> <a href="dispread.html#v">-v</a>
<a href="dispread.html#k">-k TargetA.cal</a> <a
href="dispread.html#p1">DisplayA</a><br>
<br>
<b>dispread</b> will display a test window in the middle of the
screen, and issue a series of instructions about placing the
instrument on the display. You may need to make sure that the
display cursor is not in the test window, and it may also be
necessary to disable any screensaver before starting the process.
Exactly the same facilities are provided to select alternate
displays using the <span style="font-weight: bold;">-d</span>
parameter, and an alternate location and size for the test window
using the <span style="font-weight: bold;">-P</span> parameter as
with <span style="font-weight: bold;">dispcal</span>.<br>
<h4><a name="PM4"></a>Profiling in several steps: Creating a display
profile</h4>
There are two basic choices of profile type for a display, a
shaper/matrix profile, or a LUT based profile. They have different
tradeoffs. A shaper/matrix profile will work well on a well behaved
display, that is one that behaves in an additive color manner, will
give very smooth looking results, and needs fewer test points to
create. A LUT based profile on the other hand, will model any
display behaviour more accurately, and can accommodate gamut mapping
and different intent tables. Often it can show some unevenness and
contouring in the results though.<br>
<br>
To create a matrix/shaper profile, the following suffices:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Display A"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#a">-as</a> <a href="colprof.html#p1">DisplayA</a><br>
<br>
For a LUT based profile, where gamut mapping is desired, then a
source profile will need to be provided to define the source gamut.
For instance, if the display profile was likely to be linked to a
CMYK printing source profile, say "swop.icm" or "fogra39l.icm", then
the following would suffice:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Display A"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#S">-S</a><a href="colprof.html#S">
fogra39l.icm</a> <a href="colprof.html#c">-cpp</a> <a
href="colprof.html#d">-dmt</a> <a href="colprof.html#p1">DisplayA</a><br>
<br>
A fallback to using a specific source profile/gamut is to use a
general compression percentage as a gamut mapping:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Display A"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#S">-S</a><a href="colprof.html#S"> 20</a> <a
href="colprof.html#c">-cpp</a> <a href="colprof.html#d">-dmt</a>
<a href="colprof.html#p1">DisplayA</a><br>
<br>
Make sure you check the delta E report at the end of the profile
creation, to see if the sample data and profile is behaving
reasonably.<br>
If a calibration file was used with <a href="dispread.html">dispread</a>,
then it will be converted to a vcgt tag in the profile, so that the
operating system or other system color tools load the lookup curves
into the display hardware, when the profile is used.<br>
<h4><a name="PM5"></a>Installing a display profile</h4>
<a href="dispwin.html">dispwin</a> provides a convenient way of
installing a profile as the default system profile for the chosen
display:<br>
<br>
<a href="dispwin.html">dispwin</a> <a href="dispwin.html#I">-I</a>
<a href="dispwin.html#p1">DisplayA.icm</a><br>
<br>
This also sets the display to the calibration contained in the
profile. If you want to try out a calibration before installing the
profile, using dispwin without the <span style="font-weight: bold;">-I</span>
option will load a calibration (ICC profile or .cal file) into the
current display.<br>
<br>
Some systems will automatically set the display to the calibration
contained in the installed profile (ie. OS X), while on other
systems (ie. MSWindows and Linux/X11) it is necessary to use some
tool to do this. On MSWindows XP you could install the
optional <span style="font-weight: bold;">Microsoft Color Control Panel Applet for Windows XP</span>
available for download from Microsoft to do this, but <span
style="font-weight: bold;">NOTE</span> however that it seems to
have a <span style="font-weight: bold;">bug</span>, in that it
sometimes associates the profiles with the <span
style="font-weight: bold;">wrong monitor</span> entry. Other
display calibration tools will often install a similar tool, so
beware of there being multiple, competing programs. [ Commonly these
will be in your Start->Programs->Startup folder. ]<br>
On Microsoft Vista, you need to use dispwin -L or some other tool to
load the installed profiles calibration at startup.<br>
<br>
To use dispwin to load the installed profiles calibration to the
display, use<br>
<br>
<a href="dispwin.html">dispwin</a> <a href="dispwin.html#L">-L</a><br>
<br>
As per usual, you can select the appropriate display using the <a
href="dispwin.html#d">-d</a> flag.<br>
<br>
This can be automated on MSWindows and X11/Linux by adding this
command to an appropriate startup script.<br>
More system specific details, including how to create such startup
scripts are <a href="dispprofloc.html">here</a>. <br>
<br>
If you are using Microsoft <span style="font-weight: bold;">Vista</span>,
there is a known <span style="font-weight: bold;">bug</span> in
Vista that resets the calibration every time a fade-in effect is
executed, which happens if you lock and unlock the computer, resume
from sleep or hibernate, or User Access Control is activated. Using
<a href="dispwin.html">dispwin</a> <a href="dispwin.html#L">-L</a>
may not restore the calibration, because Vista filters out setting
(what it thinks) is a calibration that is already loaded. Use <a
href="dispwin.html">dispwin</a> <a href="dispwin.html#c">-c</a> <a
href="dispwin.html#L">-L</a><span style="font-family: monospace;"></span>
as a workaround, as this will first clear the calibration, then
re-load the current calibration.<br>
<br>
On X11/Linux systems, you could try adding <a href="dispwin.html">dispwin</a>
<a href="dispwin.html#L">-L</a> to your <span style="font-weight:
bold;">~/.config/autostart</span> file, so that your window
manager automatically sets calibration when it starts. If you are
running XRandR 1.2, you might consider running the experimental <a
href="dispwin.html#D">dispwin -E</a> in the background, as in its
"daemon" mode it will update the profile and calibration in response
to any changes in the the connected display.<br>
<br>
<h4><a name="PM6"></a>Expert tips when measuring displays:<br>
</h4>
Sometimes it can be difficult to get good quality, consistent and
visually relevant readings from displays, due to various practical
considerations with regard to instruments and the displays
themselves. Argyll's tools have some extra options that may assist
in overcoming these problems.<br>
<br>
If you are using an Eye-One Pro or ColorMunki spectrometer, then you
may wish to use the <a href="dispcal.html#H">high resolution
spectral mode</a> (<span style="font-weight: bold;">-H</span>).
This may be better at capturing the often narrow wavelength peaks
that are typical of display primary colors.<br>
<br>
All instruments depend on silicon sensors, and such sensors generate
a temperature dependant level of noise ("dark noise") that is
factored out of the measurements by a dark or black instrument
calibration. The spectrometers in particular need this calibration
before commencing each set of measurements. Often an instrument will
warm up as it sits on a display, and this warming up can cause the
dark noise to increase, leading to inaccuracies in dark patch
measurements. The longer the measurement takes, the worse this
problem is likely to be. One way of addressing this is to
"acclimatise" the instrument before commencing measurements by
placing it on the screen in a powered up state, and leaving it for
some time. (Some people leave it for up to an hour to acclimatise.).
Another approach is to try and <a href="dispcal.html#I">compensate
for dark calibration changes</a> (<span style="font-weight: bold;">-Ib</span>)
by doing on the fly calibrations during the measurements, based on
the assumption that the black level of the display itself won't
change significantly. <br>
<br>
Some displays take a long time to settle down and stabilise. The is
often the case with LCD (Liquid Crystal) displays that use
fluorescent back lights, and these sorts of displays can change in
brightness significantly with changes in temperature. One way of
addressing this is to make sure that the display is given adequate
time to warm up before measurements. Another approach is to try and
<a href="dispcal.html#I">compensate for display white level</a>
(<span style="font-weight: bold;">-Iw</span>) changes by doing on
the fly calibrations during the measurements. Instrument black level
drift and display white level drift can be combined (<span
style="font-weight: bold;">-Ibw</span>).<br>
<br>
Colorimeter instruments make use of physical color filters that
approximate the standard observer spectral sensitivity curves.
Because these filters are not perfectly accurate, the manufacturer
calibrates the instrument for typical displays, which is why you
have to make a selection between CRT (Cathode Ray Tube) and LCD
(Liquid Crystal Display) modes. If you are measuring a display that
has primary colorants that differ significantly from those typical
displays, (ie. you have a Wide Gamut Display), then you may
get disappointing results with a Colorimeter. One way of addressing
this problem is to use a <a href="File_Formats.html#.ccmx">Colorimeter
Correction Matrix</a>. These are specific to a particular
Colorimeter and Display make and model combination, although a
matrix for a different but similar type of display may give better
results than none at all. A list of contributed <span
style="font-weight: bold;">ccmx</span> files is <a
href="ccmxs.html">here</a>.<br>
<br>
Another, more general approach to correcting Colorimeters is to
store the spectral sensitivities for each individual instrument in
the instrument itself, and then combine that with spectral samples
for a particular display type to compute a specific instrument +
display correction matrix on the fly (i.e. the i1d3 * Spyder 4 &
5 instruments). The display spectral samples can be stored in a <a
href="File_Formats.html#.ccss">Colorimeter Correction Spectral
Sample</a> file. A list of contributed <span style="font-weight:
bold;">ccss</span> files is <a href="ccsss.html">here</a>.<span
style="font-weight: bold;"></span><br>
<h4><a name="PM7"></a>Calibrating and profiling a display that
doesn't have VideoLUT access.</h4>
<p>In some situation there is no access to a displays VideoLUT
hardware, and this hardware is what is usually used to implement
display calibration. This could be because the display is being
accessed via a web server, or because the driver or windowing
system doesn't support VideoLUT access. You may also have chosen
to not use calibration curves because your display inherently has
good luminous response characteristic, and hence want to just
profile the display (option 1 below). </p>
<p>There are two basic options in this situation:<br>
</p>
<p> 1) Don't attempt to calibrate, just profile the display.<br>
2) Calibrate, but incorporate the calibration in some other
way in the workflow.<br>
</p>
<p>The first case requires nothing special - just skip calibration
(see the previous section <a href="#PM2">Profiling in several
steps: Creating display test values</a>).</p>
<p> In the second case, there are three choices:<br>
</p>
<p> 2a) Use dispcal to create a calibration and a quick profile
that incorporates the calibration into the profile.<br>
2b) Use dispcal to create the calibration, then dispread and
colprof to create a profile, and then incorporate the calibration
into the profile using applycal.<br>
2c) Use dispcal to create the calibration, then dispread and
colprof to create a profile, and then apply the calibration after
the profile in a cctiff workflow.<br>
</p>
<p>Case 2a) requires nothing special, use dispcal in a normal
fashioned with the <span style="font-weight: bold;">-o</span>
option to generate a quick profile.The profile created will <span
style="text-decoration: underline;">not</span> contain a 'vcgt'
tag, but instead will have the calibration curves incorporated
into the profile itself. If calibration parameters are chosen that
change the displays white point or brightness, then this will
result in a slightly unusual profile that has a white point that
does not correspond with device R=G=B=1.0. Some systems may not
cope properly with this type of profile, and a general shift in
white point through such a profile can create an odd looking
display if it is applied to images but not to other elements on
the display say as GUI decoration elements or other application
windows.<br>
</p>
<p>In case 2b), the calibration file created using dispcal should be
provided to dispread using the <span style="font-weight: bold;">-K</span>
option and <b>-Y p</b> flag:<br>
</p>
<p><a href="dispread.html">dispread</a> <a href="dispread.html#v">-v</a>
<a href="dispread.html#K">-K TargetA.cal</a> <a
href="dispread.html#Yk">-Y k</a> <a href="dispread.html#p1">DisplayA</a></p>
<p><span style="font-weight: bold;"></span>Create the profile as
usual using colprof. but note that colprof will ignore the
calibration, and that no 'vcgt' tag will be added to the profile.<br>
You can then use <a href="applycal.html">applycal </a>to combine
the calibration into the profile. Note that the resulting profile
will be slightly unusual, since the profile is not made completely
consistent with the effects of the calibration, and the device
R=G=B=1.0 probably not longer corresponds with the PCS white or
the white point.<br>
</p>
In case 2c), the same procedure as above is used to create a
profile, but the calibration is applied in a raster transformation
workflow explicitly, e.g.:<br>
<br>
<a href="cctiff.html">cctiff</a> <a
href="cctiff.html#p1">SourceProfile.icm</a> <a
href="cctiff.html#p1">DisplayA.icm</a> <a href="cctiff.html#p2">DisplayA.cal</a>
<a href="cctiff.html#p3">infile.tif</a> <a href="cctiff.html#p4">outfile.tif</a><br>
or<br>
<a href="cctiff.html">cctiff</a> <a
href="cctiff.html#p1">SourceProfile.icm</a> <a
href="cctiff.html#p1">DisplayA.icm</a> <a href="cctiff.html#p2">DisplayA.cal</a>
<a href="cctiff.html#p3">infile.jpg</a> <a href="cctiff.html#p4">outfile.jpg</a><br>
<span style="font-weight: bold;"></span><br>
<hr width="100%" size="2">
<h3><a name="PS1"></a>Profiling Scanners and other input devices
such as cameras<br>
</h3>
Because a scanner or camera is an input device, it is necessary to
go about profiling it in quite a different way to an output device.
To profile it, a test chart is needed to exercise the input device
response, to which the CIE values for each test patch is known.
Generally standard reflection or transparency test charts are used
for this purpose.<br>
<h4><a name="PS2"></a>Types of test charts</h4>
The most common and popular test chart for scanner profiling is the
IT8.7/2 chart. This is a standard format chart generally reproduced
on photographic film, containing about 264 test patches.<br>
An accessible and affordable source of such targets is Wolf Faust a
<a href="http://www.targets.coloraid.de/">www.coloraid.de</a>.<br>
Another source is LaserSoft <a
href="http://www.silverfast.com/show/it8/en.html">www.silverfast.com.</a><br>
The Kodak Q-60 Color Input Target is also a typical example:<br>
<br>
<img src="Q60.jpg" alt="Kodak Q60 chart image" width="200"
height="141"> <br>
<br>
A very simple chart that is widely available is the Macbeth
ColorChecker chart, although it contains only 24 patches and
therefore is probably not ideal for creating profiles:<br>
<img alt="ColorChecker 24 patch" src="colorchecker.jpg"
style="width: 112px; height: 78px;"><br>
<br>
Other popular charts are the X-Rite/GretagMacbeth ColorChecker DC
and <a
href="https://www.xrite.com/categories/calibration-profiling/colorchecker-digital-sg">ColorChecker
SG</a> charts:<br>
<br>
<img src="DC.jpg" alt="GretagMacbeth ColorChecker DC chart"
width="200" height="122"> <img alt="ColorChecker SG" src="SG.jpg"
style="width: 174px; height: 122px;"><br>
<br>
A chart provided for camera profiling is the X-Rite <a
href="https://www.xrite.com/categories/calibration-profiling/colorchecker-passport-photo">ColorCheckerPassport</a>:<br>
<br>
<img alt="ColorChecker Passport" src="Passport.jpg" width="166"
height="122"><br>
<br>
The GretagMacbeth Eye-One Pro Scan Target 1.4 can also be used:<br>
<br>
<img alt="Eye-One Scan Target 1.4" src="i1scan14.jpg" style="border:
2px solid ; width: 200px; height: 140px;"><br>
<br>
Also supported is the <a href="http://www.hutchcolor.com/hct.htm">HutchColor
HCT</a> :<br>
<br>
<img alt="HutchColor HCT" src="HCT.jpg" style="width: 182px; height:
140px;"><br>
<br>
<br>
<a href="http://www.cmp-color.fr/DT3.html">Christophe Mtairie's
Digital TargeT 003</a>, <a
href="http://www.cmp-color.fr/digital%20target.html">Christophe
Mtairie's Digital Target - 4</a> , and <a
href="http://www.cmp-color.fr/digital%20target.html">Christophe
Mtairie's Digital Target - 7</a>:<br>
<br>
<img alt="CMP_DT_003" src="CMP_DT_003.jpg" style="width: 186px;
height: 141px;"> <img style="width: 203px; height: 140px;"
alt="CMP_Digital_Target-4" src="CMP_Digital_Target-4.jpg"
width="203" height="140"> <img alt="CMP_Digital_Target-4"
src="CMP_Digital_Target-7.jpg" width="202" height="146"><br>
<br>
and <a href="http://www.cmp-color.fr/DT2019.html">Christophe
Mtairie's Digital Target 2019</a>: <a
href="http://www.cmp-color.fr/DT2019.html">Christophe Mtairie's
Digital Target Studio Edition</a>: <a
href="http://www.cmp-color.fr/DT2019.html">Christophe Mtairie's
Digital Target Mini:</a><br>
<br>
<img src="CMP_Digital_Target-8.jpg" alt="CMP Digital Target-8"
width="219" height="146"> <img
src="CMPDigitalTargetStudioEdition.jpg"
alt="CMP_Digital_Target_Studio" width="211" height="154"> <img
src="CMP_DTM-mini.jpg" alt="Christophe Mtairie's Digital Target
Mini" width="179" height="119"><br>
<br>
<br>
The <a href="http://www.silverfast.com/show/dc-targets/en.html">LaserSoft
Imaging DCPro Target</a>:<br>
<br>
<img style="width: 153px; height: 122px;" alt="LaserSoft DCPro
Target" src="LSDC.jpg"><br>
<br>
and the <a
href="https://www.silverfast.com/buyonline/en.html?type=&productline=scanner&special=it8order_no_sf&filter=it8">LaserSoft
Imaging ISO12641-2 reflective target</a>:<br>
<br>
<img src="ISO12641_2.jpg" alt="ISO12641-2 reflection target"
width="203" height="150"><br>
<br>
and the <a
href="https://www.silverfast.com/buyonline/en.html?type=&productline=scanner&special=it8order_no_sf&filter=it8">LaserSoft
Imaging ISO12641-2 transparency target</a>: in three parts:<br>
<br>
<img src="ISO12641-2-1.jpg" alt="ISO 12641-2 transparency target
part 1" width="193" height="128"> <img
src="ISO12641-2-2.jpg" alt="ISO 12641-2 transparency target part
2" width="192" height="128"> <img src="ISO12641-2-3.jpg"
alt="ISO 12641-2 transparency target part 3" width="192"
height="128"><br>
<br>
The Datacolor <a
href="http://spyder.datacolor.com/product-cb-spydercheckr.php">SpyderCheckr</a>:<br>
<br>
<img style=" width: 146px; height: 109px;" alt="Datacolor
SpyderCheckr" src="SpyderChecker.jpg"><br>
<br>
The Datacolor <a
href="http://spyder.datacolor.com/portfolio-view/spydercheckr-24/">SpyderCheckr24</a>:<br>
<br>
<img alt="SpyderCheckr24" src="SpyderChecker24.jpg" width="82"
height="122"><br>
<br>
One of the QPcard's:<br>
<a
href="https://www.bhphotovideo.com/c/product/286652-REG/QP_Card_GQP201.html">QPcard
201</a>: <a
href="https://www.bhphotovideo.com/c/product/849459-REG/QP_Card_GQP202_QP_Card_202.html">QPcard
202</a>:<br>
<br>
<img style=" width: 41px; height: 141px;" alt="QPCard201"
src="QPcard201.jpg">
<img
style=" width: 97px; height: 141px;" alt="QPcard202"
src="QPcard202.jpg"><br>
<br>
<h4><a name="PS3"></a>Taking readings from a scanner or camera<br>
</h4>
The test chart you are using needs to be placed on the scanner, and
the scanner needs to be configured to a suitable state, and restored
to that same state when used subsequently with the resulting
profile. For a camera, the chart needs to be lit in a controlled and
even manner using the light source that will be used for subsequent
photographs, and should be shot so as to minimise any geometric
distortion, although the <a href="scanin.html#p">scanin -p</a> flag
may be used to compensate for some degree of distortion. As with any
color profiling task, it is important to setup a known and
repeatable image processing flow, to ensure that the resulting
profile will be usable.<br>
<br>
The chart should be captured and saved to a TIFF format file. I will
assume the resulting file is called scanner.tif. The raster file
need only be roughly cropped so as to contain the test chart
(including the charts edges).<br>
<br>
The second step is to extract the RGB values from the scanner.tif
file, and match then to the reference CIE values. To locate the
patch values in the scan, the <b>scanin</b> tool needs to be given
a template <a href="File_Formats.html#.cht">.cht</a> file that
describes the features of the chart, and how the test patches are
labeled. Also needed is a file containing the CIE values for each of
the patches in the chart, which is typically supplied with the
chart, available from the manufacturers web site, or has been
measured using a spectrometer.<br>
<br>
<div style="margin-left: 40px;">For an IT8.7/2 chart, this is the <span
style="font-weight: bold;">ref/</span><b>it8.cht</b> file
supplied with Argyll, and the manufacturer will will supply
an individual or batch average file along with the chart
containing this information, or downloadable from their web site.
For instance, Kodak Q60 target reference files are <a
href="https://www.xrite.com/service-support/downloads/k/kodak-it8-q60-reference-files-2003-2007">here</a>.<br>
NOTE that the reference file for the IT8.7/2 chart supplied with <span
style="font-weight: bold;">Monaco EZcolor</span> can be
obtained by unzipping the .mrf file. (You may have to make a copy
of the file with a .zip extension to do this.)<br>
If you are using one of Wolf Faust's IT8.7/2 charts, you may find
that the <b>ref/it8Wolf.cht</b> file is more reliable.<br>
<br>
<br>
For the ColorChecker 24 patch chart, the <span
style="font-weight: bold;">ref/ColorChecker.cht</span> file
should be used, and there is also a <span style="font-weight:
bold;">ref/ColorChecker.cie</span> file provided that is based
on the manufacturers reference values for the chart. You can also
create your own reference file using an instrument and chartread,
making use of the chart reference file <span style="font-weight:
bold;">ref/ColorChecker.ti2</span>:<br>
<a href="chartread.html">chartread</a> -n
ColorChecker.ti2<br>
Note that due to the small number of patches, a profile created
from such a chart is not likely to be very detailed.<br>
<br>
For the ColorChecker DC chart, the <span style="font-weight:
bold;">ref/ColorCheckerDC.cht</span> file should be used, and
there will be a ColorCheckerDC reference file supplied by
X-Rite/GretagMacbeth with the chart.<br>
<br>
The ColorChecker SG is relatively expensive, but is preferred by
many people because (like the ColorChecker and ColorCheckerDC) its
colors are composed of multiple different pigments, giving it
reflective spectra that are more representative of the real world,
unlike many other charts that are created out of combination of 3
or 4 colorants.<br>
A limited CIE reference file is available from X-Rite <a
href="http://xritephoto.com/documents/apps/public/digital_colorchecker_sg_l_a_b.txt">here</a>,
but it is not in the usual CGATS format. To convert it to a CIE
reference file useful for <span style="font-weight: bold;">scanin</span>,
you will need to edit the X-Rite file using a <span
style="text-decoration: underline;">plain text</span> editor,
first deleting everything before the line starting with "A1" and
everything after "N10", then prepending <a href="SG_header.txt">this
header</a>, and appending <a href="SG_footer.txt">this footer</a>,
making sure there are no blank lines inserted in the process. Name
the resulting file <b>ColorCheckerSG.cie</b>.<br>
There are reports that X-Rite have experimented with different ink
formulations for certain patches, so the above reference may not
be as accurate as desired, and it is preferable to measure your
own chart using a spectrometer, if you have the capability.<br>
If you do happen to have access to a more comprehensive instrument
measurement of the ColorChecker SG, or you have measured it
yourself using chart reading software other than ArgyllCMS, then
you <span style="text-decoration: underline;">may</span> need to
convert the reference information from spectral only <span
style="font-weight: bold;">ColorCheckerSG.txt</span> file to CIE
value <span style="font-weight: bold;">ColorCheckerSG.cie</span>
reference file, follow the following steps:<br>
<a href="txt2ti3.html">txt2ti3</a>
ColorCheckerSG.txt ColorCheckerSG<br>
<a href="spec2cie.html">spec2cie</a>
ColorCheckerSG.ti3 ColorCheckerSG.cie<br>
<br>
For the full ColortChecker Passport chart, the <b>ref/ColorCheckerPassport.cht</b>
file should be used, or if just the 24 patches corresponding to
the original ColorChecker are in the shot, the <b>ref/ColorCheckerHalfPassport.cht</b>
should be used. A user has kindly provided their measured values
for this chart, and they are available in <b>ref/ColorCheckerPassport.cie</b>
and <b>ref/ColorCheckerHalfPassport.cie</b> respectively.<br>
<br>
For the Eye-One Pro Scan Target 1.4 chart, the <span
style="font-weight: bold;"><span style="font-weight: bold;">ref/</span>i1_RGB_Scan_1.4.cht</span>
file should be used, and as there is no reference file
accompanying this chart, the chart needs to be read with an
instrument (usually the Eye-One Pro). This can be done using
chartread, making use of the chart reference file <span
style="font-weight: bold;">ref/i1_RGB_Scan_1.4.ti2</span>:<br>
<a href="chartread.html">chartread</a> -n
i1_RGB_Scan_1.4<br>
and then rename the resulting <span style="font-weight: bold;">i1_RGB_Scan_1.4.ti3</span>
file to <span style="font-weight: bold;">i1_RGB_Scan_1.4.cie</span><br>
<span style="font-weight: bold;"></span><br>
<br>
For the HutchColor HCT chart, the <span style="font-weight:
bold;"><span style="font-weight: bold;">ref/</span>Hutchcolor.cht</span>
file should be used, and the reference <span style="font-weight:
bold;">.txt</span> file downloaded from the HutchColor website.<br>
<br>
<br>
For the Christophe Mtairie's Digital TargeT 003 chart with 285
patches, the <span style="font-weight: bold;"><span
style="font-weight: bold;">ref/</span>CMP_DT_003.cht</span>
file should be used, and the cie reference <span
style="font-weight: bold;"></span>files come with the chart.<br>
<br>
For the Christophe Mtairie's Digital Target-4 chart with 570
patches, the <span style="font-weight: bold;">ref/CMP_Digital_Target-4.cht</span>
file should be used, and the cie reference <span
style="font-weight: bold;"></span>files come with the chart.<br>
<br>
For the Christophe Mtairie's Digital Target-7 chart with 570
patches, the <span style="font-weight: bold;">ref/CMP_Digital_Target-7.cht</span>
file should be used, and the spectral .txt file provided with the
chart should be converted to a cie reference file:<br>
<a href="txt2ti3.html">txt2ti3</a>
DT7_XXXXX_Spectral.txt temp<br>
<a href="spec2cie.html">spec2cie</a> temp.ti3
DT7_XXXXX.cie<br>
<br>
For the Christophe Mtairie's Digital Target 2019 with 522
patches, the <span style="font-weight: bold;">ref/CMP_Digital_Target_2019.cht</span>
file should be used, and the spectral .txt file provided with the
chart should be converted to a cie reference file:<br>
<a href="txt2ti3.html">txt2ti3</a> "DT SPECT
451.txt" temp<br>
<a href="spec2cie.html">spec2cie</a> temp.ti3
DT_SPECT_451.cie<br>
<br>
For the Christophe Mtairie's Digital Target Studio Edition chart
with 988 patches, the <span style="font-weight: bold;">ref/CMP_Digital_Target_Studio.cht</span>
file should be used, and the spectral .txt file provided with the
chart should be converted to a cie reference file:<br>
<a href="txt2ti3.html">txt2ti3</a> "CMP DT-SE
100 Spectral.txt" temp<br>
<a href="spec2cie.html">spec2cie</a> temp.ti3
CMP_DT-SE_100_Spectral.cie<br>
<br>
For the Christophe Mtairie's Digital Target Mini chart with 126
patches, the <span style="font-weight: bold;">ref/CMP_DT_mini.cht.cht</span>
file should be used, and the spectral .txt file provided with the
chart should be converted to a cie reference file:<br>
<a
href="file:///D:/src/argyll/doc/txt2ti3.html">txt2ti3</a> "CMP
DT-SE 100 Spectral.txt" temp<br>
<a
href="file:///D:/src/argyll/doc/spec2cie.html">spec2cie</a>
temp.ti3 CMP_DT-SE_100_Spectral.cie<br>
It is probably best to roughly crop this target to only contain
the right hand side before using with scanin.<br>
<br>
<br>
For the LaserSoft DCPro chart, the <span style="font-weight:
bold;">ref/LaserSoftDCPro.cht</span> file should be used, and
reference <span style="font-weight: bold;">.txt</span> file
downloaded from the <a
href="http://www.silverfast.com/it8calibration/">Silverfast
website</a>.<br>
<br>
For the LaserSoft <b>ISO 12641-2</b> reflective chart, the <b>ref/ISO12641_2_1.cht
</b>file should be used, and reference <span style="font-weight:
bold;">.CxF</span> file downloaded from the <a
href="http://www.silverfast.com/it8calibration/">Silverfast
website</a>, and the .CxF file converted to the cie reference
file:<br>
<a href="cxf2ti3.html">cxf2ti3</a> Rnnnnnn.cxf
Rnnnnnn<br>
<br>
The LaserSoft <b>ISO 12641-2</b> transmissive chart comes in
three parts, and the <b>ref/ISO12641_3_1.cht</b>, <b>ref/ISO12641_3_2.cht</b>
and <b>ref/ISO12641_3_2.cht</b> recognition files should be used,
and the reference <span style="font-weight: bold;">.CxF</span>
file downloaded from the <a
href="http://www.silverfast.com/it8calibration/">Silverfast
website</a>, and the .CxF file converted to the cie reference
file:<br>
<a href="cxf2ti3.html">cxf2ti3</a> Ennnnnn.cxf
Ennnnnn<br>
After creating three corresponding .ti3 files using scanin, the
files should be combined using <a href="average.html">average</a>:<br>
<a href="average.html">average</a> -m
scan1.ti3 scan2.ti3 scan3.ti3 combined.ti3<br>
<br>
<br>
For the Datacolor SpyderCheckr, the <span style="font-weight:
bold;">ref/SpyderChecker.cht</span> file should be used, and a
reference <span style="font-weight: bold;">ref/SpyderChecker.cie
</span>file made from measuring a sample chart is also available.
Alternately you could create your own reference file by
transcribing the <a
href="https://www.datacolor.com/wp-content/uploads/2018/01/SpyderCheckr_Color_Data_V2.pdf">values</a>
on the Datacolor website. <br>
<br>
For the Datacolor SpyderCheckr24, the <span style="font-weight:
bold;">ref/SpyderChecker24.cht</span> file should be used, and a
reference <span style="font-weight: bold;">ref/SpyderChecker24.cie
</span>file made from measuring a sample chart is also available.
Alternately you could create your own reference file by
transcribing the <a
href="https://www.datacolor.com/wp-content/uploads/2018/01/SpyderCheckr_Color_Data_V2.pdf">values</a>
on the Datacolor website. <br>
<br>
<br>
For the QPCard 201, the <span style="font-weight: bold;">ref/QPcard_201.cht</span>
file should be used, and a reference <span style="font-weight:
bold;">ref/QPcard_201.cie</span> file made from measuring a
sample chart is also available. <br>
<br>
For the QPCard 202, the <span style="font-weight: bold;">ref/QPcard_202.cht</span>
file should be used, and a reference <span style="font-weight:
bold;">ref/QPcard_202.cie</span> file made from measuring a
sample chart is also available. <br>
</div>
<br>
For any other type of chart, a chart recognition template file will
need to be created (this is beyond the scope of the current
documentation, although see the <a href="cht_format.html">.cht_format
documentation</a>).<br>
<br>
To create the scanner .ti3 file, run the <b>scanin</b> tool as
follows (assuming an IT8 chart is being used):<br>
<br>
<a href="scanin.html"> scanin</a> -v scanner.tif It8.cht It8ref.txt<br>
<br>
"It8ref.txt" or "It8ref.cie" is assumed to be the name of the CIE
reference file supplied by the chart manufacturer. The resulting
file will be named "<b>scanner.ti3</b>".<br>
<br>
<span style="font-weight: bold;">scanin</span> will process 16 bit
per component .tiff files, which (if the scanner is capable of
creating such files), may improve the quality of the profile.
<br>
<br>
If you have any doubts about the correctness of the chart
recognition, or the subsequent profile's delta E report is unusual,
then use the scanin diagnostic flags <a href="scanin.html#d">-dipn</a>
and examine the <span style="font-weight: bold;">diag.tif</span>
diagnostic file, to make sure that the patches are identified and
aligned correctly. If you have problems getting good automatic
alignment, then consider doing a manual alignment by locating the
fiducial marks on your scan, and feeding them into scanin <a
href="scanin.html#F">-F</a> parameters. The fiducial marks should
be listed in a clockwise direction starting at the top left.<br>
<h4><a name="PS4"></a>Creating a scanner or camera input profile</h4>
Similar to a display profile, an input profile can be either a
shaper/matrix or LUT based profile. Well behaved input devices will
probably give the best results with a shaper/matrix profile, and
this may also be the best choice if your test chart has a small or
unevenly distributed set of test patchs (ie. the IT8.7.2). If a
shaper/matrix profile is a poor fit, consider using a LUT type
profile.<br>
<br>
When creating a LUT type profile, there is the choice of XYZ or
L*a*b* PCS (Device independent, Profile Connection Space). Often for
input devices, it is better to choose the XYZ PCS, as this may be a
better fit given that input devices are usually close to being
linearly additive in behaviour.<br>
<br>
If the purpose of the input profile is to use it as a substitute for
a colorimeter, then the <b>-ua</b> flag should be used to force
Absolute Colorimetric intent, and avoid clipping colors above the
test chart white point. Unless the shaper/matrix type profile is a
very good fit, it is probably advisable to use a LUT type profile in
this situation.<br>
<br>
To create a matrix/shaper profile, the following suffices:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Scanner</a> <a href="colprof.html#E">A"</a>
<a href="colprof.html#q">-qm</a> <a href="colprof.html#a">-as</a> <a
href="colprof.html#p1">scanner</a><br>
<br>
For an XYZ PCS LUT based profile then the following would be used:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Scanner A"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#a">-ax</a> <a href="colprof.html#p1">scanner</a><br>
<br>
For the purposes of a poor mans colorimeter, the following would
generally be used:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Scanner A"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#a">-ax</a> <a href="colprof.html#u">-ua</a> <a
href="colprof.html#p1">scanner</a><br>
<br>
Make sure you check the delta E report at the end of the profile
creation, to see if the sample data and profile is behaving
reasonably. Depending on the type of device, and the consistency of
the readings, average errors of 5 or less, and maximum errors of 15
or less would normally be expected. If errors are grossly higher
than this, then this is an indication that something is seriously
wrong with the device measurement, or profile creation.<br>
<br>
If profiling a <span style="font-weight: bold;">camera</span> in <span
style="font-weight: bold;">RAW</span> mode, then there may be some
advantage in creating a pure matrix only profile, in which it is
assumed that the camera response is completely linear. This may
reduce extrapolation artefacts. If setting the white point will be
done in some application, then it may also be an advantage to use
the <span style="font-weight: bold;">-u</span> flag and avoid
setting the white point to that of the profile chart:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Camera"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#a">-am</a> <a href="colprof.html#u">-u</a> <a
href="colprof.html#p1">scanner</a><br>
<br>
<br>
<hr width="100%" size="2">
<h3><a name="PP1"></a>Profiling Printers<br>
</h3>
The overall process is to create a set of device measurement target
values, print them out, measure them, and then create an ICC profile
from the measurements. If the printer is an RGB based printer, then
the process is only slightly more complicated than profiling a
display. If the printer is CMYK based, then some additional
parameters are required to set the total ink limit (TAC) and
black generation curve.<br>
<h4><a name="PP2"></a>Creating a print profile test chart</h4>
The first step in profiling any output device, is to create a set of
device colorspace test values. The important parameters needed are:<br>
<ul>
<li>What colorspace does the device use ?</li>
<li>How many test patches do I want to use/what paper size do I
want to use ?</li>
<li>What instrument am I going to use to read the patches ?<br>
</li>
<li>If it is a CMYK device, what is the total ink limit ?<br>
</li>
<li>What information do I already have about how the device
behaves ?</li>
</ul>
Most printers running through simple drivers will appear as if they
are RGB devices. In fact there is no such thing as a real RGB
printer, since printers use white media and the colorant must
subtract from the light reflected on it to create color, but the
printer itself turns the incoming RGB into the native print
colorspace, so for this reason we will tell targen to use the "Print
RGB" colorspace, so that it knows that it's really a subtractive
media. Other drivers will drive a printer more directly, and will
expect a CMYK profile. [Currently Argyll is not capable of creating
an ICC profile for devices with more colorants than CMYK. If this
capability is introduced, it will by creating an additional
separation profile which then allows the printer to be treated as a
CMY or CMYK printer.] One way of telling what sort of profile is
expected for your device is to examine an existing profile for that
device using <a href="http://www.argyllcms.com/doc/iccdump.html">iccdump</a>.<br>
<br>
The number of test patches will depend somewhat on what quality
profile you want to make, how well behaved the printer is, as well
as the effort needed to read the number of test values. Generally it
is convenient to fill a certain paper size with the maximum number
of test values that will fit.<br>
<br>
At a minimum, for an "RGB" device, a few hundred values are needed
(400-1000). For high quality CMYK profiles, 1000-3000 is not an
unreasonable number of patches.<br>
<br>
To assist the determination of test patch values, it can help to
have a rough idea of how the device behaves, so that the device test
point locations can be pre-conditioned. This could be in the form of
an ICC profile of a similar device, or a lower quality, or previous
profile for that particular device. If one were going to make a very
high quality Lut based profile, then it might be worthwhile to make
up a smaller, preliminary shaper/matrix profile using a few hundred
test points, before embarking on testing the device with several
thousand.<br>
<br>
The documentation for the <a
href="http://www.argyllcms.com/doc/targen.html">targen</a> tool
lists a <a href="http://www.argyllcms.com/doc/targen.html#Table">table</a>
of paper sizes and number of patches for typical situations.<br>
<br>
For a CMYK device, a total ink limit usually needs to be specified.
Sometimes a device will have a maximum total ink limit set by its
manufacturer or operator, and some CMYK systems (such as chemical
proofing systems) don't have any limit. Typical printing devices
such as Xerographic printers, inkjet printers and printing presses
will have a limit. The exact procedure for determining an ink limit
is outside the scope of this document, but one way of going about
this might be to generate some small (say a few hundred patches)
with targen & pritntarg with different total ink limits, and
printing them out, making the ink limit as large as possible without
striking problems that are caused by too much ink.<br>
<br>
Generally one wants to use the maximum possible amount of ink to
maximize the gamut available on the device. For most CMYK devices,
an ink limit between 200 and 400 is usual, but and ink limit of 250%
or over is generally desirable for reasonably dense blacks and dark
saturated colors. And ink limit of less than 200% will begin to
compromise the fully saturated gamut, as secondary colors (ie
combinations of any two primary colorants) will not be able to reach
full strength.<br>
<br>
Once an ink limit is used in printing the characterization test
chart for a device, it becomes a critical parameter in knowing what
the characterized gamut of the device is. If after printing the test
chart, a greater ink limit were to be used, the the software would
effectively be extrapolating the device behaviour at total ink
levels beyond that used in the test chart, leading to inaccuracies.<br>
<br>
Generally in Argyll, the ink limit is established when creating the
test chart values, and then carried through the profile making
process automatically. Once the profile has been made however, the
ink limit is no longer recorded, and you, the user, will have to
keep track of it if the ICC profile is used in any program than
needs to know the usable gamut of the device.<br>
<br>
<br>
Lets consider two devices in our examples, "PrinterA" which is an
"RGB" device, and "PrinterB" which is CMYK, and has a target ink
limit of 250%. <br>
<br>
The simplest approach is to make a set of test values that is
independent of the characteristics of the particular device:<br>
<br>
<a href="targen.html">targen</a> <a href="targen.html#v">-v</a>
<a href="targen.html#d">-d2</a> <a href="targen.html#f">-f1053</a>
<a href="targen.html#p1">PrinterA</a><br>
<br>
<a href="targen.html">targen</a> <a href="targen.html#v">-v</a>
<a href="targen.html#d">-d4</a> <a href="targen.html#l">-l260</a>
<a href="targen.html#f">-f1053</a> <a href="targen.html#p1">PrinterB</a><br>
<br>
The number of patches chosen here happens to be right for an A4
paper size being read using a Spectroscan instrument. See the <a
href="targen.html#Table">table</a> in the <a
href="targen.html">targen</a> documentation for some other
suggested numbers.<br>
<br>
If there is a preliminary or previous profile called "OldPrinterA"
available, and we want to try creating a "pre-conditioned" set of
test values that will more efficiently sample the device response,
then the following would achieve this:<u><br>
</u><br>
<a href="targen.html">targen</a> <a href="targen.html#v">-v</a>
<a href="targen.html#d">-d2</a> <a href="targen.html#f">-f1053</a>
<a href="targen.html#c">-c OldPrinterA</a> <a
href="targen.html#p1">PrinterA</a><br>
<br>
<a href="targen.html">targen</a> <a href="targen.html#v">-v</a>
<a href="targen.html#d">-d4</a> <a href="targen.html#l">-l260</a>
<a href="targen.html#f">-f1053</a> <a href="targen.html#c">-c
OldPrinterB</a> <a href="targen.html#p1">PrinterB</a><br>
<a href="targen.html#p1"></a><br>
<br>
The output of <b>targen</b> will be the file PrinterA.ti1 and
PrinterB.ti1 respectively, containing the device space test values,
as well as expected CIE values used for chart recognition purposes.<br>
<br>
<h4><a name="PP2b"></a>Printing a print profile test chart<br>
<br>
</h4>
The next step is turn the test values in to a PostScript or TIFF
raster test file that can printed on the device. The basic
information that needs to be supplied is the type of instrument that
will be used to read the patches, as well as the paper size it is to
be formatted for.<br>
<br>
For an X-Rite DTP41, the following would be typical:<br>
<br>
<a href="printtarg.html">printtarg</a> <a href="printtarg.html#v">-v</a>
<a href="printtarg.html#i">-i41</a> <a href="printtarg.html#p">-pA4</a>
<a href="printtarg.html#p1">PrinterA</a><br>
<br>
For an Gretag/X-Rite Eye-One Pro, the following would be typical:<br>
<br>
<a href="printtarg.html">printtarg</a> <a href="printtarg.html#v">-v</a>
<a href="printtarg.html#i">-ii1</a> <a href="printtarg.html#p">-pA4</a>
<a href="printtarg.html#p1">PrinterA</a><br>
<br>
For using with a scanner as a colorimeter, the Gretag Spectroscan
layout is suitable, but the <a href="printtarg.html#s">-s</a> flag
should be used so as to generate a layout suitable for scan
recognition, as well as generating the scan recognition template
files. (You probably want to use less patches with <span
style="font-weight: bold;">targen</span>, when using the <span
style="font-weight: bold;">printtarg -s</span> flag, e.g. 1026
patches for an A4R page, etc.) The following would be typical:<br>
<br>
<a href="printtarg.html">printtarg</a> <a href="printtarg.html#v">-v</a>
<a href="printtarg.html#s">-s</a> <a href="printtarg.html#i">-iSS</a>
<a href="printtarg.html#p">-pA4R</a> <a href="printtarg.html#p1">PrinterA</a><br>
<span style="font-weight: bold;"><br>
printtarg</span> reads the PrinterA.ti1 file, creates a
PrinterA.ti2 file containing the layout information as well as the
device values and expected CIE values, as well as a PrinterA.ps file
containing the test chart. If the <span style="font-weight: bold;">-s</span>
flag is used, one or more PrinterA.cht files is created to allow the
<a href="scanin.html">scanin</a> program to recognize the chart.<br>
<br>
To create TIFF raster files rather than PostScript, use the <a
href="printtarg.html#t"><span style="font-weight: bold;">-t</span></a>
flag.<br>
<br>
<span style="font-weight: bold;">GSview</span> is a good program to
use to check what the PostScript file will look like, without
actually printing it out. You could also use <span
style="font-weight: bold;">Photoshop</span> or <span
style="font-weight: bold;">ImageMagick</span> for this purpose.<br>
<br>
The last step is to print the chart out.<br>
<br>
Using a suitable PostScript or raster file printing program,
downloader, print the chart. If you are not using a TIFF test chart,
and you do not have a PostScript capable printer, then an
interpreter like GhostScript or even Photoshop could be used to
rasterize the file into something that can be printed. Note that it
is important that the PostScript interpreter or TIFF printing
application and printer configuration is setup for a device
profiling run, and that any sort of color conversion of color
correction be turned off so that the device values in the PostScript
or TIFF file are sent directly to the device. If the device has a
calibration system, then it would be usual to have setup and
calibrated the device before starting the profiling run, and to
apply calibration to the chart values. If Photoshop was to be used,
then either the chart needs to be a single page, or separate .eps or
.tiff files for each page should be used, so that they can be
converted and printed one at a time (see the <a
href="printtarg.html#e">-e</a> and <a href="printtarg.html#t">-t</a>
flags).<br>
<br>
<h4><a name="PP3"></a>Reading a print test chart using an instrument</h4>
Once the test chart has been printed, the color of the patches needs
to be read using a suitable instrument.<br>
<br>
Many different instruments are supported, some that need to be used
patch by patch, some read a strip at a time, and some read a sheet
at a time. See <a href="instruments.html">instruments</a> for a
current list.<br>
<br>
The instrument needs to be connected to your computer before running
the <a href="chartread.html">chartread</a> command. Both USB and
serial port connected Instruments are supported. A serial port to
USB adapter might have to be used if your computer doesn't have any
serial ports, and you have a serial interface connected instrument.<br>
<br>
If you run <a href="chartread.html">chartread</a> so as to print
out its usage message (ie. by using a <span style="font-weight:
bold;">-?</span> or <span style="font-weight: bold;">--</span>
flags), then it will list any identified USB or serial port
connected instruments, and their corresponding number for the <a
href="chartread.html#c">-c</a> option. By default, <a
href="chartread.html">chartread</a> will try to connect to the
first available USB instrument, or an instrument on the first serial
port.<br>
Note that it often takes some time to scan serial ports for
instruments.<br>
<br>
The only arguments required is to specify the basename of the .ti2
file. If a non-default serial port is to be used, then the <span
style="font-weight: bold;">-c</span> option would also be
specified.<br>
<br>
e.g. for a Spectroscan on the second port:<br>
<br>
<a href="chartread.html">chartread</a> <a href="chartread.html#c">-c2</a>
<a href="chartread.html#p1">PrinterA</a><br>
<br>
For a DTP41 to the default serial port:<br>
<br>
<a href="chartread.html">chartread</a><a href="chartread.html#i"></a>
<a href="chartread.html#p1">PrinterA</a><br>
<br>
<span style="font-weight: bold;">chartread</span> will interactively
prompt you through the process of reading each sheet or strip. See <a
href="chartread.html">chartread</a> for more details on the
responses for each type of instrument. Continue with <a
href="Scenarios.html#PP5">Creating a printer profile</a>.<br>
<br>
<h4><a name="PP4"></a>Reading a print test chart using a scanner or
camera (NOT recommended)<br>
</h4>
Argyll supports using a scanner or even a camera as a substitute for
a colorimeter. Note though that this rarely gives good results. A
scanner or camera is no replacement for a color measurement
instrument.<br>
<br>
The main problems of the scanner-as-colorimeter approach are:<br>
<ul>
<li>The spectral interaction of the scanner test chart and printer
test chart with the scanner spectral response can cause color
errors (i.e. a scanner or camera typically has quite different
spectral sensitivities than a human observer).</li>
<li> Spectral differences caused by different black amounts in the
print test chart can cause color errors. </li>
<li> The scanner reference chart gamut may be much smaller than
the printers gamut, making the scanner profile too inaccurate to
be useful.</li>
<li>The scanner dynamic range and/or precision may not match the
printers or what is required for a good profile.</li>
</ul>
<br>
As well as some of the above, a camera may not be suitable if it
automatically adjusts exposure or white point when taking a picture,
and this behavior cannot be disabled.<br>
It's also quite hard to capture an even image of a sheet with a
camera, due to optical and lighting unevenness, as well as control
over reflection and flare.<br>
<br>
The end result is often a profile that has a noticeable color cast,
compared to a profile created using a colorimeter or spectrometer.<br>
<br>
It is assumed that you have created a scanner or camera profile
following the <a
href="http://www.argyllcms.com/doc/Scenarios.html#PS1">procedure</a>
outline above. For best possible results it is advisable to both
profile the scanner or camera, and use it in scanning the printed
test chart, in as "raw" mode as possible (i.e. using 16 bits per
component images, if the scanner or camera is capable of doing so;
not setting white or black points, using a fixed exposure etc.). It
is generally advisable to create a LUT type input profile, and use
the <a href="http://www.argyllcms.com/doc/colprof.html#ua">-ua</a>
flag to avoid clipping scanned value whiter than the input
calibration chart.<br>
<br>
Scan or photograph your printer chart (or charts) on the scanner or
camera previously profiled. <big><span style="font-weight: bold;">The
scanner or camera must be configured and used exactly the same
as it was when it was profiled.</span></big><br>
<br>
I will assume the resulting scan/photo input file is called <span
style="font-weight: bold;">PrinterB.tif</span> (or <span
style="font-weight: bold;">PrinterB1.tif</span>, <span
style="font-weight: bold;">PrinterB2.tif</span> etc. in the case
of multiple charts). As with profiling the scanner or camera, the
raster file need only be roughly cropped so as to contain the test
chart.<br>
<br>
The scanner recognition files created when <span
style="font-weight: bold;">printtarg</span> was run is assumed to
be called <span style="font-weight: bold;">PrinterB.cht</span>.
Using the scanner profile created previously (assumed to be called <span
style="font-weight: bold;">scanner.icm</span>), the printer test
chart scan patches are converted to CIE values using the <span
style="font-weight: bold;">scanin</span> tool:<br>
<br>
<a href="scanin.html">scanin</a> <a href="scanin.html#v">-v</a> <a
href="scanin.html#c">-c</a> <a href="scanin.html#cp1">PrinterB.tif</a>
<a href="scanin.html#cp2">PrinterB.cht</a> <a
href="scanin.html#cp3">scanner.icm</a> <a href="scanin.html#cp4">PrinterB</a><br>
<br>
If there were multiple test chart pages, the results would be
accumulated page by page using the <a href="scanin.html#ca">-ca</a>
option, ie., if there were 3 pages:<br>
<br>
<a href="scanin.html">scanin</a> <a href="scanin.html#v">-v</a> <a
href="scanin.html#c">-c</a> <a href="scanin.html#cp1">PrinterB1.tif</a>
<a href="scanin.html#cp2">PrinterB1.cht</a> <a
href="scanin.html#cp3">scanner.icm</a> <a href="scanin.html#cp4">PrinterB</a><br>
<a href="scanin.html">scanin</a> <a href="scanin.html#v">-v</a> <a
href="scanin.html#ca">-ca</a> <a href="scanin.html#cp1">PrinterB2.tif</a>
<a href="scanin.html#cp2">PrinterB2.cht</a> <a
href="scanin.html#cp3">scanner.icm</a> <a href="scanin.html#cp4">PrinterB</a><br>
<a href="scanin.html">scanin</a> <a href="scanin.html#v">-v</a> <a
href="scanin.html#ca">-ca</a> <a href="scanin.html#cp1">PrinterB3.tif</a>
<a href="scanin.html#cp2">PrinterB3.cht</a> <a
href="scanin.html#cp3">scanner.icm</a> <a href="scanin.html#cp4">PrinterB</a><br>
<br>
Now that the <span style="font-weight: bold;">PrinterB.ti3</span>
data has been obtained, the profile continue in the next section
with <span style="font-weight: bold;">Creating a printer profile</span>.<br>
<br>
If you have any doubts about the correctness of the chart
recognition, or the subsequent profile's delta E report is unusual,
then use the scanin diagnostic flags <a href="scanin.html#d">-dipn</a>
and examine the <span style="font-weight: bold;">diag.tif</span>
diagnostic file.<br>
<h4><a name="PP5"></a>Creating a printer profile<br>
</h4>
Creating an RGB based printing profile is very similar to creating a
display device profile. For a CMYK printer, some additional
information is needed to set the black generation.<br>
<br>
Where the resulting profile will be used conventionally (ie. using <a
href="collink.html">collink</a> <a href="collink.html#s">-s</a>,
or <a href="cctiff.html">cctiff</a> or most other "dumb" CMMs) it
is important to specify that gamut mapping should be computed for
the output (B2A) perceptual and saturation tables. This is done by
specifying a device profile as the parameter to the <a
href="colprof.html">colprof</a> <a href="colprof.html#S">-S</a>
flag. When you intend to create a "general use" profile, it can be a
good technique to specify the source gamut as the opposite type of
profile to that being created, i.e. if a printer profile is being
created, specify a display profile (e.g. sRGB) as the source gamut.
If a display profile is being created, then specify a printer
profile as the source (e.g. Figra, SWOP etc.). When linking to
the profile you have created this way as the output profile, then
use perceptual intent if the source is the opposite type, and
relative colorimetric if it is the same type.<br>
<br>
"Opposite type of profile" refers to the native gamut of the device,
and what its fundamental nature is, additive or subtractive. An
emissive display will have additive primaries (R, G & B), while
a reflective print, will have subtractive primaries (C, M, Y &
possibly others), irrespective of what colorspace the printer is
driven in (a printer might present an RGB interface, but internally
this will be converted to CMY, and it will have a CMY type of
gamut). Because of the complimentary nature of additive and
subtractive device primary colorants, these types of devices have
the most different gamuts, and hence need the most gamut mapping to
convert from one colorspace to the other.<br>
<br>
<b>Note</b> that specifying a very large gamut colorspace as the
source gamut (i.e. <b>ProPhoto</b> etc.) is probably <u><b>NOT</b></u>
what you want to do, since unless the source images have a similar
very large gamut to that of the colorspace, they will end up getting
over compressed and come out looking dull. Instead use a source
profile that has a gamut more representative of the images gamut, <b>or</b>
you should provide a gamut using the the <a href="colprof.html#g">-g
parameter</a>. <br>
<br>
If you are creating a profile for a specific purpose, intending to
link it to a specific input profile, then you will get the best
results by specifying that source profile as the source gamut.<br>
<br>
If a profile is only going to be used as an input profile, or is
going to be used with a "smart" CMM (e.g. <a href="collink.html">collink</a>
<a href="collink.html#g">-g</a> or <a href="collink.html#G">-G</a>),
then
it can save considerable processing time and space if the -b flag is
used, and the -S flag not used.<br>
<br>
For an RGB printer intended to print RGB originals, the following
might be a typical profile usage:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Printer A"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#S">-S</a><a href="colprof.html#S"> sRGB.icm</a>
<a href="colprof.html#c">-cmt</a> <a href="colprof.html#d">-dpp</a>
<a href="colprof.html#p1">PrinterA</a><br>
<br>
or if you intent to print from Fogra, SWOP or other standard CMYK
style originals:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Printer A"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#S">-S</a><a href="colprof.html#S">
fogra39l.icm</a> <a href="colprof.html#c">-cmt</a> <a
href="colprof.html#d">-dpp</a> <a href="colprof.html#p1">PrinterA</a><br>
<br>
If you know what colorspace your originals are in, use that as the
argument to <span style="font-weight: bold;">-S</span>.<br>
<br>
If your viewing environment for the display and print doesn't match
the ones implied by the <a href="colprof.html#c">-cmt</a> and <a
href="colprof.html#d">-dpp</a> options, leave them out, and
evaluate what, if any appearance transformation is appropriate for
your environment at a later stage.<br>
<br>
A fallback to using a specific source profile/gamut is to use a
general compression percentage as a gamut mapping:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Printer A"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#S">-S</a><a href="colprof.html#S"> 20</a> <a
href="colprof.html#c">-cmt</a> <a href="colprof.html#d">-dpp</a>
<a href="colprof.html#p1">PrinterA</a><br>
<br>
Make sure you check the delta E report at the end of the profile
creation, to see if the sample data and profile is behaving
reasonably. Depending on the type of device, and the consistency of
the readings, average errors of 5 or less, and maximum errors of 15
or less would normally be expected. If errors are grossly higher
than this, then this is an indication that something is seriously
wrong with the device measurement, or profile creation.
<h4><a name="PP6"></a>Choosing a black generation curve (and other
CMYK printer options)<br>
</h4>
For a CMYK printer, it would be normal to specify the type of black
generation, either as something simple, or as a specific curve. The
documentation in <a href="colprof.html#k">colprof</a> for the
details of the options.<span style="font-weight: bold;"><br>
<br>
Note</span> that making a good choice of black generation curve
can affect things such as: how robust neutrals are given printer
drift or changes in viewing lighting, how visible screening is, and
how smooth looking the B2A conversion is.<br>
<br>
For instance, maximizing the level of K will mean that the neutral
colors are composed of greater amounts of Black ink, and black ink
retains its neutral appearance irrespective of printer behavior or
the spectrum of the illuminant used to view the print. On the other
hand, output which is dominantly from one of the color channels will
tend to emphasize the screening pattern and any unevenness (banding
etc.) of that channel, and the black channel in particular has the
highest visibility. So in practice, some balance between the levels
of the four channels is probably best, with more K if the screening
is fine and a robust neutral balance is important, or less K if the
screening is more visible and neutral balance is less critical. The
levels of K at the edges of the gamut of the device will be fixed by
the nature of the ink combinations that maximize the gamut (ie.
typically zero ink for light chromatic colors, some combination for
dark colors, and a high level of black for very dark near neutrals),
and it is also usually important to set a curve that smoothly
transitions to the K values at the gamut edges. Dramatic changes in
K imply equally dramatic changes in CMY, and these abrupt
transitions will reveal the limited precision and detail that can be
captured in a lookup table based profile, often resulting in a
"bumpy" looking output.<br>
<br>
If you want to experiment with the various black generation
parameters, then it might be a good idea to create a preliminary
profile (using <a href="colprof.html#q">-ql</a> <a
href="colprof.html#b">-b</a> <a href="colprof.html#ni">-no</a>, <a
href="colprof.html#no">-ni</a> and no <a href="colprof.html#S">-S</a>),
and then used <a href="xicclu.html#g">xicclu</a> to explore the
effect of the parameters.<br>
<br>
For instance, say we have our CMYK .ti3 file <span
style="font-weight: bold;">PrinterB.ti3</span>. First we make a
preliminary profile called <span style="font-weight: bold;">PrinterBt</span>:<br>
<br>
copy PrinterB.ti3 PrinterBt.ti3 (Use
"cp" on Linux or OSX of course.)<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#q">-qm</a> <a href="colprof.html#b">-b</a> <a
href="colprof.html#c">-cmt</a> <a href="colprof.html#d">-dpp</a>
<a href="colprof.html#p1">PrinterBt</a><br>
<br>
Then see what the minimum black level down the neutral axis can be.
Note that we need to also set any ink limits we've decided on as
well (coloprof defaulting to 10% less than the value recorded in the
.ti3 file). In this example the test chart has a 300% total ink
limit, and we've decided to use 290%:<br>
<br>
<a href="xicclu.html">xicclu</a> <a href="xicclu.html#g">-g</a> <a
href="xicclu.html#k">-kz</a> <a href="xicclu.html#l">-l290</a> <a
href="xicclu.html#f">-fif</a> <a href="xicclu.html#i">-ir</a> <a
href="xicclu.html#p1">PrinterBt.icm</a><br>
<br>
Which might be a graph something like this:<br>
<br>
<img alt="Graph of CMYK neutral axis with minimum K"
src="Kgraph1.jpg" style="width: 250px; height: 250px;"><br>
<br>
Note how the minimum black is zero up to 93% of the
white->black L* curve, and then jumps up to 87%. This is because
we've reached the total ink limit, and K then has to be substituted
for CMY, to keep the total under the total ink limit.<br>
<br>
Then let's see what the maximum black level down the neutral axis
can be:<br>
<br>
<a href="xicclu.html">xicclu</a> <a href="xicclu.html#g">-g</a> <a
href="xicclu.html#k">-kx</a> <a href="xicclu.html#l">-l290</a> <a
href="xicclu.html#f">-fif</a> <a href="xicclu.html#i">-ir</a> <a
href="xicclu.html#p1">PrinterBt.icm</a><br>
<br>
Which might be a graph something like this:<br>
<br>
<img alt="Graph of CMYK neutral axis with maximum K"
src="Kgraph2.jpg" style="width: 250px; height: 250px;"><br>
<br>
Note how the CMY values are fairly low up to 93% of the
white->black L* curve (the low levels of CMY are helping set the
neutral color), and then they jump up. This is because we've reach
the point where black on it's own, isn't as dark as the color that
can be achieved using CMY and K. Because the K has a dominant effect
on the hue of the black, the levels of CMY are often fairly volatile
in this region.<br>
<br>
Any K curve we specify must lie between the black curves of the
above two graphs.<br>
<br>
Let's say we'd like to chose a moderate black curve, one that aims
for about equal levels of CMY and K. We should also aim for it to be
fairly smooth, since this will minimize visual artefacts caused by
the limited fidelity that profile LUT tables are able to represent
inside the profile.<br>
<br>
<img style="width: 340px; height: 258px;" alt="-k parameters"
src="Kparams.jpg"><br>
<br>
<br>
For minimum discontinuities we should aim for the curve to finish at
the point it has to reach to satisfy the total ink limit at 87%
curve and 93% black. For a first try we can simply set a straight
line to that point: <br>
<br>
<a href="xicclu.html">xicclu</a> <a href="xicclu.html#g">-g</a> <a
href="xicclu.html#k">-kp 0 0 .93 .87 1.0</a> <a
href="xicclu.html#l">-l290</a> <a href="xicclu.html#f">-fif</a> <a
href="xicclu.html#i">-ir</a> <a href="xicclu.html#p1">PrinterBt.icm</a><br>
<br>
<img alt="Graph of CMYK neutral axis with kp 0 0 1.0 1.0 1.0 -l290"
src="Kgraph3.jpg" style="width: 250px; height: 250px;"><br>
<br>
The black "curve" hits the 93%/87% mark well, but is a bit too far
above CMY, so we'll try making the black curve concave:<br>
<br>
<a href="xicclu.html">xicclu</a> <a href="xicclu.html#g">-g</a> <a
href="xicclu.html#k">-kp </a><a href="xicclu.html#k">0 0 .93 .87
0.65</a> <a href="xicclu.html#l">-l290</a> <a
href="xicclu.html#f">-fif</a> <a href="xicclu.html#i">-ir</a> <a
href="xicclu.html#p1">PrinterBt.icm</a><br>
<br>
<img alt="Graph of CMYK neutral axis with -kp 0 .05 1 .9 1 -l290"
src="Kgraph4.jpg" style="width: 250px; height: 249px;"><br>
<br>
This looks just about perfect, so the the curve parameters can now
be used to generate our real profile:<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Printer B"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#k">-kp </a><a href="xicclu.html#k">0 0 .93
.87 0.65</a> <a href="colprof.html#S">-S</a><a
href="colprof.html#S"> sRGB.icm</a> <a href="colprof.html#c">-cmt</a>
<a href="colprof.html#d">-dpp</a> <a href="colprof.html#p1">PrinterB</a><br>
<br>
and the resulting B2A table black curve can be checked using xicclu:<br>
<br>
<a href="xicclu.html">xicclu</a> <a href="xicclu.html#g">-g</a> <a
href="xicclu.html#f">-fb</a> <a href="xicclu.html#i">-ir</a> <a
href="xicclu.html#p1">PrinterB.icm</a><br>
<br>
<img style="width: 250px; height: 250px;" alt="sadsadas"
src="Kgraph5.jpg"><br>
<br>
<br>
<hr style="margin-left: 0px; margin-right: auto; width: 20%; height:
2px;"><br>
<span style="font-weight: bold;">Examples of other inkings:<br>
<br>
</span>A smoothed zero black inking:<br>
<br>
<a href="xicclu.html">xicclu</a> <a href="xicclu.html#g">-g</a> <a
href="xicclu.html#k">-kp </a><a href="xicclu.html#k">0 .7 .93 .87
1.0</a> <a href="xicclu.html#l">-l290</a> <a
href="xicclu.html#f">-fif</a> <a href="xicclu.html#i">-ir</a> <a
href="xicclu.html#p1">PrinterBt.icm</a><br>
<br>
<img style="width: 250px; height: 250px;" alt="sadsadas"
src="Kgraph6.jpg"><br>
<br>
A low black inking:<br>
<br>
<a href="xicclu.html">xicclu</a> <a href="xicclu.html#g">-g</a> <a
href="xicclu.html#k">-kp </a><a href="xicclu.html#k">0 0 .93 .87
0.15</a> <a href="xicclu.html#l">-l290</a> <a
href="xicclu.html#f">-fif</a> <a href="xicclu.html#i">-ir</a> <a
href="xicclu.html#p1">PrinterBt.icm</a><br>
<br>
<img style="width: 250px; height: 250px;" alt="sadsadas"
src="Kgraph7.jpg"><br>
<br>
<br>
A high black inking:<br>
<br>
<a href="xicclu.html">xicclu</a> <a href="xicclu.html#g">-g</a> <a
href="xicclu.html#k">-kp </a><a href="xicclu.html#k">0 0 .93 .87
1.2</a> <a href="xicclu.html#l">-l290</a> <a
href="xicclu.html#f">-fif</a> <a href="xicclu.html#i">-ir</a> <a
href="xicclu.html#p1">PrinterBt.icm</a><br>
<br>
<img style="width: 250px; height: 250px;" alt="sadsadas"
src="Kgraph8.jpg"><br>
<br>
<span style="font-weight: bold;"></span>
<h4>Overriding the ink limit<br>
</h4>
Normally the total ink limit will be read from the <span
style="font-weight: bold;">PrinterB.ti3</span> file, and will be
set at a level 10% lower than the number used in creating the test
chart values using <a href="targen.html#l">targen -l</a>. If you
want to override this with a lower limit, then use the <a
href="colprof.html#l">-l flag</a>.<br>
<br>
<a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"Printer B"</a> <a href="colprof.html#q">-qm</a>
<a href="colprof.html#S">-S</a><a href="colprof.html#S"> sRGB.icm</a>
<a href="colprof.html#c">-cmt</a> <a href="colprof.html#d">-dpp</a>
<a href="colprof.html#k">-kr</a> <a href="xicclu.html#l">-l290</a>
<a href="colprof.html#p1">PrinterB</a><br>
<br>
Make sure you check the delta E report at the end of the profile
creation, to see if the profile is behaving reasonably.<br>
<br>
One way of checking that your ink limit is not too high, is to use "<span
style="font-weight: bold;">xicc -fif -ia</span>" to check, by
setting different ink limits using the <span style="font-weight:
bold;">-l</span> option, feeding Lab = 0 0 0 into it, and checking
the resulting black point. Starting with the ink limit used
with <span style="font-weight: bold;">targen</span> for the test
chart, reduce it until the black point starts to be affected. If it
is immediately affected by any reduction in the ink limit, then the
black point may be improved by increasing the ink limit used to
generate the test chart and then re-print and re-measuring it,
assuming other aspects such as wetness, smudging, spreading or
drying time are not an issue.<br>
<br>
<hr style="width: 100%; height: 2px;"><br>
<h3><a name="PC1"></a>Calibrating Printers<br>
</h3>
<span style="font-weight: bold;">Profiling</span> creates a
description of how a device behaves, while <span
style="font-weight: bold;">calibration</span> on the other hand is
intended to <span style="text-decoration: underline;">change</span>
how a device behaves. Argyll has the ability to create per-channel
device space calibration curves for print devices, that can then be
used to improve the behavior of of the device, making a subsequent
profile fit the device more easily and also allow day to day
correction of device drift without resorting to a full re-profile.<br>
<br>
<span style="font-weight: bold;">NOTE:</span> Because calibration
adds yet another layer to the way color is processed, it is
recommended that it not be attempted until the normal profiling
workflow is established, understood and verified.<br>
<h4><a name="PC2"></a>Calibrated print workflows</h4>
There are two main workflows that printer calibration curves can be
applied to:<br>
<br>
<span style="text-decoration: underline;">Workflow <span
style="font-weight: bold;">with</span> native calibration
capability</span>:<br>
<br>
Firstly the printer itself may have the capability of using per
channel calibration curves. In this situation, the calibration
process will be largely independent of profiling. Firstly the
printer is configured to have both its color management and
calibration disabled (the latter perhaps achieved by loading linear
calibration curves), and a print calibration test chart that
consists of per channel color wedges is printed. The calibration
chart is read and the resulting .ti3 file converted into calibration
curves by processing it using <span style="font-weight: bold;">printcal</span>.
The calibration is then installed into the printer. Subsequent
profiling will be performed on the <span style="text-decoration:
underline;">calibrated</span> printer (ie. the profile test chart
will have the calibration curves applied to it by the printer, and
the resulting ICC profile will represent the behavior of the
calibrated printer.)<br>
<br>
<span style="text-decoration: underline;">Workflow <span
style="font-weight: bold;">without</span> native calibration
capability</span>:<br>
<br>
The second workflow is one in which the printer has no calibration
capability itself. In this situation, the calibration process will
have to be applied using the ICC color management tools, so careful
coordination with profiling is needed. Firstly the printer is
configured to have its color management disabled, and a print
calibration test chart that consists of per channel color wedges is
printed. The calibration chart is converted into calibration curves
by reading it and then processing the resultant .ti3 using <span
style="font-weight: bold;">printcal</span>,. During the subsequent
<span style="text-decoration: underline;">profiling</span>, the
calibration curves will need to be applied to the profile test chart
in the process of using <span style="font-weight: bold;">printtarg</span>.
Once the the profile has been created, then in subsequent printing
the calibration curves will need to be applied to an image being
printed either explicitly when using <span style="font-weight:
bold;">cctiff</span> to apply color profiles <span
style="text-decoration: underline;">and</span> calibration, <span
style="font-weight: bold;">OR</span> by creating a version of the
profile that has had the calibration curves incorporated into it
using the <span style="font-weight: bold;">applycal</span> tool.
The latter is useful when some CMM (color management module) other
than <span style="font-weight: bold;">cctiff </span>is being used.<br>
<br>
Once calibration aim targets for a particular device and mode
(screening, paper etc.) have been established, then the printer can
be re-calibrated at any time to bring its per channel behavior back
into line if it drifts, and the new calibration curves can be
installed into the printer, or re-incorporated into the profile.
<h4><a name="PC3"></a>Creating a print calibration test chart</h4>
The first step is to create a print calibration test chart. Since
calibration only creates per-channel curves, only single channel
step wedges are required for the chart. The main choice is the
number of steps in each wedge. For simple fast calibrations perhaps
as few as 20 steps per channel may be enough, but for a better
quality of calibration something like 50 or more steps would be a
better choice.<br>
<br>
Let's consider two devices in our examples, "PrinterA" which is an
"RGB" printer device, and "PrinterB" which is CMYK. In fact there is
no such thing as a real RGB printer, since printers use white media
and the colorant must subtract from the light reflected on it to
create color, but the printer itself turns the incoming RGB into the
native print colorspace, so for this reason we are careful to tell
targen to use the "Print RGB" colorspace, so that it knows to create
step wedges from media white to full colorant values.<br>
<br>
For instance, to create a 50 steps per channel calibration test
chart for our RGB and CMYK devices, the following would be
sufficient:<br>
<br>
<a href="targen.html">targen</a> <a href="targen.html#v">-v</a>
<a href="targen.html#d">-d2</a> <a href="targen.html#s">-s50</a>
<a href="targen.html#e">-e3</a> <a href="targen.html#f">-f0</a> <a
href="targen.html#p1">PrinterA_c</a><br>
<br>
<a href="targen.html">targen</a> <a href="targen.html#v">-v</a>
<a href="targen.html#d">-d4</a> <a href="targen.html#s">-s50</a>
<a href="targen.html#e">-e4</a> <a href="targen.html#f">-f0</a> <a
href="targen.html#p1">PrinterB_c</a><br>
<a href="targen.html#p1"></a><br>
For an outline of how to then print and read the resulting test
chart, see <a href="Scenarios.html#PP2b">Printing a print
profile test chart</a>, and <a href="Scenarios.html#PP3">Reading
a print test chart using an instrument</a>. Note that the printer
must be in an un-profiled and un-calibrated mode when doing this
print. Having done this, there will be a PrinterA.ti3 or
PrinterB.ti3 file containing the step wedge calibration chart
readings.<br>
<br>
<span style="font-weight: bold;">NOTE</span> that if you are
calibrating a raw printer driver, and there is considerable dot
gain, then you may want to use the <a href="targen.html#p">-p</a>
parameter to adjust the test chart point distribution to spread them
more evenly in perceptual space, giving more accurate control over
the calibration. Typically this will be a value greater than one for
a device that has dot gain, e.g. values of 1.5, 2.0 or 2.5 might be
good places to start. You can do a preliminary calibration and use
the verbose output of printcal to recommend a suitable value for <span
style="font-weight: bold;">-p</span>.<br>
<h4><a name="PC4"></a>Creating a printer calibration<br>
</h4>
The <a href="printcal.html">printcal</a> tool turns a calibration
chart <a href="File_Formats.html#.ti3">.ti3</a> file into a <a
href="File_Formats.html#.cal">.cal</a> file. It has three main
operating modes:- Initial calibration, Re-Calibration, and
Verification. (A fourth mode, "Imitation" is very like Initial
Calibration, but is used for establishing a calibration target that
a similar printer can attempt to imitate.)<br>
<br>
The distinction between Initial Calibration and Re-Calibration is
that in the initial calibration we establish the "aim points" or
response we want out of the printer after calibration. There are
three basic parameters to set this for each channel: Maximum level,
minimum level, and curve shape.<br>
<br>
By default the maximum level will be set using a heuristic which
attempts to pick the point when there is diminishing returns for
applying more colorant. This can be overridden using the <span
style="font-weight: bold;">-x# percent</span> option, where <span
style="font-weight: bold;">#</span> represents the choice of
channel this will be applied to. The parameter is the percentage of
device maximum. <br>
<br>
The minimum level defaults to 0, but can be overridden using the <span
style="font-weight: bold;">-n# deltaE</span> option. A minimum of
0 means that zero colorant will correspond to the natural media
color, but it may be desirable to set a non-pure media color using
calibration for the purposes of emulating some other media. The
parameter is in Delta E units.<br>
<br>
The curve shape defaults to being perceptually uniform, which means
that even steps of calibrated device value result in perceptually
even color steps. In some situations it may be desirable to alter
this curve (for instance when non color managed output needs to be
sent to the calibrated printer), and a simple curve shape target can
be set using the <span style="font-weight: bold;">-t# percent</span>
parameter. This affects the output value at 50% input value, and
represents the percentage of perceptual output. By default it is 50%
perceptual output for 50% device input.<br>
<br>
Once a device has been calibrated, it can be re-calibrated to the
same aim target.<br>
<br>
Verification uses a calibration test chart printed through the
calibration, and compares the achieved response to the aim target.<br>
<br>
The simplest possible way of creating the <span style="font-weight:
bold;">PrinterA.cal</span> file is:<br>
<br>
<a href="printcal.html">printcal</a> <a
href="printcal.html#i">-i</a> <a href="colprof.html#p2">PrinterA_c</a><br>
<br>
For more detailed information, you can add the <span
style="font-weight: bold;">-v</span> and <span
style="font-weight: bold;">-p</span> flags:<br>
<br>
<a href="printcal.html">printcal</a> <a
href="printcal.html#v">-v</a> <a href="printcal.html#p">-p</a> <a
href="printcal.html#i">-i</a> <a href="colprof.html#p2">PrinterB_c</a><br>
<br>
(You will need to select the plot window and hit a key to advance
past each plot).<br>
<br>
For re-calibration, the name of the previous calibration file will
need to be supplied, and a new calibration<br>
file will be created:<br>
<br>
<a href="printcal.html">printcal</a> <a
href="printcal.html#v">-v</a> <a href="printcal.html#p">-p</a> <a
href="printcal.html#r">-r</a> <a href="colprof.html#p1">PrinterB_c_old</a>
<a href="colprof.html#p2">PrinterB_c_new</a><br>
<br>
Various aim points are normally set automatically by <span
style="font-weight: bold;">printcal</span>, but these can be
overridden using the <a href="colprof.html#x">-x</a>, <a
href="colprof.html#n">-n</a> and <a href="colprof.html#t">-t</a>
options. e.g. say we wanted to set the maximum ink for Cyan to 80%
and Black to 95%, we might use:<br>
<br>
<a href="printcal.html">printcal</a> <a
href="printcal.html#v">-v</a> <a href="printcal.html#p">-p</a> <a
href="printcal.html#i">-i</a> <a href="colprof.html#x">-xc 80</a>
<a href="colprof.html#x">-xk 95</a> <a href="colprof.html#p2">PrinterB_c</a><br>
<br>
<a href="colprof.html#p2"></a>
<h4><a name="PC5"></a>Using a printer calibration</h4>
The resulting calibration curves can be used with the following
other Argyll tools:<br>
<br>
<a href="printtarg.html#K">printtarg</a>
To
apply
calibration
to
a
profile
test
chart,
and/or to have it included in .ti3 file.<br>
<a href="cctiff.html#p2">cctiff</a>
To
apply
color
management
and
calibration
to
an
image file.<br>
<a href="applycal.html#p1">applycal</a>
To incorporate calibration into an ICC profile.<br>
<a href="chartread.html#I">chartread</a>
To
override
the
calibration
assumed
when
reading
a
profile chart.<br>
<br>
<br>
In a workflow <span style="font-weight: bold;">with</span> native
calibration capability, the calibration curves would be used with
printarg during subsequent <span style="font-weight: bold;">profiling</span>
so that any ink limit calculations will reflect final device values,
while not otherwise using the calibration within the ICC workflow:<br>
<br>
<a href="printtarg.html">printtarg</a> <a
href="printtarg.html#v">-v</a> <a href="printtarg.html#i">-ii1</a>
<a href="printtarg.html#p">-pA4</a> <a href="printtarg.html#I">-I
PrinterA_c.cal</a> <a href="printtarg.html#p1">PrinterA</a><br>
<br>
This will cause the .ti2 and resulting .ti3 and ICC profiles to
contain the calibration curves, allowing all the tools to be able to
compute final device value ink limits. The calibration curves must
also of course be installed into the printer. The means to do this
is currently outside the scope of Argyll (ie. either the print
system needs to be able to understand Argyll CAL format files, or
some tool will be needed to convert Argyll CAL files into the
printer calibration format).<br>
<br>
<br>
In a workflow <span style="font-weight: bold;">without</span>
native calibration capability, the calibration curves would be used
with printarg to <span style="text-decoration: underline;">apply</span>
the calibration to the test patch samples during subsequent <span
style="font-weight: bold;">profiling</span>, as well as embedding
it in the resulting .ti3 to allow all the tools to be able to
compute final device value ink limits:<br>
<br>
<a href="printtarg.html">printtarg</a> <a
href="printtarg.html#v">-v</a> <a href="printtarg.html#i">-ii1</a>
<a href="printtarg.html#p">-pA4</a> <a href="printtarg.html#K">-K
PrinterA_c.cal</a> <a href="printtarg.html#p1">PrinterA</a><br>
<a href="cctiff.html#p4"></a><br>
To apply calibration to an ICC profile, so that a calibration
unaware CMM can be used:<br>
<br>
<a href="applycal.html">applycal</a> <a
href="applycal.html#p1">PrinterA.cal</a> <a
href="applycal.html#p2">PrinterA.icm</a> <a
href="applycal.html#p3">PrinterA_cal.icm</a><br>
<br>
To apply color management and calibration to a raster image:<br>
<br>
<a href="cctiff.html">cctiff</a> <a
href="cctiff.html#p1">Source.icm</a> <a href="cctiff.html#p1">PrinterA.icm</a>
<a href="cctiff.html#p2">PrinterA_c.cal</a> <a
href="cctiff.html#p3">infile.tif</a> <a href="cctiff.html#p4">outfile.tif</a><br>
<br>
or<br>
<br>
<a href="cctiff.html">cctiff</a> <a
href="cctiff.html#p1">Source.icm</a> <a href="cctiff.html#p1">PrinterA_c.icm</a>
<a href="cctiff.html#p3">infile.tif</a> <a href="cctiff.html#p4">outfile.tif</a><br>
<br>
[ Note that cctiff will also process JPEG raster images. ]<br>
<br>
Another useful tool is <a href="synthcal.html">synthcal</a>, that
allows creating linear or synthetic calibration files for disabling
calibration or testing.<br>
Similarly, <a href="fakeread.html">fakeread</a> also supports
applying calibration curves and embedding them in the resulting .ti3
file<br>
<br>
If you want to create a pre-conditioning profile for use with <a
href="targen.html#c">targen -c</a>, then use the PrinterA.icm
profile, <b>NOT</b> PrinterA_c.icm that has calibration curves
applied.<br>
<h4><a name="PC6"></a>How profile ink limits are handled when
calibration is being used.</h4>
Even though the profiling process is carried out on top of the
linearized device, and the profiling is generally unaware of the
underlying non-linearized device values, an exception is made in the
calculation of ink limits during profiling. This is made possible by
including the calibration curves in the profile charts .ti2 and
subsequent .ti3 file and resulting ICC profile <span
style="font-weight: bold;">'targ'</span> text tag, by way of the <span
style="font-weight: bold;">printtarg</span> <span
style="font-weight: bold;">-I</span> or <span style="font-weight:
bold;">-K</span> options. This is done on the assumption that the
physical quantity of ink is what's important in setting the ink
limit, and that the underlying non-linearized device values
represent such a physical quantity.<br>
<br>
<br>
<hr width="100%" size="2">
<h3><a name="LP1"></a>Linking Profiles</h3>
Two device profiles can be linked together to create a device link
profile, than encapsulates a particular device to device transform.
Often this step is not necessary, as many systems and tools will
link two device profiles "on the fly", but creating a device link
profile gives you the option of using "smart CMM" techniques, such
as true gamut mapping, improved inverse transform accuracy, tailored
black generation and ink limiting.<br>
<br>
The overall process is to link the input space and output space
profiles using <a href="collink.html">collink</a>, creating a
device to device link profile. The device to device link profile can
then be used by cctiff (or other ICC device profile capable tools),
to color correct a raster files.<br>
<br>
Three examples will be given here, showing the three different modes
than <span style="font-weight: bold;">collink</span> supports.<br>
<br>
In <a href="collink.html#s">simple mode</a>, the two profiles are
linked together in a similar fashion to other <span
style="font-weight: bold;">CMMs</span> simply using the forward
and backwards color transforms defined by the profiles. Any gamut
mapping is determined by the content of the tables within the two
profiles, together with the particular intent chosen. Typically the
same intent will be used for both the source and destination
profile:<br>
<br>
<a href="collink.html">collink</a> <a href="collink.html#v">-v</a>
<a href="collink.html#q">-qm</a> <a href="collink.html#s">-s</a> <a
href="collink.html#si">-ip</a> <a href="collink.html#so">-op</a>
<a href="collink.html#p1">SouceProfile.icm</a> <a
href="collink.html#p2">DestinationProfile.icm</a> <a
href="collink.html#p3">Source2Destination.icm</a><br>
<br>
<br>
In <a href="collink.html#g">gamut mapping mode</a>, the
pre-computed intent mappings inside the profiles are not used, but
instead the gamut mapping between source and destination is tailored
to the specific gamuts of the two profiles, and the intent parameter
supplied to <span style="font-weight: bold;">collink</span>.
Additionally, source and destination viewing conditions should be
provided, to allow the color appearance space conversion to work as
intended. The colorimetric B2A table in the destination profile is
used, and this will determine any black generation and ink limiting:<br>
<br>
<a href="collink.html">collink</a> <a href="collink.html#v">-v</a>
<a href="collink.html#q">-qm</a> <a href="collink.html#g">-g</a> <a
href="collink.html#si">-ip</a> <a href="collink.html#c">-cmt</a>
<a href="collink.html#d">-dpp</a> <a href="collink.html#p1">MonitorSouceProfile.icm</a>
<a href="collink.html#p2">DestinationProfile.icm</a> <a
href="collink.html#p3">Source2Destination.icm</a><br>
<br>
[ If your viewing environment for the display and print doesn't
match the ones implied by the <a href="colprof.html#c">-cmt</a> and
<a href="colprof.html#d">-dpp</a> options, leave them out, and
evaluate what, if any appearance transformation is appropriate for
your environment at a later stage. ]<br>
<br>
In <a href="collink.html#G">inverse output table gamut mapping mode</a>,
the pre-computed intent mappings inside the profiles are not used,
but instead the gamut mapping between source and destination is
tailored to the specific gamuts of the two profiles, and the intent
parameter supplied to <span style="font-weight: bold;">collink</span>.
In addition, the B2A table is <span style="font-weight: bold;">not</span>
used in the destination profile, but the A2B table is instead
inverted, leading to improved transform accuracy, and in CMYK
devices, allowing the ink limiting and black generation parameters
to be set:<br>
<br>
For a CLUT table based RGB printer destination profile, the
following would be appropriate:<br>
<br>
<a href="collink.html">collink</a> <a href="collink.html#v">-v</a>
<a href="collink.html#q">-qm</a> <a href="collink.html#G">-G</a> <a
href="collink.html#si">-ip</a> <a href="collink.html#c">-cmt</a>
<a href="collink.html#d">-dpp</a> <a href="collink.html#p1">MonitorSouceProfile.icm</a>
<a href="collink.html#p2">RGBDestinationProfile.icm</a> <a
href="collink.html#p3">Source2Destination.icm</a><br>
<br>
For a CMYK profile, the total ink limit needs to be specified (a
typical value being 10% less than the value used in creating the
device test chart), and the type of black generation also needs to
be specified:<br>
<br>
<a href="collink.html">collink</a> <a href="collink.html#v">-v</a>
<a href="collink.html#q">-qm</a> <a href="collink.html#G">-G</a> <a
href="collink.html#si">-ip</a> <a href="collink.html#c">-cmt</a>
<a href="collink.html#d">-dpp</a> <a href="collink.html#l">-l250</a>
<a href="collink.html#k">-kr</a> <a href="collink.html#p1">MonitorSouceProfile.icm</a>
<a href="collink.html#p2">CMYKDestinationProfile.icm</a> <a
href="collink.html#p3">Source2Destination.icm</a><br>
<br>
Note that you should set the source (<a href="collink.html#c">-c</a>)
and destination (<a href="collink.html#d">-d</a>) viewing conditions
for the type of device the profile represents, and the conditions
under which it will be viewed.<br>
<br>
<h3><a name="LP3"></a>Image dependent gamut mapping using device
links<br>
</h3>
When images are stored in large gamut colorspaces (such as. L*a*b*,
ProPhoto, scRGB etc.), then using the colorspace gamut as the source
gamut for gamut mapping is generally a bad idea, as it leads to
overly compressed and dull images. The correct approach is to use a
source gamut that represents the gamut of the images themselves.
This can be created using tiffgamut, and an example workflow is as
follows:<br>
<br>
<a href="tiffgamut.html">tiffgamut</a> -f80 -pj -cmt ProPhoto.icm
image.tif<br>
<br>
<a href="collink.html">collink</a> <a href="collink.html#v">-v</a>
<a href="collink.html#q">-qh</a> <a href="collink.html#G">-G</a> <a
href="collink.html#Gp">image.gam</a> <a href="collink.html#si">-ip</a>
<a href="collink.html#c">-cmt</a> <a href="collink.html#d">-dpp</a>
<a href="collink.html#p1">ProPhoto.icm</a> <a
href="collink.html#p2">RGBDestinationProfile.icm</a> <a
href="collink.html#p3">Source2Destination.icm</a><br>
<br>
<a href="cctiff.html">cctiff</a> <a href="cctiff.html#p1">Source2Destination.icm</a>
<a href="cctiff.html#p3">image.tif</a> <a href="cctiff.html#p4">printfile.tif</a><br>
<br>
The printfile.tif is then send to the printer without color
management, (i.e. in the same way the printer characterization test
chart was printed), since it is in the printers native colorspace.<br>
<br>
You can adjust how conservatively the image gamut is preserved using
the tiffgamut -f parameter. Omitting it or using a larger value (up
to 100) preserves the color gradations of even the lesser used
colors, at the cost of compressing the gamut more.<br>
Using a smaller value will preserve the saturation of the most
popular colors, at the cost of not preserving the color gradations
of less popular colors.<br>
<br>
You can create a gamut that covers a set of source images by
providing more than one image file name to tiffgamut. This may be
more efficient for a group of related images, and ensures that
colors are transformed in exactly the same way for all of the
images.<br>
<br>
An alternative generating a gamut for a specific set of images, is
to use a general smaller gamut definition (i.e. the sRGB profile),
or a gamut that represents the typical range of colors you wish to
preserve.<br>
<br>
The arguments to collink should be appropriate for the output device
type - see the collink examples in the above section.<br>
<h3><a name="LP2"></a>Soft Proofing Link</h3>
Often it is desirable to get an idea what a particular devices
output will look like using a different device. Typically this might
be trying to evaluate print output using a display. Often it is
sufficient to use an absolute or relative colorimetric transform
from the print device space to the display space, but while these
provide a colorimetric preview of the result, they do not take into
account the subjective appearance differences due to the different
device conditions. It can therefore be useful to create a soft proof
appearance transform using collink:<br>
<br>
<a href="collink.html">collink</a> <a href="collink.html#v">-v</a>
<a href="collink.html#q">-qm</a> <a href="collink.html#G">-G</a> <a
href="collink.html#si">-ila</a> <a href="collink.html#c">-cpp</a>
<a href="collink.html#d">-dmt</a> <a href="collink.html#l">-t250</a> <a
href="collink.html#k"></a><a href="collink.html#p1">CMYKDestinationProfile.icm</a>
<a href="collink.html#p2">MonitorProfile.icm</a> <a
href="collink.html#p3">SoftProof.icm</a><br>
<br>
We use the Luminance matched appearance intent, to preserve the
subjective apperance of the target device, which takes into account
the viewing conditions and assumes adaptation to the differences in
the luminence range, but otherwise not attempting to compress or
change the gamut.<br>
<br>
If your viewing environment for the display and print doesn't match
the ones implied by the <a href="collink.html#c">-cpp</a> and <a
href="collink.html#d">-dmt</a> options, then either leave them out
or substitute values that do match your environment.<br>
<hr width="100%" size="2"><br>
<h3><a name="TR1"></a>Transforming colorspaces of raster files</h3>
Although a device profile or device link profile may be useful with
other programs and systems, Argyll provides the tool <a
href="cctiff.html">cctiff</a> for directly applying a device to
device transform to a <a href="File_Formats.html#TIFF">TIFF</a> or
<a href="File_Formats.html#JPEG">JPEG</a> raster file. The cctiff
tool is capable of linking an arbitrary sequence of device profiles,
device links, abstract profiles and calibration curves. Each device
profile can be preceded by the <span style="font-weight: bold;">-i</span>
option to indicate the intent that should be used. Both 8 and 16 bit
per component files can be handled, and up to 8 color channels. The
color transform is optimized to perform the overall transformation
rapidly.<br>
<br>
If a device link is to be used, the following is a typical example:<br>
<br>
<a href="cctiff.html">cctiff</a> <a href="cctiff.html#p1">Source2Destination.icm</a>
<a href="cctiff.html#p3">infile.tif</a> <a href="cctiff.html#p4">outfile.tif</a><br>
or<br>
<a href="cctiff.html">cctiff</a> <a href="cctiff.html#p1">Source2Destination.icm</a>
<a href="cctiff.html#p3">infile.jpg</a> <a href="cctiff.html#p4">outfile.jpg</a><br>
<br>
<i><br>
</i>If a source and destination profile are to be used, the
following would be a typical example:<br>
<br>
<a href="cctiff.html"> cctiff</a> <a href="cctiff.html#i">-ip</a>
<a href="cctiff.html#p1i">SourceProfile.icm</a> <a
href="cctiff.html#i">-ip</a> <a href="cctiff.html#p1o">DestinationProfile.icm</a>
<a href="cctiff.html#p3">infile.tif</a> <a href="cctiff.html#p4">outfile.tif</a><br>
or<br>
<a href="cctiff.html"> cctiff</a> <a href="cctiff.html#i">-ip</a>
<a href="cctiff.html#p1i">SourceProfile.icm</a> <a
href="cctiff.html#i">-ip</a> <a href="cctiff.html#p1o">DestinationProfile.icm</a>
<a href="cctiff.html#p3">infile.jpg</a> <a href="cctiff.html#p4">outfile.jpg</a><br>
<br>
<hr width="100%" size="2">
<h3><a name="FR1"></a>Using fakeread to re-create profiles</h3>
<p>Sometimes you have a profile of a particular table type such as a
matrix profile, and would like to re-create the profile with some
other table type such as cLUT, so that you can implement various
intents in the cLUTs.<br>
<a href="fakeread.html">fakeread</a> provides a path to doing
this. fakeread takes the place of measuring a test chart, instead
using the absolute colorimetric behavior of an ICC profile to
provide the characterization. So the procedure for creating a
profile is exactly the same as that used for creating a Display or
Output profile, but with fakeread taking the place of the chart
printing and/or instrument measurements of a device.<br>
</p>
<p>An example of creating a cLUT type sRGB profile with gamut
mapping from the source gamut defined by the gamut of the
source.icm device (say a printer gamut ?):<br>
</p>
<p><a href="targen.html">targen</a> <a href="targen.html#v">-v</a>
<a href="targen.html#d">-d3</a> <a href="targen.html#f">-f5000</a>
<a href="targen.html#c">-csRGB.icm</a> <a href="targen.html#p1">cLUTsRGB</a><br>
</p>
<p><a href="fakeread.html">fakeread</a> sRGB.icm cLUTsRGB<br>
</p>
<p><a href="colprof.html">colprof</a> <a href="colprof.html#v">-v</a>
<a href="colprof.html#E">-D"cLUT sRGB"</a> <a
href="colprof.html#h">-qh</a> <a href="colprof.html#S">-S</a><a
href="colprof.html#S"> source.icm</a> <a href="colprof.html#c">-cmt</a>
<a href="colprof.html#d">-dmt</a> <a href="colprof.html#p1">cLUTsRGB</a></p>
<p><br>
</p>
<h3> </h3>
<hr width="100%" size="2"><br>
<h3><a name="TV1"></a>Creating Video Calibration 3DLuts</h3>
Video calibration typically involves trying to make your actual
display device emulate an ideal video display, one which matches
what your Video media was intended to be displayed on. An ICC device
link embodies the machinery to do exactly this, to take device
values in the target source colorspace and transform them into an
actual output device colorspace. In the Video and Film industries a
very similar, but less sophisticated means of doing this is to use
3DLuts, which come in a multitude of different format. ICC device
links have the advantage of being a superset of 3dLuts, encapsulated
in a standard file format.<br>
<br>
To facilitate Video calibration of certain Video systems, ArgyllCMS
supports some 3DLut output options as part of <a
href="collink.html">collink</a>.<br>
<br>
What follows here is an outline of how to create Video calibration
3DLuts using ArgyllCMS. First comes a general discussion of various
aspects of video device links/3dLuts, and followed with some
specific advice regarding the systems that ArgyllCMS supports. Last
is some recommended scenarios for verifying the quality of Video
calibration achieved.<br>
<h5>1) How to display test patches.<br>
</h5>
Argyll's normal test patch display will be used by default, as long
as any video encoding range considerations are dealt with (see
Signal encoding below).<br>
<br>
An alternative when working with MadVR V 0.86.9 or latter, is to use
the madTPG to display the patches in which case the MadVR video
encoding range setting will operate. This can give some quality
benefits due to MadVR's use of dithering. To display patches using
MadVR rather than Argyll, start madTPG and then use the option "<b>-d
madvr</b>" in dispcal, dispread and dispwin. Leave the MadTPG
"VideoLUT" and "3dluts" buttons in their default (enabled)
state, as the various tools will automatically take care of
disabling the 3dLut and/or calibration curves as needed.<br>
<br>
Another option is to use a <a
href="http://en.wikipedia.org/wiki/Chromecast">ChromeCast</a>
using the option "<b>-dcc</b>" in dispcal, dispread and dispwin.
Note that the ChromeCast as a test patch source is probably the<b>
least accurate</b> of your choices, since it up-samples the test
patch and transforms from RGB to YCC and back, but should be
accurate within 1 bit. You may have to modify any firewall to
permit port 8081 to be accessed on your machine if it falls back to
the Default receiver (see <a href="Installing.html">installation
instructions</a> for your platform).
<h5>2) White point calibration & neutral axis calibration.</h5>
A Device Link is capable of embodying all aspects of the
calibration, including correcting the white point and neutral axis
behavior of the output device, but making such a Link just from two
ICC profile requires the use of Absolute Colorimetric intent during
linking, and this reduces flexibility. In addition, a typical ICC
device profile may not capture the neutral axis behavior quite as
well as an explicit calibration, since it doesn't sample the
displays neutral axis behaviour in quite as much detail. It is often
desirable therefore, to calibrate the display device so as to have
the specific white point desired so that one of the white point
relative linking intents can be used, and to improve the displays
general neutral axis behavior so that subsequent profiling works to
best advantage. In summary, there are basically 4 options in
handling white point & neutral axis calibration:<br>
<ul>
<li>Don't bother correcting the white point. Most displays are
close to the typical D65 target, and our eyes adapt to the white
automatically unless it is very far from the daylight locus or
we have something else to refer to. If this approach is taken,
then display profiling and linking can ignore calibration, and
one of the non Absolute Colorimetric intents (such as Relative
Colorimetric) is chosen during profile linking. It is wise to
make sure that the video card VideoLUTs are set to some known
state (ie. linear using "dispwin -c" , or set by a an installed
ICC display profile) though.<br>
</li>
<li>Calibrate the white point and linearise the neutral axis using
the display controls. Many TV's have internal calibration
controls that allow setting the white point, and possibly the
neutral axis response. Either a dedicated Video calibration
package could be used, or ArgyllCMS <a href="dispcal.html">dispcal</a>'s
interactive adjustment mode can be used to set the white point.
Note that while adjusting the neutral axis for neutrality may
help, the Device Link will override the transfer curve
characteristic of the calibrated display, so aiming for a
transfer curve approximately the same as the target and
reasonably perceptually linear is all that is required. If this
approach is taken, then display profiling and linking can ignore
calibration, and one of the non Absolute Colorimetric intents is
chosen during profile linking. It is wise to make sure that the
video card VideoLUTs are set to some known state though.</li>
<li>[<b>Recommended</b>] Calibrate the white point and neutral
axis using ArgyllCMS <a href="dispcal.html">dispcal</a>. Since
the Device Link will override the calibrated transfer curve
characteristic of the display, there there may be no point in
doing much more than a medium calibration, and choosing a
standard that has a straight segment from black, such as L*a*b*,
sRGB, Rec709 or SMPTE240 curve. The exact shape of the
calibration curve is not critically important, as the profiling
and 3dLut will set the final response. If this approach is
taken, then the resulting calibration file should be provided to
dispread as the <a href="dispcal.html#k">-k parameter</a> or <a
href="dispcal.html#K">-K parameter</a>. See also below <b>Choice
of where to apply display per channel calibration curves.</b></li>
<li>Choose one of the Absolute Colorimetric intents in collink
(ie. -i aw). This greatly reduces flexibility, and may not be
quite as accurate as an explicit calibration.</li>
</ul>
If an explicit calibration is used, then it is a good idea to add
some test points down the neutral axis when profiling (targen <a
href="targen.html#g">-g parameter</a>). <br>
<br>
<b>3) Choice of where to apply display per channel calibration
curves</b><br>
<br>
If calibration curves are going to be used, then it needs to be
decided where they will be applied in the video processing chain.
There are two options:<br>
<br>
<b>a)</b> Install the calibration curves in the playback system. On
a PC the display, this can be done by loading the calibration curves
into the Video Card temporarily using "dispwin calibration.cal", or
installing the ICC profile into the system persistently using
something like "<a href="dispwin.html#I">dispwin -I profile.icm</a>",<br>
or when using MadVR 0.86.9 or latter by creating a 3dLut with
appended calibration curves using <a href="collink#H">-H
display.cal</a>.<br>
<br>
<b>b)</b> The calibration can be incorporated into the Device
Link/3dLUT by providing it to collink as the <a
href="collink.html#a">-a display.cal</a>. This is the only option
if the video display path does not have some separate facility to
handle calibration curves. Note that if the playback system has
graphic card VideoLUTs then they will have to be set to a defined
consistent state such as linear. When using MadVR 0.86.9 or latter
this will be done automatically since the -a option will append a
linear set of calibration curves to the 3dLut.<br>
<br>
The choice is dictated by a number of considerations:<br>
<ul>
<li>Does the video playback path have a facility for installing
the calibration curves ? If playing back system is a PC, then
typically the Graphics Card supports 1D VideoLUTs, thereby
making a) a possible choice.<br>
</li>
<li>Does the video playback <u>always</u> play back through the
Video Card VideoLUTs ? Some systems do not apply VIdeoLUTs to
things like overlay plane rendering. If not, then you need to
choose b), but also make sure that if it does use the Video Card
VideoLUTs in some situations, that they are set to linear (ie.
dispcal -c). One way of determining when the VideoLUTs get used
or not is to load a distinct calibration such as "strange.cal"
provided in the <b>ref</b> folder, and check visually if it is
affecting the video or not, ie. "dispcal strange.cal". Note that
using MadVR 0.86.9 or latter in combination with a 3dLut with
appended calibration curves will apply the calibration even with
overlay plane rendering.<br>
</li>
<li>Do you want/need other applications to share the calibration
curves or profile or not ? If you do, then it is desirable to
choose a).</li>
<li>Quality considerations. VideoLUTs may or may not be of greater
depth than the standard 8 bit per color component frame buffer.
If they are, and the video path passes that extra depth through
to the display, and the display is capable of using that extra
depth, then a) may be a desirable choice from a quality point of
view. You can get some idea whether this is the case by running
"dispcal -R". If the VideoLUT depth is not better than 8 bits,
then it may be more desirable to choose b), since renders like
MadVR can use dithering to give better than 8 bits precision in
the video playback.<br>
</li>
</ul>
<h5>4) Output device calibration and profiling.</h5>
Output device profiling should basically follow the guide above in <a
href="#PM1b">Adjusting and Calibrating a displays</a> and <a
href="#PM1">Profiling Displays</a>. The assumption is that either
you are calibrating/profiling your computer display for video, or
your TV is connected to the computer you are creating
calibrations/profiles on, and that the connection between the PC and
TV display is such that full range RGB signals are being used, or
that the Video card has automatically or manually been configured to
scale full range RGB values to Video levels for the TV. If the
latter is not possible, then use the -E options on dispcal and
dispread. (See <b>Signal encoding</b> below for more details on
this). It may also improve the accuracy of the display profile if
you use the <a href="dispread.html#Z">dispread -Z</a> option to
quantize the test values to the precision of the display
system. Don't use the -E options on dispcal and dispread, nor
the -Z option on dispread if you are using MadVR to display test
patches using the "-d madvr" option.<br>
<br>
Once the profile has been created, it is possible to then use the
resulting Device Link/3DLut with signal encoding other than full
range or Video level RGB. <br>
<h5>5) Target colorspace<br>
</h5>
In practical terms, there are five common Video and Digital Cinema
encoding colorspaces. <br>
<br>
For Standard Definition:<br>
<br>
EBU 3213 or "PAL 576i" primaries.<br>
<br>
SMPTE RP 145 or "NTSC 480i" primaries.<br>
<br>
For High Definition:<br>
<br>
Rec 709 primaries.<br>
<br>
For Ultra High Defintion<br>
<br>
Rec 2020 primaries.<br>
<br>
For Digital Cinema<br>
<br>
SMPTE-431-2 or "DCI-P3"<br>
<br>
PAL and NTSC have historically had poorly specified transfer curve
encodings, and the Rec 709 HDTV encoding curve is the modern <a
href="http://www.poynton.com/notes/DVAI/DVAI_TOC_full.html#23">recommendation</a>,
but the overall interpretation of Video sources may in fact be
partly determined by the expected standard Video display device
characteristics (see <b>Viewing conditions adjustment and gamut
mapping</b> below for more details).<br>
<br>
To enable targeting these colorspaces, ArgyllCMS provides 5 ICC
profiles in the ref directory to use as source
colorspaces: <br>
<br>
EBU3213_PAL.icm<br>
<br>
SMPTE_RP145_NTSC.icm<br>
<br>
Rec709.icm<br>
<br>
Rec2020.icm<br>
<br>
SMPTE431_P3.icm<br>
<h5>6) Signal encoding</h5>
Typical PC display output uses full range RGB signals (0 .. 255 in 8
bit parlance), while typical Video encoding allows some head &
footroom for overshoot and sync of digitized analog signals, and
typically uses a 16..235 range in 8 bits. In many cases Video is
encoded as luma and color difference signals YCbCr (loosely known as
YUV as well), and this also uses a restricted range 16..235 for Y,
and 16..240 for Cb and Cr in 8 bit encoding. The extended gamut
xvYCC encoding uses 16..235 for Y, and 1..254 for Cb and Cr.<br>
<br>
The signal encoding comes into play in two situations: 1)
Calibrating and profiling the display, and 2) Using the resulting
Device Link/3DLut.<br>
The encoding may need to be different in these two situations,
either because different video source devices are being used for
calibration/profiling and for video playback, or because the video
playback system uses the Device Link/3DLut at a point in its
processing pipeline that requires a specific encoding.<br>
<br>
For calibration & profiling, the display will be driven by a
computer system so that dispcal and dispread can be used. By default
these programs expect to output full range RGB signals, and it is
assumed that either the display accepts full range signals, or that
the graphics card or connection path has been setup to convert the
full range values into Video range signals automatically or
manually. If this is not the case, then both dispcal and dispread
have a -E option that will modify them to output Video range RGB
values.<br>
<br>
If MadVR is the target of the calibration and profiling, then there
is an option to use it to display the calibration and profiling test
patches (<b>-d madvr</b>). In this case, MadVR should be configured
appropriately for full range or Video range encoding, and the -E
flag should <u>not</u> be used with dispcal or dispread, since
MadVR will be taking care of such conversions.<br>
<br>
If a calibration file was created using dispcal -E, then using it in
dispread will automatically trigger Video level RGB signals during
profiling. Any time such a Video level calibration is loaded into
the Graphics card VideoLUTs using dispwin, or the calibration curve
is converted to a 'vcgt' tag in a profile, the curve will also
convert full range RGB to Video range RGB. This should be kept in
mind so that if video playback is being performed with the
calibration curves installed in the Graphics card VideoLUTs, that
full range is converted only once to Video range (ie. In this
situation MadVR output should be set to full range if being played
back through the calibration curves in hardware, but only if dispcal
-E has been used). On the other hand, if the calibration curves are
incorporated into the DeviceLink/3dLUT, then the conversion to Video
levels has to be done somewhere else in the pipeline, such as using
MadVR video level output, or by the graphics card, etc.<br>
<br>
When creating the Device Link/3dLut, it is often necessary to
specify one of the video encodings so that it fits in to the
processing pipeline correctly. For instance the eeColor needs to
have input and output encoding that suits the HDMI signals passing
through it, typically Video Range RGB. MadVR needs Video Level RGB
to match the values being passed through the 3dLut at that point.<br>
<br>
There are several version of YCbCr encoding supported as well, even
though neither the eeColor nor the current version of MadVR need or
can use them at present.<br>
<h5>7) Black point mapping</h5>
<p>Video encoding assumes that the black displayed on a device is a
perfect black (zero light). No real device has a perfect black,
and if a colorimetric intent is used then certain image values
near black will get clipped to the display black point, loosing
shadow detail. To avoid this, some sort of black point mapping is
usually desirable. There are two mechanisms available in collink:
a) Custom EOTF with input and/or output black point mapping, or b)
using one of the smart gamut mapping intents that does black point
mapping (e.g. la, p, pa, ms or s).<br>
</p>
<h5>8) Viewing conditions adjustment and gamut mapping</h5>
<p> </p>
<p>In historical TV systems, there is a viewing conditions
adjustment being made between the bright studio conditions that TV
is filmed in, and the typical dim viewing environment that people
view it in. This is created by the difference between the encoding
response curve gamma of about 2.0, and a typical CRT response
curve gamma of 2.4. <br>
</p>
<p>In theory Rec709 defines the video encoding, but it seems in
practice that much video material is adjusted to look as intended
when displayed on a reference monitor having a display gamma of
somewhere between 2.2 and 2.4, viewed in a dim viewing
environment. The modern standard covering the display EOTF
(Electro-Optical Transfer Curve) is <a
href="http://www.itu.int/rec/R-REC-BT.1886-0-201103-I">BT.1886</a>,
which defines a pure power 2.4 curve with an input offset and
scale applied to account for the black point offset while
retaining dark shadow tonality. So another means of making the
viewing adjustment is to use the BT.1886-like EOTF for Rec709
encoded material. Collink supports this using the <a
href="collink.html#I">-I b</a>, and allows some control over the
degree of viewing conditions adjustment by overriding the BT.1886
gamma using the <a href="collink.html#Ib">-I b:g.g</a>
parameter. This is the <b>recommended</b> approach to start with,
since it gives good results with a single parameter.<br>
</p>
<p>The addition of a second optional parameter <a
href="collink.html#Ib">-I b:p.p:g.g</a> allows control over the
degree of black point offset accounted for as an output offset, as
opposed to input offset Once the effective gamma value has been
chosen to suite the viewing conditions and set the overall
contrast for mid greys, increasing the proportion of black offset
accounted for in the output of the curve is a way of reducing the
deep shadow detail, if it is being overly emphasized. </p>
<p> An alternate approach to making this adjustment is to take
advantage of the viewing conditions adjustment using the CIECAM02
model available in collink. Some control over the degree of
viewing conditions adjustment is possible by varying the viewing
condition parameters. </p>
<p>A third alternative is to combine the two approaches. The source
is defined as Rec709 primaries with a BT.1886-like EOTF display in
dim viewing conditions, and then CIECAM02 is used to adjust for
the actual display viewing conditions. Once again, control over
the degree of viewing conditions adjustment is possible by varying
the viewing condition parameters<br>
</p>
<p><br>
</p>
<p><b>9) Correcting for any black point inaccuracy in the display
profile</b><br>
</p>
<p>Some video display devices have particularly good black points,
and any slight raising of the black due to innacuracies in the
display profile near black can be objectionable. As well as using
the <a href="targen.html#V">targen -V flag</a> to improve
accuracy near black during profiling, if the display is known to
be well behaved (ie. that it's darkest black is actually at RGB
value 0,0,0), then the <a href="collink.html#b">collink -b</a>
flag can be used, to force the source RGB 0,0,0 to map to the
display 0,0,0.<br>
</p>
<h5>Putting it all together:</h5>
In this example we choose to create a display calibration first
using dispcal, and create a simple matrix profile as well:<br>
<br>
<tt>dispcal -v -o -qm -k0 -w 0.3127,0.3290 -gs -o TVmtx.icm
TV</tt><br>
<br>
We are targeting a D65 white point (<tt>-w 0.3127,0.3290)</tt> and
an sRGB response curve.<br>
<br>
If you are using the madTPG you would use:<br>
<br>
<tt>dispcal -v -d madvr -o -qm -k0 -w 0.3127,0.3290 -gs -o
TVmtx.icm TV</tt><br>
<br>
Then we need to create a display patch test set. We can use the
simple matrix to pre-condition the test patches, as this helps
distribute them where they will be of most benefit. If have
previously profiled your display, you should use that previous
profile, or if you decided not to do a dispcal, then the Rec709.icm
should be used as a substitute. Some per channel and a moderate
number of full spread patches is used here - more will increase
profiling accuracy, a smaller number will speed it up. Since the
video or film material is typically viewed in a darkened viewing
environment, and often uses a range of maximum brightnesses in
different scenes, the device behavior in the dark regions of its
response are often of great importance, and using the <a
href="targen.html#V">targen -V</a> parameter can help improve the
accuracy in this region at the expense of slightly lower accuracy in
lighter regions.<br>
<br>
<tt>targen -v -d3 -s30 -g100 -f1000 -cTVmtx.icm -V1.8 TV</tt><br>
<br>
The display can then be measured:<br>
<br>
<tt>dispread -v -k -Z8 TV.cal TV</tt><br>
<br>
or using madTPG:<br>
<br>
dispread -v -d madvr -K TV.cal TV<br>
<br>
and then a cLUT type ICC profile created. Since we will be using
collink smart linking, we minimize the B2A table size. We use the
default colprof -V parameter carried through from targen:<br>
<br>
<tt>colprof -v -qh -bl TV</tt><br>
<br>
Make sure you check the delta E report at the end of the profile
creation, to see if the sample data and profile is behaving
reasonably. Depending on the type of device, and the consistency of
the readings, average errors of 5 or less, and maximum errors of 15
or less would normally be expected. If errors are grossly higher
than this, then this is an indication that something is seriously
wrong with the device measurement, or profile creation.<br>
<br>
If you would like to use the display ICC profile for general color
managed applications, then you would compute a more complete
profile:<br>
<br>
<tt>colprof -v -qh TV</tt><br>
<br>
The recommended approach then is to create a Device Link that uses a
BT.1886 black point and viewing conditions adjustment, say one of
the following:<br>
<br>
<tt> collink -v -Ib:2.4 -b -G -ir Rec709.icm TV.icm
HD.icm # dark conditions</tt><tt><br>
</tt><tt> collink -v -Ib -b -G -ir
Rec709.icm TV.icm HD.icm # dim conditions - good
default</tt><tt><br>
</tt><tt> collink -v -Ib:2.1 -b -G -ir Rec709.icm TV.icm
HD.icm # mid to dim conditions</tt><tt><br>
</tt><tt> collink -v -Ib:2.0 -b -G -ir Rec709.icm TV.icm
HD.icm # mid to light conditions</tt><br>
<br>
or you could do it using pure CIECAM02 adjustment and a black point
mapping:<br>
<br>
<tt> collink -v -ctv -dmd -da:1 -G -ila Rec709.icm TV.icm
HD.icm # very dark conditions</tt><tt><br>
</tt><tt> collink -v -ctv -dmd -da:3 -G -ila Rec709.icm
TV.icm HD.icm # dim conditions</tt><tt><br>
</tt><tt> collink -v -ctv -dmd -da:7 -G -ila Rec709.icm
TV.icm HD.icm # mid to dim conditions - good default</tt><tt><br>
</tt><tt> collink -v -ctv -dmd -da:15 -G -ila Rec709.icm
TV.icm HD.icm # mid conditions</tt><br>
<br>
or using both to model a reference video display system that is
adapted to your viewing conditions:<br>
<tt><br>
</tt><tt> collink -v -Ib -c md -dmd -da:5 -G -ila
Rec709.icm TV.icm HD.icm # very dark conditions</tt><tt><br>
</tt><tt> collink -v -Ib -c md -dmd -da:10 -G -ila Rec709.icm
TV.icm HD.icm # dim conditions</tt><tt><br>
</tt><tt> collink -v -Ib -c md -dmd -da:18 -G -ila Rec709.icm
TV.icm HD.icm # mid to dark conditions</tt><tt><br>
</tt><tt> collink -v -Ib -c md -dmd -da:30 -G -ila Rec709.icm
TV.icm HD.icm # mid to dark conditions</tt><br>
<br>
None of the above examples incorporate the calibration curves, so it
is assumed that the calibration curves would be installed so that
the Video Card applies calibration, ie:<br>
<br>
<tt>dispwin TV.cal</tt><br>
<br>
or the simple matrix profile installed:<br>
<br>
<tt>dispwin -I TVmtx.icm</tt><br>
<br>
or a the more complete display profile could be installed:<br>
<br>
dispwin -I TV.icm<br>
<br>
See also <a href="dispprofloc.html">here</a> for information on how
to make sure the calibration is loaded on each system start. If not,
then you will want to incorporate the calibration in the Device
Link/3dlut by using collink "-a TV.cal".<br>
<br>
If the video path needs Video Level RGB encoding but does not
provide a means to do this, then you will want to include the <b>-E</b>
flag in the dispcal and dispread command lines above.<br>
<br>
Below are specific recommendation for the eeColor and MadVR that
include the flags to create the .3dlut and encode the input and
output values appropriately, but only illustrate using the
recommended BT.1886 black point and viewing conditions adjustments,
rather than illustrating CIECAM02 etc. use.<br>
<br>
For faster exploration of different collink option, you could omit
the "colprof -bl" option, and use collink "-g" instead of "-G",
since this<br>
will greatly speed up collink. Once you are happy with the link
details, you can then generate a higher quality link/3dLut using
"collink -G ..".<br>
<br>
You can also increase the precision of the device profile by
increasing the number of test patches measured (ie. up to a few
thousand, depending on how long you are prepared to wait for the
measurement to complete, and how stable your display and instrument
are).<br>
<br>
Alternatives to relative colorimetric rendering ("-i r") or
luminance matched appearance ("-i la") used in the examples above
and below, are, perceptual ("-i p") which will ensure that the
source gamut is compressed rather than clipped by the display, or
even a saturation rendering ("-i ms"), which will expand the gamut
of the source to the full range of the output.<br>
<br>
<br>
<b>eeColor</b><br>
<br>
For PC use, where the encoding is full range RGB:<br>
<br>
<tt>collink -v -3e -Ib -b -G -ir -a TV.cal Rec709.icm TV.icm
HD.icm </tt><br>
<br>
For correct operation both the 3DLut HD.txt and the per channel
input curves HD-first1dred.txt, HD-first1dgreen.txt and
HD-first1dblue.txt. the latter by copying them over the default
input curve files uploaded by the TruVue application.<br>
<br>
See <a
href="http://www.avsforum.com/t/1464890/eecolor-processor-argyllcms"><http://www.avsforum.com/t/1464890/eecolor-processor-argyllcms></a>
for some more details.<br>
<br>
Where the eeColor is connected from a Video source using HDMI, it
will probably be processing TV RGB levels, or YCbCr encoded signals
that it converts to/from RGB internally, so<br>
<br>
<tt>collink -v -3e -et -Et -Ib -b -G -ir -a TV.cal
Rec709.icm TV.icm HD.icm </tt><br>
<br>
in this case just the HD.txt file needs installing on the eeColor,
but make sure that the original linear "first1*.txt files are
re-installed, or install the ones generated by collink, which will
be linear for -e t mode.<br>
<br>
<b>MadVR</b><br>
<br>
MadVR 0.86.9 or latter has a number of features to support accurate
profiling and calibration, and is the recommended version to
use. It converts from the media colorspace to the 3dLut input
space automatically with the type of source being played, but has
configuration for to 5 3dLuts, each one optimized for a particular
source color space. The advantage of building and installing several
3dLuts is that unnecessary gamut clipping can be avoided.<br>
<br>
If you are just building one 3dLut then Rec709 source is a good one
to pick.<br>
<br>
If you want to share the VideoLUT calibration curves between your
normal desktop and MadVR, then it is recommended that you install
the display ICC profile and use the -H option:<br>
<br>
<tt> collink -v -3m -et -Et -Ib -b -G -ir -H
TV.cal Rec709.icm TV.icm HD.icm</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt> collink -v -3m -et -Et -Ib -b -G -ir </tt><tt><tt>-H
TV.cal </tt>EBU3213_PAL.icm TV.icm SD_PAL.icm</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt> collink -v -3m -et -Et -Ib -b -G -ir </tt><tt><tt>-H
TV.cal </tt>SMPTE_RP145_NTSC.icm TV.icm SD_NTSC.icm</tt><br>
<br>
For best quality it is better to let MadVR apply the calibration
curves using dithering, and allow it to set the graphics card to
linear by using the -a option:<br>
<br>
<tt> collink -v -3m -et -Et -Ib -b -G -ir -a
TV.cal Rec709.icm TV.icm HD.icm</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt> collink -v -3m -et -Et -Ib -b -G -ir </tt><tt><tt>-a
TV.cal </tt>EBU3213_PAL.icm TV.icm SD_PAL.icm</tt><tt><br>
</tt><tt> </tt><tt><br>
</tt><tt> collink -v -3m -et -Et -Ib -b -G -ir </tt><tt><tt>-a
TV.cal </tt>SMPTE_RP145_NTSC.icm TV.icm SD_NTSC.icm</tt><br>
<br>
the consequence though is that the appearance of other application
will shift when MadVR is using the 3dLut and loading the calibration
curves.<br>
<br>
The 3dLut can be used by opening the MadVR settings dialog,
selecting "calibration" and then selecting "calibrate this display
by using an external 3DLUT file", and then using the file dialog to
use it.<br>
<br>
If neither the -a no -H options are used, then no calibration curves
will be appended to the 3dLut, and MadVR will not change the
VideoLUTs when that 3dLut is in use. It is then up to you to manage
the graphics card VideoLUTs in some other fashion.<tt><br>
<br>
</tt>
<hr width="100%" size="2"><br>
<h3><a name="TV2"></a>Verifying Video Calibration</h3>
<p>Often it is desirable to verify the results of a video
calibration and profile, and the following gives an outline of how
to use ArgyllCMS tools to do this. It is only possible to expect
perfect verification if a colorimetric intent was used during
linking - currently it's not possible to exactly verify a
perceptual or CIECAM02 viewing condition adjusted link.<br>
<br>
</p>
<p>The first step is to create a set of test points. This is
essentially the same as creating a set of test points for the
purposes of profiling, although it is best not to create exactly
the same set, so as to explore the colorspace at different
locatioins. For the purposes here, we'll actually create a regular
grid test set, since this makes it easier to visualize the
results, although a less regular set would probably be better for
numerical evaluation:<br>
</p>
<p> targen -v -d3 -e1 -m6 -f0 -W verify<br>
</p>
<p>We make sure there is at least one white patch usin g -e1, a 20%
increment grid using -m6, no full spread patches, and create an
X3DOM 3d visualization of the point set using the -W flag. It is
good to take a look at the verifyd.x3d.html file using a Web
browser. You may want to create several test sets that look at
particular aspects, ie. neutral axis response, pure colorant
responses, etc.<br>
</p>
<p>Next we create a reference file by simulating the expected
response of the perfect video display system. Assuming the collink
options were "-et -Et -Ib -G -ir Rec709.icm TV.icm HD.icm" then we
would:<tt><tt><br>
</tt></tt></p>
<p><tt><tt> copy verify.ti1 ref.ti1<br>
fakeread -v -b -Z8 TV.icm Rec709.icm ref<br>
</tt></tt></p>
<p>You should adjust the parameters as necessary, so that the
reference matches the link options. For instance, if your link
options included "-I b:0.2:2.15" then the equivalent fakeread
option "-b 0.2:2.15:TV.icm" should be used, etc.<br>
</p>
<hr width="20%" size="2">
<p>A sanity check we can make at this point is to see what the
expected result of the profiling & calibration will be, by
simulating the reproduction of this test set:<br>
</p>
<p><tt> copy verify.ti1 checkA.ti1</tt><tt><br>
fakeread -v -et -Z8 -p HD.icm -Et TV.icm checkA<br>
</tt></p>
<p>If you used collink -a, then the calibration incorporated in the
device link needs to be undone to match what the display profile
expects:</p>
<p><tt> fakeread -v -et -Z8 -p HD.icm -Et -K TV.cal TV.icm
checkA</tt></p>
<p><tt>and then you can verify:<br>
</tt></p>
<p><tt> colverify -v -n -w -x ref.ti3 checkA.ti3<br>
</tt></p>
<p>If you have targeted some other white point rather than video D65
for the display, then use the -N flag instead of -n to align the
white points. [ Note that there can be some small discrepancies in
this case in some parts of the color space if a CIECAM02 linking
intent was used, due to the slightly different chromatic
adaptation algorithm it uses compared to the one used by verify to
match the white points.]<tt><br>
</tt></p>
<p><tt> v</tt><tt>erify -v -N -w -x ref.ti3 checkA.ti3</tt><br>
</p>
<p>This will give a numerical report of the delta E's, and also
generate an X3DOM plot of the errors in L*a*b* space. The
important thing is to take a look at the checkA.x3d.html file, to
see if gamut clipping is occurring - this is the case if the large
error vectors are on the sides or top of the gamut. Note that the
perfect cube device space values become a rather distorted cube
like shape in the perceptual L*a*b* space. If the vectors are
small in the bulk of the space, then this indicates that the link
is likely to be doing the right thing in making the display
emulate the video colorspace with a BT.1886 like black point
adjustment. You could also check just the in gamut test points
using:<br>
</p>
<p><tt> v</tt><tt>erify -v -N -w -x -L TV.icm ref.ti3
checkA.ti3<br>
<br>
</tt></p>
<hr width="20%" size="2">
<p>You can explicitly compare the gamuts of your video space and
your display using the gamut tools:<br>
</p>
<p><tt> iccgamut -ff -ia Rec709</tt><tt><br>
</tt><tt> iccgamut -ff -ia TV.icm</tt><tt><br>
</tt><tt> viewgam -i Rec709.gam TV.gam gamuts</tt><br>
</p>
<p>and look at the gamuts.x3d.html file, as well as taking notice of
% of the video volume that the display intersects. The X3DOM solid
volume will be the video gamut, while the wire frame is the
display gamut. If you are not targetting D65 with your display,
you should use iccgamut <b>-ir</b> instead of <b>-ia</b>, so as
to align the white points.<br>
</p>
<hr width="20%" size="2">
<p>The main verification check is to actually measure the display
response and compare it against the reference. Make sure the
display is setup as you would for video playback and then use
dispread:<br>
</p>
<p><tt> copy verify.ti1 checkB.ti1</tt><tt><br>
</tt><tt> dispread -v -Z8 checkB</tt><br>
</p>
<p>You would add any other options needed (such as <b>-y</b> etc.)
to set your instrument up properly. If you are using madTPG, then
configure madVR to use the 3dLut you want to measure as the
default, and also use the dispread -V flag to make sure that the
3dLut is being used for the measurements: [<b>Note</b> that if the
version of MadVR you are using does not have radio buttons in its
calibration setup to indicate a default 3dLut, then the 3dLut
under test should be the only one set - all others should be
blank. ]<br>
</p>
<p><tt> dispread -v -d madvr -V checkB</tt><br>
</p>
<p>Verify the same way as above:<br>
</p>
<p><tt> v</tt><tt>erify -v -n -w -x ref.ti3 checkB.ti3<br>
</tt></p>
<p>If your display does not cover the full gamut of your video
source, the errors are probably dominated by out of gamut colors.
You can verify just the in gamut test values by asking verify to
skip them, and this will give a better notion of the actual device
link and calibration accuracy:<tt><br>
</tt></p>
<p><tt> v</tt><tt>erify -v -n -w -x -L TV.icm ref.ti3
checkB.ti3</tt></p>
<p><br>
</p>
<p> <br>
</p>
<p><br>
<br>
</p>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>
|