1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>colverify</title>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
<meta name="author" content="Graeme Gill">
</head>
<body>
<h2><b>profile/colverify</b></h2>
<h3>Summary</h3>
Verify a color transform by comparing CIE measurement values from
two test charts. The charts can be any suitably formatted CGATS or <a
href="File_Formats.html#.ti3">.ti3</a> format that contains
corresponding XYZ, Lab or spectral values. The overall average and
worst case delta E will be reported, as well as the worst 10% and
best 90% of values.<br>
<h3>Usage Summary</h3>
<tt><small>colverify [-options] target.ti3 measured.ti3<br>
-v
[n]
Verbose mode, n >= 2 print each value<br>
-l
Match patches by sample location rather than id<br>
-n
Normalise
each files reading to white Y<br>
-N
Normalise
each files reading to white XYZ<br>
-m
Normalise each files reading to its white X+Y+Z<br>
-M
Normalise both files reading to mean white XYZ<br>
-D
Use
D50 100.0 as L*a*b* white reference<br>
-c
Show CIE94 delta E values<br>
-k
Show CIEDE2000 delta E values<br>
-h
Plot a histogram of delta E's<br>
-s
Sort patch value by error<br>
-w
create X3DOM vector visualisation (measured.x3d.html)<br>
</small></tt><tt><small> -W
create X3DOM marker & vector visualisation
(measured.x3d.html)</small></tt><tt><br>
</tt><tt> </tt><tt><small> -x
Use X3DOM axes<br>
</small></tt><tt><small><small>-f
[illum] Use Fluorescent
Whitening Agent compensation [opt. simulated inst. illum.:<br>
M0, M1, M2, A, C, D50 (def.), D50M2, D65, F5, F8, F10 or
file.sp]<br>
-i illum
Choose illuminant for computation of CIE XYZ from spectral
data & FWA:<br>
A, C, D50 (def.), D50M2, D65, F5, F8, F10 or file.sp<br>
-o observ Choose
CIE Observer for spectral data:<br>
</small><small>
1931_2 </small><small>(def.)</small><small>, 1964_10, </small></small></tt><tt><small><small><tt><small>2012_2,
2012_10, </small></tt>S&B 1955_2, shaw, J&V
1978_2 or file.cmf<br>
-L profile.icm Skip any first file, out of
profile gamut patches<br>
-X file.ccmx Apply Colorimeter
Correction Matrix to second file<br>
</small> <i>target.ti3</i>
Target or reference patch data file<br>
<i>measured.ti3</i> Measured or actual patch
data file</small></tt><br>
<h3>Usage Details and Discussion</h3>
<b> colverify</b> provides a way of verifying how well a color
transformation (such a proofing) performs.<br>
<br>
The <b>-v</b> flag prints out extra information during the
checking, and prints each patch value, rather than just a summary.<br>
<br>
The <b>-l</b> flag makes colverify look for the SAMPLE_LOC fields
to match patches by, rather than the default SAMPLE_ID field.<br>
<br>
The <b>-n</b> flag causes the two sets of values to be normalized
to the Y value of white for each set before comparison. White is
assumed to be the patch with the largest Y value.<br>
<br>
The <b>-N</b> flag causes the two sets of values to be normalized
to the XYZ of white for each set before comparison. White is assumed
to be the patch with the largest Y value.<br>
<br>
The <b>-m</b> flag causes the two sets of values to be normalized
to the X+Y+Z of white for each set before comparison. White is
assumed to be the patch with the largest Y value.<br>
<br>
The <b>-M</b> flag causes the two sets of values to be normalized
to the average XYZ of the whites from each set before comparison.
White is assumed to be the patch with the largest Y value.<br>
<br>
The <b>-D</b> flag causes the white reference point for the
conversion to L*a*b* to be D50 with a Y value of 100%. By default
the sample with the largest Y value is found, and the L*a*b* white
reference scaled to have that Y value. This allows sensible delta E
values when comparing absolute color values, such as those from
emission or display measurements.<br>
<br>
The <b>-c</b> option causes the differences between the test values
and the profile prediction of the color for each device value to be
displayed in CIE94 delta E, rather than plain L*a*b* delta E. CIE94
delta E has a closer correspondence with perceived color differences
than the default CIE76 delta E values.<br>
<br>
The <b>-k</b> option causes the differences between the test values
and the profile prediction of the color for each device value to be
displayed in CIEDE2000 delta E, rather than plain L*a*b* delta E.
CIEDE2000 delta E has a closer correspondence with perceived color
differences than either CIE76 or CIE94 delta E values.<br>
<br>
The <b>-h</b> flag will display a histogram plot of the fit delta
E's. The X scale is delta E, the Y scale is %<br>
<br>
If the <b>-s </b>flag is used in combination with the <b>-v</b>
flag, then the test point by test point output will be sorted from
worst to best.<br>
<br>
The <b>-w</b> creates a <a href="File_Formats.html#X3DOM">X3DOM</a>
3D visualization of the differences between the test points in D50
L*a*b* space, each difference being shown as a line vector. If the <span
style="font-weight: bold;">-W</span> flag is used, then the target
and measured values will also be marked by a small sphere. This can
be used to visualize the placement of values in a .ti3 (or other
CGATS file) by using the same file for both "target" and "measured"
values.<br>
<br>
The <b>-x</b> flag adds Lab axes to the X3DOM output.<br>
<br>
The <b>-f</b> flag enables Fluorescent Whitening Agent (FWA)
compensation. This only works if spectral data is available and, the
instrument is not UV filtered. FWA compensation adjusts the
spectral samples so that they appear to have been measured using an
illuminant that has a different level of Ultra Violet to the one the
instrument actually used in the measurement. The optional
illumination parameter allows specifying a standard or custom
illumination spectrum to be used as the similated instrument
illuminant, overriding the default <b>D50</b> or CIE computation
illuminant used for FWA (see <b>-i</b> below<b>). </b>See <a
href="colprof.html#f">colprof -f</a> for a fuller explanation. The
same value should be used as was used during the creation of the
profile.<br>
<br>
The <b>-i</b> flag allows specifying a standard or custom
illumination spectrum, applied to the spectral test point values to
compute CIE tristimulus values. <b>A</b>, <b>D50</b>, <b>D50M2,
D65</b>, <b>F5</b>, <b>F8</b>, <b>F10</b> are a selection of
standard illuminant spectrums, with <b>D50</b> being the default.
If a filename is specified instead, it will be assumed to be an
Argyll specific <a href="File_Formats.html#.sp">.sp</a> spectrum
file. If FWA compensation is used during measurement, this
illuminant will be used by default as the simulated instrument
illuminant. The same value should be used as was used during the
creation of the profile.<br>
<br>
The <b>-o</b> flag allows specifying a tristimulus observer, and is
used to compute PCS (Profile Connection Space) tristimulus values.
The following choices are available:<br>
<b> 1931_2</b> selects the standard CIE 1931 2 degree
observer. The default.<br>
<b>1964_10</b> selects the standard CIE 1964 10 degree
observer.<br>
<b> 2012_2</b> selects the proposed CIE 2012 2 degree
observer.<br>
<b>2012_10</b> selects the proposed CIE 2012 10 degree
observer.<br>
<b>1955_2</b> selects the Stiles and Birch 1955 2 degree
observer<br>
<b>1978_2 </b>selects the Judd and Voss 1978 2 degree
observer<br>
<b>shaw</b> selects the Shaw and Fairchild 1997 2 degree
observer<br>
<i><b>file.cmf</b></i> selects an observer specified by the
given <a href="File_Formats.html#.cmf">.cmf</a> file.<br>
<br>
The same parameter value should be used as was used during the
creation of the profile.<br>
<br>
The <b>-L</b><b> profile.icm</b> parameter causes colverify to
ignore any patches from the first file that are out of gamut
according to the profile given by th -L argument. This can be useful
in evaluating accuracy without tainting it by impossible to reach
colors.<br>
<br>
The <b>-X</b><b> file.ccmx</b> option applies the given 3x3
calibration matrix to the values from the second file before doing
any verification. This can be useful in evaluating the effects of a
calibration matrix on raw colorimeter values, against reference
values measured using a spectrometer.<br>
<br>
If both CIE and spectral values are present in the input files, the
CIE values will be used by default. Using the <span
style="font-weight: bold;">-i</span>, <span style="font-weight:
bold;">-o</span> or <span style="font-weight: bold;">-f</span>
flag will force spectral values to be used. The the <span
style="font-weight: bold;">-i</span>, <span style="font-weight:
bold;">-o</span> or <span style="font-weight: bold;">-f</span>
flags will apply to both the target and measured input files.<br>
<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>
|