1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
|
/*
* Argyll Color Management System
*
* Author: Graeme W. Gill
* Date: 20015
*
* Copyright 2006 - 2015 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU GENERAL PUBLIC LICENSE Version 2 or later :-
* see the License2.txt file for licencing details.
*
* Derived from i1pro_imp.c & munki_imp.c
*/
/*
* A library for processing raw spectrometer values.
*
* Currently this is setup for the EX1 spectrometer,
* but the longer term plan is to expand the functionality
* so that it becomes more generic, and can replace a lot
* of common code in i1pro_imp.c & munki_imp.c.
*/
//#define EN_PLOT /* Enable plot support. Set in Jamfile */
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#if defined(UNIX)
# include <utime.h>
#else
# include <sys/utime.h>
#endif
#include <sys/stat.h>
#include <stdarg.h>
#ifndef SALONEINSTLIB
#include "copyright.h"
#include "aconfig.h"
#include "numlib.h"
#else /* !SALONEINSTLIB */
#include "sa_config.h"
#include "numsup.h"
#endif /* !SALONEINSTLIB */
# ifndef SALONEINSTLIB
# ifdef EN_PLOT
# include "plot.h"
# endif
# endif
#include "cgats.h"
#include "xspect.h"
#include "insttypes.h"
#include "conv.h"
#include "icoms.h"
#include "inst.h"
#include "rspec.h"
#define BOX_INTEGRATE /* [und] Integrate raw samples as if they were +/-0.5 boxes */
/* (This improves coeficient consistency a bit ?) */
# ifndef SALONEINSTLIB
# ifndef EN_PLOT
# pragma message("###### EN_PLOT is not defined ######")
# endif
# endif
/* -------------------------------------------------- */
#if defined(__APPLE__) && defined(__POWERPC__)
/* Workaround for a ppc gcc 3.3 optimiser bug... */
static int gcc_bug_fix(int i) {
static int nn;
nn += i;
return nn;
}
#endif /* APPLE */
/* -------------------------------------------------- */
/* Setup code */
/* Fit a wavelength polynomial to a set of mapping points */
// ~~~~9999
/* Completely clear an rspec_inf. */
void clear_rspec_inf(rspec_inf *inf) {
memset(inf, 0, sizeof(rspec_inf));
}
/* Completely free contesnt of rspec_inf. */
void free_rspec_inf(rspec_inf *inf) {
if (inf != NULL) {
if (inf->straylight != NULL) {
error("rspec_inf: help - don't know how to free straylight!");
}
if (inf->wlcal)
free(inf->wlcal);
if (inf->findex != NULL)
free(inf->findex);
if (inf->fnocoef != NULL)
free(inf->fnocoef);
if (inf->fcoef != NULL)
free(inf->fcoef);
if (inf->lin != NULL)
free(inf->lin);
if (inf->idark[0] != NULL)
del_rspec(inf->idark[0]);
if (inf->idark[1] != NULL)
del_rspec(inf->idark[1]);
if (inf->ecal != NULL)
free(inf->ecal);
clear_rspec_inf(inf); /* In case it gets reused */
}
}
/* return the number of samples for the given spectral type */
int rspec_typesize(rspec_inf *inf, rspec_type ty) {
int no;
if (ty == rspec_sensor)
no = inf->nsen;
else if (ty == rspec_raw)
no = inf->nraw;
else if (ty == rspec_wav)
no = inf->nwav;
else
error("rspec_typesize type %d unknown",ty);
return no;
}
/* Compute the valid raw range from the calibration information */
void rspec_comp_raw_range_from_ecal(rspec_inf *inf) {
int i;
if (inf->ecaltype != rspec_raw)
error("rspec_comp_raw_range_from_ecal: ecaltype not raw");
for (i = 0; i < inf->nraw; i++) {
if (inf->ecal[i] != 0.0) {
inf->rawrange.off = i;
break;
}
}
if (i >= inf->nraw)
error("rspec_comp_raw_range_from_ecal: ecal is zero");
for (i = inf->rawrange.off; i < inf->nraw; i++) {
if (inf->ecal[i] == 0.0) {
break;
}
}
inf->rawrange.num = i - inf->rawrange.off;
}
/* Convert a raw index to nm using polynomial */
double rspec_raw2nm(rspec_inf *inf, double rix) {
int k;
double wl;
if (inf->nwlcal == 0)
error("rspec_raw2nm: nwlcal == 0");
/* Compute polinomial */
for (wl = inf->wlcal[inf->nwlcal-1], k = inf->nwlcal-2; k >= 0; k--)
wl = wl * rix + inf->wlcal[k];
return wl;
}
/* Convert a cooked index to nm */
double rspec_wav2nm(rspec_inf *inf, double ix) {
return inf->wl_short + ix * inf->wl_space;
}
/* -------------------------------------------------- */
/* Create a new rspec from scratch. */
/* Don't allocate samp if nmeas == 0 */
/* This always succeeds (i.e. application bombs if malloc fails) */
rspec *new_rspec(rspec_inf *inf, rspec_type ty, int nmeas) {
rspec *p;
int no;
if ((p = (rspec *)calloc(1, sizeof(rspec))) == NULL) {
error("Malloc failure in rspec()");
}
p->inf = inf;
p->stype = ty;
p->nmeas = nmeas;
p->nsamp = rspec_typesize(inf, p->stype);
if (nmeas > 0)
p->samp = dmatrix(0, p->nmeas-1, 0, p->nsamp-1);
return p;
}
/* Create a new rspec based on an existing prototype */
/* If nmeas == 0, create space for the same number or measurements */
rspec *new_rspec_proto(rspec *rs, int nmeas) {
rspec *p;
if ((p = (rspec *)calloc(1, sizeof(rspec))) == NULL) {
error("Malloc failure in rspec()");
}
p->inf = rs->inf;
p->stype = rs->stype;
p->mtype = rs->mtype;
p->mcond = rs->mcond;
p->state = rs->state;
p->inttime = rs->inttime;
if (nmeas == 0)
p->nmeas = rs->nmeas;
else
p->nmeas = nmeas;
p->nsamp = rs->nsamp;
p->samp = dmatrix(0, p->nmeas-1, 0, p->nsamp-1);
return p;
}
/* Create a new rspec by cloning an existing one */
rspec *new_rspec_clone(rspec *rs) {
rspec *p;
int i, j;
if ((p = (rspec *)calloc(1, sizeof(rspec))) == NULL) {
error("Malloc failure in rspec()");
}
p->inf = rs->inf;
p->stype = rs->stype;
p->mtype = rs->mtype;
p->mcond = rs->mcond;
p->state = rs->state;
p->inttime = rs->inttime;
p->nmeas = rs->nmeas;
p->nsamp = rs->nsamp;
p->samp = dmatrix(0, p->nmeas-1, 0, p->nsamp-1);
for (i = 0; i < p->nmeas; i++) {
for (j = 0; j < p->nsamp; j++) {
p->samp[i][j] = rs->samp[i][j];
}
}
return p;
}
/* Free a rspec */
void del_rspec(rspec *p) {
if (p != NULL) {
if (p->samp != NULL)
free_dmatrix(p->samp, 0, p->nmeas-1, 0, p->nsamp-1);
free(p);
}
}
/* Plot the first rspec */
void plot_rspec1(rspec *p) {
#ifndef SALONEINSTLIB
# ifdef EN_PLOT
int i, no;
double xx[RSPEC_MAXSAMP];
double yy[RSPEC_MAXSAMP];
no = rspec_typesize(p->inf, p->stype);
for (i = 0; i < no; i++) {
if (p->stype == rspec_wav)
xx[i] = rspec_wav2nm(p->inf, (double)i);
else
xx[i] = (double)i;
yy[i] = p->samp[0][i];
}
do_plot(xx, yy, NULL, NULL, no);
# endif
#endif
}
/* Plot the first rspec of 2 */
void plot_rspec2(rspec *p1, rspec *p2) {
#ifndef SALONEINSTLIB
# ifdef EN_PLOT
int i, no;
double xx[RSPEC_MAXSAMP];
double y1[RSPEC_MAXSAMP];
double y2[RSPEC_MAXSAMP];
// Should check p1 & p2 are compatible ??
no = rspec_typesize(p1->inf, p1->stype);
for (i = 0; i < no; i++) {
if (p1->stype == rspec_wav)
xx[i] = rspec_wav2nm(p1->inf, (double)i);
else
xx[i] = (double)i;
y1[i] = p1->samp[0][i];
y2[i] = p2->samp[0][i];
}
do_plot(xx, y1, y2, NULL, no);
# endif
#endif
}
void plot_ecal(rspec_inf *inf) {
#ifndef SALONEINSTLIB
# ifdef EN_PLOT
int i, no;
double xx[RSPEC_MAXSAMP];
double yy[RSPEC_MAXSAMP];
no = rspec_typesize(inf, inf->ecaltype);
for (i = 0; i < no; i++) {
if (inf->ecaltype == rspec_wav)
xx[i] = rspec_wav2nm(inf, (double)i);
else
xx[i] = (double)i;
yy[i] = inf->ecal[i];
}
do_plot(xx, yy, NULL, NULL, no);
# endif
#endif
}
/* -------------------------------------------------- */
/* Return the largest value */
/* Optionally return the measurement and sample idex of that sample */
double largest_val_rspec(int *pmix, int *psix, rspec *raw) {
double mx = -1e38;
int mi = -1, mj = -1;
int i, j;
if (raw->nmeas <= 0)
error("largest_val_rspec: raw has zero measurements");
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
if (raw->samp[i][j] > mx) {
mx = raw->samp[i][j];
mi = i;
mj = j;
}
}
}
if (pmix != NULL)
*pmix = mi;
if (psix != NULL)
*psix = mj;
return mx;
}
/* return a raw rspec from a sensor rspec */
/* (This does not make any adjustments to the values) */
rspec *extract_raw_from_sensor_rspec(rspec *sens) {
rspec *raw;
int off, i, j;
if (sens->stype != rspec_sensor)
error("extract_raw_from_sensor_rspec: input is not sensor type");
raw = new_rspec(sens->inf, rspec_raw, sens->nmeas);
raw->mtype = sens->mtype;
raw->mcond = sens->mcond;
raw->state = sens->state;
raw->inttime = sens->inttime;
off = sens->inf->lightrange.off;
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] = sens->samp[i][off + j];
}
}
return raw;
}
/* Return an interpolated dark reference value from idark */
double ex1_interp_idark_val(rspec_inf *inf, int mix, int six, double inttime) {
double idv;
double w0, w1;
int i, j;
w1 = (inttime - inf->idark[0]->inttime)/(inf->idark[1]->inttime - inf->idark[0]->inttime);
w0 = 1.0 - w1;
idv = w0 * inf->idark[0]->samp[mix][six] + w1 * inf->idark[1]->samp[mix][six];
return idv;
}
/* Return an interpolated dark reference from idark */
rspec *ex1_interp_idark(rspec_inf *inf, double inttime) {
double w0, w1;
int i, j;
rspec *dark;
w1 = (inttime - inf->idark[0]->inttime)/(inf->idark[1]->inttime - inf->idark[0]->inttime);
w0 = 1.0 - w1;
dark = new_rspec_proto(inf->idark[0], 0);
for (i = 0; i < inf->idark[0]->nmeas; i++) {
for (j = 0; j < inf->idark[0]->nsamp; j++)
dark->samp[i][j] = w0 * inf->idark[0]->samp[i][j] + w1 * inf->idark[1]->samp[i][j];
}
return dark;
}
/* Subtract the adaptive black */
void subtract_idark_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
int i, j;
rspec *dark;
if (raw->state & rspec_dcal)
error("subtract_idark_rspec: already done");
if (raw->stype != inf->idark[0]->stype)
error("subtract_idark_rspect: idark does not match rspec type");
dark = ex1_interp_idark(inf, raw->inttime);
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] -= dark->samp[0][j];
}
}
raw->state |= rspec_dcal;
}
/* Apply non-linearity */
double linearize_val_rspec(rspec_inf *inf, double ival) {
double oval = ival;
int k;
if (ival >= 0.0) {
for (oval = inf->lin[inf->nlin-1], k = inf->nlin-2; k >= 0; k--) {
oval = oval * ival + inf->lin[k];
}
if (inf->lindiv) /* EX1 divides */
oval = ival/oval;
}
return oval;
}
/* Invert non-linearity. */
/* Since the linearisation is nearly a straight line, */
/* a simple Newton inversion will suffice. */
double inv_linearize_val_rspec(rspec_inf *inf, double targv) {
double oval, ival = targv, del = 100.0;
int i, k;
for (i = 0; i < 200 && fabs(del) > 1e-7; i++) {
for (oval = inf->lin[inf->nlin-1], k = inf->nlin-2; k >= 0; k--)
oval = oval * ival + inf->lin[k];
if (inf->lindiv) /* EX1 divides */
oval = ival/oval;
del = (targv - oval);
ival += 0.99 * del;
}
return ival;
}
/* Correct non-linearity */
void linearize_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
int i, j;
rspec *dark;
if (raw->state & rspec_lin)
error("linearize_rspec: already done");
if (raw->state & rspec_int)
error("linearize_rspec: can't be integration time adjusted");
if (!(raw->state & rspec_dcal))
error("linearize_rspec: needs black subtract");
if (inf->nlin > 0) {
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] = linearize_val_rspec(inf, raw->samp[i][j]);
}
}
}
raw->state |= rspec_lin;
}
/* Apply the emsissive calibration */
void emis_calibrate_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
int i, j;
if (raw->state & rspec_cal)
error("emis_calibrate_rspec: already done");
if (raw->stype != raw->inf->ecaltype)
error("emis_calibrate_rspec: ecaltype does not match rspec type");
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] *= inf->ecal[j];
}
}
raw->state |= rspec_cal;
}
/* Scale to the integration time */
void inttime_calibrate_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
int i, j;
if (raw->state & rspec_int)
error("inttime_calibrate_rspec: already done");
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] /= raw->inttime;
}
}
raw->inttime = 1.0;
raw->state |= rspec_int;
}
/* return a wav rspec from a raw rspec */
/* (This does not make any adjustments to the values) */
rspec *convert_wav_from_raw_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
rspec *wav;
int cx, sx, i, j, k;
if (raw->stype != rspec_raw)
error("extract_raw_from_sensor_rspec: input is not raw type");
wav = new_rspec(raw->inf, rspec_wav, raw->nmeas);
wav->mtype = raw->mtype;
wav->mcond = raw->mcond;
wav->state = raw->state;
wav->inttime = raw->inttime;
for (i = 0; i < wav->nmeas; i++) { /* For each measurement */
for (cx = j = 0; j < inf->nwav; j++) { /* For each wav sample */
double oval = 0.0;
sx = inf->findex[j]; /* Starting index */
for (k = 0; k < inf->fnocoef[j]; k++, cx++, sx++) /* For each matrix value */
oval += inf->fcoef[cx] * raw->samp[i][sx];
wav->samp[i][j] = oval;
}
}
return wav;
}
/* -------------------------------------------------- */
/* Filter code in i1pro_imp is in:
i1pro_compute_wav_filters() X-Rite way
i1pro_create_hr() Using gausian
*/
/* Resampling kernels. (There are more in i1pro_imp.c) */
/* They aren't expected to be unity area, as they will be */
/* normalized anyway. */
/* wi is the width of the filter */
static double triangle(double wi, double x) {
double y = 0.0;
x = fabs(x/wi);
y = 1.0 - x;
if (y < 0.0)
y = 0.0;
return y;
}
static double gausian(double wi, double x) {
double y = 0.0;
wi = wi/(sqrt(2.0 * log(2.0))); /* Convert width at half max to std. dev. */
x = x/wi;
y = exp(-(x * x)); /* Center at 1.0 */
return y;
}
static double lanczos2(double wi, double x) {
double y = 0.0;
wi *= 1.05; // Improves smoothness. Why ?
x = fabs(1.0 * x/wi);
if (x >= 2.0)
return 0.0;
if (x < 1e-6)
return 1.0;
y = sin(DBL_PI * x)/(DBL_PI * x) * sin(DBL_PI * x/2.0)/(DBL_PI * x/2.0);
return y;
}
static double lanczos3(double wi, double x) {
double y = 0.0;
x = fabs(1.0 * x/wi);
if (x >= 3.0)
return 0.0;
if (x < 1e-6)
return 1.0;
y = sin(DBL_PI * x)/(DBL_PI * x) * sin(DBL_PI * x/3.0)/(DBL_PI * x/3.0);
return y;
}
static double cubicspline(double wi, double x) {
double y = 0.0;
double xx = x;
double bb, cc;
xx = fabs(1.0 * x/wi);
// bb = cc = 1.0/3.0; /* Mitchell */
bb = 0.5;
cc = 0.5;
if (xx < 1.0) {
y = ( 12.0 - 9.0 * bb - 6.0 * cc) * xx * xx * xx
+ (-18.0 + 12.0 * bb + 6.0 * cc) * xx * xx
+ ( 6.0 - 2.0 * bb);
y /= (6.0 - 2.0 * bb);
} else if (xx < 2.0) {
y = ( -1.0 * bb - 6.0 * cc) * xx * xx * xx
+ ( 6.0 * bb + 30.0 * cc) * xx * xx
+ (-12.0 * bb - 48.0 * cc) * xx
+ ( 8.0 * bb + 24.0 * cc);
y /= (6.0 - 2.0 * bb);
} else {
y = 0.0;
}
return y;
}
/* Create the wavelength resampling filters */
void rspec_make_resample_filters(rspec_inf *inf) {
double twidth = inf->wl_space;
double rawspace; /* Average raw band spacing wl */
double fshmax; /* filter shape max wavelength from center */
double finc; /* Integration step size */
int maxcoeffs; /* Maximum coefficients per filter */
int **coeff_ix; /* [band][coef] Raw index */
double **coeff_we; /* [band][coef] Weighting */
double (*kernel)(double wi, double x) = NULL; /* Filter kernel */
int xcount;
int i, j, k;
if (inf->ktype == rspec_triangle)
kernel = triangle;
else if (inf->ktype == rspec_gausian)
kernel = gausian;
else if (inf->ktype == rspec_lanczos2)
kernel = lanczos2;
else if (inf->ktype == rspec_lanczos3)
kernel = lanczos3;
else if (inf->ktype == rspec_cubicspline)
kernel = cubicspline;
else
error("rspec_make_resample_filters: unknown kernel %d",inf->ktype);
#ifdef NEVER // Check kernel sums to 1.0
{
double x, y;
for (x = 0.0; x < 5.0; x += 0.1) {
y = kernel(1.0, x - 4.0)
+ kernel(1.0, x - 3.0)
+ kernel(1.0, x - 2.0)
+ kernel(1.0, x - 1.0)
+ kernel(1.0, x)
+ kernel(1.0, x + 1.0)
+ kernel(1.0, x + 2.0);
+ kernel(1.0, x + 3.0);
+ kernel(1.0, x + 4.0);
printf("Offset %f sum %f\n",x,y);
}
}
#endif // NEVER
/* Aproximate raw value spacing in nm */
rawspace = (inf->wl_long - inf->wl_short)/inf->rawrange.num;
//printf("~1 rawspace = %f\n",rawspace);
/* Figure the extent of the filter kernel. We assume they */
/* all have a finite extent. */
for (fshmax = 50.0; fshmax >= 0.0; fshmax -= 0.01) {
if (fabs(kernel(twidth, fshmax)) > 1e-6) {
fshmax += 0.01;
break;
}
}
//printf("~1 fshmax = %f\n",fshmax);
if (fshmax <= 0.0)
error("rspec_make_resample_filters: fshmax search failed\n");
a1logd(inf->log, 4,"rspec_make_resample_filters: fshmax = %f\n",fshmax);
/* Figure number of raw samples over kernel extent. */
/* (Allow generous factor for non-linearity) */
maxcoeffs = (int)floor(2.0 * 1.4 * fshmax/rawspace + 3.0);
a1logd(inf->log, 4,"rspec_make_resample_filters: maxcoeffs = %d\n",maxcoeffs);
/* Figure out box integration step size */
#ifdef FAST_HIGH_RES_SETUP
finc = twidth/50.0;
if (rawspace/finc < 10.0)
finc = rawspace/10.0;
#else
finc = twidth/15.0;
if (rawspace/finc < 4.0)
finc = rawspace/4.0;
#endif
a1logd(inf->log, 4,"rspec_make_resample_filters: integration step = %f\n",finc);
if (inf->fnocoef != NULL)
free(inf->fnocoef);
if ((inf->fnocoef = (int *)calloc(inf->nwav, sizeof(int))) == NULL)
error("rspec_make_resample_filters: malloc failure");
/* Space to build filter coeficients */
coeff_ix = imatrix(0, inf->nwav-1, 0, maxcoeffs-1);
coeff_we = dmatrix(0, inf->nwav-1, 0, maxcoeffs-1);
/* For all the usable raw bands */
for (i = inf->rawrange.off+1; i < (inf->rawrange.off+inf->rawrange.num-1); i++) {
double w1, wl, w2;
/* Translate CCD center and boundaries to calibrated wavelength */
wl = rspec_raw2nm(inf, (double)i);
w1 = rspec_raw2nm(inf, (double)i - 0.5);
w2 = rspec_raw2nm(inf, (double)i + 0.5);
// printf("~1 CCD %d, w1 %f, wl %f, w2 %f\n",i,w1,wl,w2);
/* For each output filter */
for (j = 0; j < inf->nwav; j++) {
double cwl, rwl; /* center, relative wavelegth */
double we;
cwl = rspec_wav2nm(inf, (double)j);
rwl = wl - cwl; /* raw relative wavelength to filter */
if (fabs(w1 - cwl) > fshmax && fabs(w2 - cwl) > fshmax)
continue; /* Doesn't fall into this filter */
#ifdef BOX_INTEGRATE
/* Integrate in finc nm increments from filter shape */
/* using triangular integration. */
{
int nn;
double lw, ll;
nn = (int)(fabs(w2 - w1)/finc + 0.5); /* Number to integrate over */
lw = w1; /* start at lower boundary of CCD cell */
ll = kernel(twidth, w1 - cwl);
we = 0.0;
for (k = 0; k < nn; k++) {
double cw, cl;
#if defined(__APPLE__) && defined(__POWERPC__)
gcc_bug_fix(k);
#endif
cw = w1 + (k+1.0)/(nn + 1.0) * fabs(w2 - w1); /* wl to sample */
cl = kernel(twidth, cw - cwl);
we += 0.5 * (cl + ll) * fabs(lw - cw); /* Area under triangle */
ll = cl;
lw = cw;
}
}
#else
we = fabs(w2 - w1) * kernel(twidth, rwl);
#endif
if (inf->fnocoef[j] >= maxcoeffs)
error("rspec_make_resample_filters: run out of high res filter space\n");
coeff_ix[j][inf->fnocoef[j]] = i;
coeff_we[j][inf->fnocoef[j]++] = we;
// printf("~1 filter %d, cwl %f, rwl %f, ix %d, we %f, nocoefs %d\n",j,cwl,rwl,i,we,info->fnocoef[j]);
}
}
/* Convert hires filters into runtime format: */
/* Allocate or reallocate high res filter tables */
if (inf->findex != NULL)
free(inf->findex);
if (inf->fcoef != NULL)
free(inf->fcoef);
if ((inf->findex = (int *)calloc(inf->nraw, sizeof(int))) == NULL)
error("rspec_make_resample_filters: malloc index failed!\n");
/* Count the total number of coefficients */
for (xcount = j = 0; j < inf->nwav; j++) {
inf->findex[j] = coeff_ix[j][0]; /* raw starting index */
xcount += inf->fnocoef[j];
}
//printf("~1 total coefs = %d\n",xcount);
/* Allocate space for them */
if ((inf->fcoef = (double *)calloc(xcount, sizeof(double))) == NULL)
error("rspec_make_resample_filters: malloc index failed!\n");
/* Normalize the weight * nm to 1.0, and pack them into the run-time format */
for (i = j = 0; j < inf->nwav; j++) {
int sx;
double rwi, twe = 0.0;
sx = inf->findex[j]; /* raw starting index */
for (k = 0; k < inf->fnocoef[j]; sx++, k++) {
/* Width of raw band in nm */
rwi = fabs(rspec_raw2nm(inf, (double)sx - 0.5)
- rspec_raw2nm(inf, (double)sx + 0.5));
twe += rwi * coeff_we[j][k];
}
if (twe > 0.0)
twe = 1.0/twe;
else
twe = 1.0;
// printf("Output %d, nocoefs %d, norm weight %f:\n",j,inf->fnocoef[j],twe);
for (k = 0; k < inf->fnocoef[j]; k++, i++) {
inf->fcoef[i] = coeff_we[j][k] * twe;
// printf(" coef %d packed %d from raw %d val %f\n",k,i,inf->findex[j]+k,inf->fcoef[i]);
}
}
free_imatrix(coeff_ix, 0, inf->nwav-1, 0, maxcoeffs-1);
free_dmatrix(coeff_we, 0, inf->nwav-1, 0, maxcoeffs-1);
}
//printf("~1 line %d\n",__LINE__);
/* Plot the wave resampling filters */
void plot_resample_filters(rspec_inf *inf) {
#ifndef SALONEINSTLIB
# ifdef EN_PLOT
double *xx, *ss;
double **yy;
int i, j, k, sx;
//printf("~1 nraw = %d\n",inf->nraw);
xx = dvectorz(0, inf->nraw-1); /* X index */
yy = dmatrixz(0, 5, 0, inf->nraw-1); /* Curves distributed amongst 5 graphs */
/* with 6th holding sum */
for (i = 0; i < inf->nraw; i++)
xx[i] = i;
/* For each output wavelength */
for (i = j = 0; j < inf->nwav; j++) {
sx = inf->findex[j]; /* raw starting index */
//printf("Output %d raw sx %d\n",j,sx);
/* For each matrix value */
for (k = 0; k < inf->fnocoef[j]; k++, sx++, i++) {
yy[5][sx] += 0.5 * inf->fcoef[i];
yy[j % 5][sx] = inf->fcoef[i];
//printf(" filter %d six %d weight = %e\n",k,sx,inf->fcoef[i]);
}
}
printf("Wavelength re-sampling curves:\n");
// do_plot6(xx, yy[0], yy[1], yy[2], yy[3], yy[4], yy[5], 150);
do_plot6(xx, yy[0], yy[1], yy[2], yy[3], yy[4], yy[5], inf->nraw);
free_dvector(xx, 0, inf->nraw-1);
free_dmatrix(yy, 0, 2, 0, inf->nraw-1);
# endif
#endif
}
/* ================================================== */
/* Calibration file support */
/* Open the file. nz wr for write mode, else read */
/* Return nz on error */
int calf_open(calf *x, a1log *log, char *fname, int wr) {
char nmode[10];
char cal_name[200];
char **cal_paths = NULL;
int no_paths = 0;
memset((void *)x, 0, sizeof(calf));
x->log = log;
if (wr)
strcpy(nmode, "w");
else
strcpy(nmode, "r");
#if !defined(O_CREAT) && !defined(_O_CREAT)
# error "Need to #include fcntl.h!"
#endif
#if defined(O_BINARY) || defined(_O_BINARY)
strcat(nmode, "b");
#endif
/* Create the file name */
if (wr)
sprintf(cal_name, "ArgyllCMS/%s", fname);
else
sprintf(cal_name, "ArgyllCMS/%s" SSEPS "color/%s", fname, fname);
if ((no_paths = xdg_bds(NULL, &cal_paths, xdg_cache, xdg_write, xdg_user, xdg_none,
cal_name)) < 1) {
a1logd(x->log,1,"calf_open: xdg_bds returned no paths\n");
return 1;
}
a1logd(x->log,2,"calf_open: %s file '%s'\n",cal_paths[0], wr ? "saving to" : "restoring from");
/* Check the last modification time */
if (!wr) {
struct sys_stat sbuf;
if (sys_stat(cal_paths[0], &sbuf) == 0) {
x->lo_secs = time(NULL) - sbuf.st_mtime;
a1logd(x->log,2,"calf_open:: %d secs from instrument last open\n",x->lo_secs);
} else {
a1logd(x->log,2,"calf_open:: stat on file failed\n");
}
}
if ((wr && create_parent_directories(cal_paths[0]))
|| (x->fp = fopen(cal_paths[0], nmode)) == NULL) {
a1logd(x->log,2,"calf_open: failed to open file for %s\n",wr ? "writing" : "reading");
xdg_free(cal_paths, no_paths);
return 1;
}
xdg_free(cal_paths, no_paths);
a1logd(x->log,2,"calf_open: succeeded\n");
return 0;
}
/* Update the modification time */
/* Return nz on error */
int calf_touch(a1log *log, char *fname) {
char cal_name[200];
char **cal_paths = NULL;
int no_paths = 0;
int rv;
/* Locate the file name */
sprintf(cal_name, "ArgyllCMS/%s" SSEPS "color/%s", fname, fname);
if ((no_paths = xdg_bds(NULL, &cal_paths, xdg_cache, xdg_read, xdg_user, xdg_none,
cal_name)) < 1) {
a1logd(log,2,"calf_touch: xdg_bds failed to locate file'\n");
return 1;
}
a1logd(log,2,"calf_touch: touching file '%s'\n",cal_paths[0]);
if ((rv = sys_utime(cal_paths[0], NULL)) != 0) {
a1logd(log,2,"calf_touch: failed with %d\n",rv);
xdg_free(cal_paths, no_paths);
return 1;
}
xdg_free(cal_paths, no_paths);
return 0;
}
/* Rewind and reset for another read */
void calf_rewind(calf *x) {
x->ef = 0;
x->chsum = 0;
x->nbytes = 0;
rewind(x->fp);
}
/* Close the file and free any memory */
/* return nz on error */
int calf_done(calf *x) {
int rv = 0;
if (x->fp != NULL) {
if (fclose(x->fp)) {
a1logd(x->log,2,"calf_done: closing file failed\n");
rv = 1;
}
}
if (x->buf != NULL)
free(x->buf);
x->buf = NULL;
return rv;
}
static void sizebuf(calf *x, size_t size) {
if (x->bufsz < size)
x->buf = realloc(x->buf, size);
if (x->buf == NULL)
error("calf: sizebuf malloc failed");
}
static void update_chsum(calf *x, unsigned char *p, int nn) {
int i;
for (i = 0; i < nn; i++, p++)
x->chsum = ((x->chsum << 13) | (x->chsum >> (32-13))) + *p;
x->nbytes += nn;
}
/* Write an array of ints to the file. Set the error flag to nz on error */
void calf_wints(calf *x, int *dp, int n) {
if (x->ef)
return;
if (fwrite((void *)dp, sizeof(int), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_wints: write failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(int) * n);
}
}
/* Write an array of doubles to the file. Set the error flag to nz on error */
void calf_wdoubles(calf *x, double *dp, int n) {
if (x->ef)
return;
if (fwrite((void *)dp, sizeof(double), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_wdoubles: write failed for %d doubles at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(double) * n);
}
}
/* Write an array of time_t's to the file. Set the error flag to nz on error */
/* (This will cause file checksum fail if different executables on the same */
/* system have different time_t values) */
void calf_wtime_ts(calf *x, time_t *dp, int n) {
if (x->ef)
return;
if (fwrite((void *)dp, sizeof(time_t), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_wtime_ts: write failed for %d time_ts at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(time_t) * n);
}
}
/* Write a zero terminated string */
void calf_wstrz(calf *x, char *dp) {
int n;
if (x->ef)
return;
n = strlen(dp) + 1;
calf_wints(x, &n, 1);
if (fwrite((void *)dp, sizeof(char), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_wstrz: write failed for %d long string at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(char) * n);
}
}
/* Read an array of ints from the file. Set the error flag to nz on error */
/* Always read (ignore rd flag) */
void calf_rints2(calf *x, int *dp, int n) {
if (x->ef)
return;
if (fread((void *)dp, sizeof(int), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_rints2: read failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(int) * n);
}
}
/* Read an array of ints from the file. Set the error flag to nz on error */
void calf_rints(calf *x, int *dp, int n) {
size_t nbytes = n * sizeof(int);
void *dest = (void *)dp;
if (x->ef)
return;
if (x->rd == 0) { /* Dummy read */
sizebuf(x, nbytes);
dest = x->buf;
}
if (fread(dest, 1, nbytes, x->fp) != nbytes) {
x->ef = 1;
a1logd(x->log,2,"calf_rints: read failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, dest, nbytes);
}
}
/* Read an array of doubles from the file. Set the error flag to nz on error */
void calf_rdoubles(calf *x, double *dp, int n) {
size_t nbytes = n * sizeof(double);
void *dest = (void *)dp;
if (x->ef)
return;
if (x->rd == 0) { /* Dummy read */
sizebuf(x, nbytes);
dest = x->buf;
}
if (fread(dest, 1, nbytes, x->fp) != nbytes) {
x->ef = 1;
a1logd(x->log,2,"calf_rdoubles: read failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, dest, nbytes);
}
}
/* Read an array of time_t's from the file. Set the error flag to nz on error */
/* (This will cause file checksum fail if different executables on the same */
/* system have different time_t values) */
void calf_rtime_ts(calf *x, time_t *dp, int n) {
size_t nbytes = n * sizeof(time_t);
void *dest = (void *)dp;
if (x->ef)
return;
if (x->rd == 0) { /* Dummy read */
sizebuf(x, nbytes);
dest = x->buf;
}
if (fread(dest, 1, nbytes, x->fp) != nbytes) {
x->ef = 1;
a1logd(x->log,2,"calf_rtime_ts: read failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, dest, nbytes);
}
}
/* Read a zero terminated string. */
void calf_rstrz(calf *x, char **dp) {
int n;
size_t nbytes = 0;
char *dest = NULL;
if (x->ef)
return;
calf_rints2(x, &n, 1);
nbytes = sizeof(char) * n;
if (x->ef || n == 0)
return;
if (x->rd != 0) { /* Reading for real */
if (*dp != NULL)
free(*dp);
if ((*dp = dest = malloc(nbytes)) == NULL)
error("calf: calf_rstrz malloc failed");
} else {
sizebuf(x, nbytes);
dest = x->buf;
}
if (fread(dest, 1, nbytes, x->fp) != nbytes) {
x->ef = 1;
a1logd(x->log,2,"calf_rstrz: read failed for %d long string at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char*)dest, nbytes);
}
}
void calf_rstrz2(calf *x, char **dp) {
int rd = x->rd;
x->rd = 1;
calf_rstrz(x, dp);
x->rd = rd;
}
/* ================================================== */
/* Save a rspec to a calibration file */
void calf_wrspec(calf *x, rspec *s) {
int i;
if (x->ef)
return;
calf_wints(x, (int *)&s->stype, 1);
calf_wints(x, (int *)&s->mtype, 1);
calf_wints(x, (int *)&s->mcond, 1);
calf_wints(x, (int *)&s->state, 1);
calf_wdoubles(x, &s->inttime, 1);
calf_wints(x, &s->nmeas, 1);
calf_wints(x, &s->nsamp, 1);
for (i = 0; i < s->nmeas; i++) {
calf_wdoubles(x, s->samp[i], s->nsamp);
}
}
/* Create a rspec from a calibration file */
void calf_rrspec(calf *x, rspec **dp, rspec_inf *inf) {
rspec *s, dumy;
int no, i;
if (x->ef)
return;
if (x->rd != 0) {
if (*dp != NULL)
del_rspec(*dp);
*dp = s = new_rspec(inf, rspec_sensor, 0);
} else {
s = &dumy;
}
calf_rints2(x, (int *)&s->stype, 1);
calf_rints2(x, (int *)&s->mtype, 1);
calf_rints2(x, (int *)&s->mcond, 1);
calf_rints2(x, (int *)&s->state, 1);
calf_rdoubles(x, &s->inttime, 1);
calf_rints2(x, &s->nmeas, 1);
calf_rints2(x, &s->nsamp, 1);
/* Sanity check. */
no = rspec_typesize(inf, s->stype);
if (no != s->nsamp) {
a1logd(inf->log, 4,"calf_rrspec: unexpected nsamp %d (expect %d)\n",s->nsamp,no);
x->ef = 1;
return;
}
if (x->rd != 0) {
s->samp = dmatrix(0, s->nmeas-1, 0, s->nsamp-1);
for (i = 0; i < s->nmeas; i++) {
calf_rdoubles(x, s->samp[i], s->nsamp);
}
} else {
for (i = 0; i < s->nmeas; i++) {
calf_rdoubles(x, NULL, s->nsamp);
}
}
}
|