1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
/*
* cam97s3hk
*
* Color Appearance Model, based on
* CIECAM97, "Revision for Practical Applications"
* by Mark D. Fairchild, with the addition of the Viewing Flare
* model described on page 487 of "Digital Color Management",
* by Edward Giorgianni and Thomas Madden, and the
* Helmholtz-Kohlraush effect, using the equation
* the Bradford-Hunt 96C model as detailed in Mark Fairchilds
* book "Color Appearance Models".
*
* Author: Graeme W. Gill
* Date: 5/10/00
* Version: 1.20
*
* Copyright 2000, 2002 Graeme W. Gill
* Please refer to COPYRIGHT file for details.
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* Note that XYZ values are normalised to 1.0 consistent */
/* with the ICC convention (not 100.0 as assumed by the CIECAM spec.) */
/* Note that all whites are assumed to be normalised (ie. Y = 1.0) */
/* Various changes have been made to allow the CAM conversions to */
/* function over a much greater range of XYZ and Jab values that */
/* the functions are described in the above references. This is */
/* because such values arise in the process of gamut mapping, and */
/* in scanning through the grid of PCS values needed to fill in */
/* the A2B table of an ICC profile. Such values have no correlation */
/* to a real color value, but none the less need to be handled without */
/* causing an exception, in a geometrically consistent and reversible */
/* fashion. */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "xcam.h"
#include "cam97s3.h"
#undef DIAG /* Print internal value diagnostics for each conversion */
#define CAM_PI 3.14159265359
/* Utility function */
/* Return a viewing condition enumeration from the given Ambient and */
/* Adapting/Surround Luminance. */
static ViewingCondition cam97_Ambient2VC(
double La, /* Ambient Luminance (cd/m^2) */
double Lv /* Luminance of white in the Viewing/Scene/Image field (cd/m^2) */
) {
double r;
if (fabs(La) < 1e-10) /* Hmm. */
r = 1.0;
else
r = La/Lv;
if (r < 0.01)
return vc_dark;
if (r < 0.2)
return vc_dim;
return vc_average;
}
static void cam_free(cam97s3 *s);
static int set_view(struct _cam97s3 *s, ViewingCondition Ev, double Wxyz[3],
double La, double Yb, double Lv, double Yf, double Fxyz[3],
int hk);
static int XYZ_to_cam(struct _cam97s3 *s, double *Jab, double *xyz);
static int cam_to_XYZ(struct _cam97s3 *s, double *xyz, double *Jab);
/* Create a cam97s3 conversion object, with default viewing conditions */
cam97s3 *new_cam97s3(void) {
cam97s3 *s;
// double D50[3] = { 0.9642, 1.0000, 0.8249 };
if ((s = (cam97s3 *)calloc(1, sizeof(cam97s3))) == NULL) {
fprintf(stderr,"cam97s3: malloc failed allocating object\n");
exit(-1);
}
/* Initialise methods */
s->del = cam_free;
s->set_view = set_view;
s->XYZ_to_cam = XYZ_to_cam;
s->cam_to_XYZ = cam_to_XYZ;
/* Set a default viewing condition ?? */
/* set_view(s, vc_average, D50, 33.0, 0.2, 0.0, 0.0, D50, 0); */
return s;
}
static void cam_free(cam97s3 *s) {
if (s != NULL)
free(s);
}
/* A version of the pow() function that preserves the */
/* sign of its first argument. */
static double spow(double x, double y) {
return x < 0.0 ? -pow(-x,y) : pow(x,y);
}
static int set_view(
cam97s3 *s,
ViewingCondition Ev, /* Enumerated Viewing Condition */
double Wxyz[3], /* Reference/Adapted White XYZ (Y range 0.0 .. 1.0) */
double La, /* Adapting/Surround Luminance cd/m^2 */
double Yb, /* Relative Luminance of Background to reference white */
double Lv, /* Luminance of white in the Viewing/Scene/Image field (cd/m^2) */
/* Ignored if Ev is set to other than vc_none */
double Yf, /* Flare as a fraction of the reference white (Y range 0.0 .. 1.0) */
double Fxyz[3], /* The Flare white coordinates (typically the Ambient color) */
int hk /* Flag, NZ to use Helmholtz-Kohlraush effect */
) {
double tt;
if (Ev == vc_none) /* Compute enumerated viewing condition */
Ev = cam97_Ambient2VC(La, Lv);
/* Transfer parameters to the object */
s->Ev = Ev;
s->Wxyz[0] = Wxyz[0];
s->Wxyz[1] = Wxyz[1];
s->Wxyz[2] = Wxyz[2];
s->Yb = Yb > 0.005 ? Yb : 0.005; /* Set minimum to avoid divide by 0.0 */
s->La = La;
s->Yf = Yf;
s->Fxyz[0] = Fxyz[0];
s->Fxyz[1] = Fxyz[1];
s->Fxyz[2] = Fxyz[2];
s->hk = hk;
/* Compute the internal parameters by category */
switch(s->Ev) {
case vc_dark:
s->C = 0.525;
s->Nc = 0.8;
s->F = 0.9;
break;
case vc_dim:
s->C = 0.59;
s->Nc = 0.95;
s->F = 0.9;
break;
case vc_cut_sheet:
s->C = 0.41;
s->Nc = 0.8;
s->F = 0.9;
break;
default: /* average */
s->C = 0.69;
s->Nc = 1.0;
s->F = 1.0;
break;
}
/* Compute values that only change with viewing parameters */
/* Figure out the Flare contribution to the flareless XYZ input */
tt = s->Yf * s->Wxyz[1]/s->Fxyz[1];
s->Fsxyz[0] = tt * s->Fxyz[0];
s->Fsxyz[1] = tt * s->Fxyz[1];
s->Fsxyz[2] = tt * s->Fxyz[2];
/* Rescale so that the sum of the flare and the input doesn't exceed white */
s->Fsc = s->Wxyz[1]/(s->Fsxyz[1] + s->Wxyz[1]);
s->Fsxyz[0] *= s->Fsc;
s->Fsxyz[1] *= s->Fsc;
s->Fsxyz[2] *= s->Fsc;
s->Fisc = 1.0/s->Fsc;
/* Sharpened cone response white values */
s->rgbW[0] = 0.8562 * s->Wxyz[0] + 0.3372 * s->Wxyz[1] - 0.1934 * s->Wxyz[2];
s->rgbW[1] = -0.8360 * s->Wxyz[0] + 1.8327 * s->Wxyz[1] + 0.0033 * s->Wxyz[2];
s->rgbW[2] = 0.0357 * s->Wxyz[0] - 0.0469 * s->Wxyz[1] + 1.0112 * s->Wxyz[2];
/* Degree of chromatic adaptation */
s->D = s->F - (s->F / (1.0 + 2.0 * pow(s->La, 0.25) + s->La * s->La / 300.0) );
/* Chromaticaly transformed white value */
s->rgbcW[0] = (s->D * (1.0/s->rgbW[0]) + 1.0 - s->D ) * s->rgbW[0];
s->rgbcW[1] = (s->D * (1.0/s->rgbW[1]) + 1.0 - s->D ) * s->rgbW[1];
s->rgbcW[2] = (s->D * (1.0/s->rgbW[2]) + 1.0 - s->D ) * s->rgbW[2];
/* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */
s->rgbpW[0] = 0.6962394300923847 * s->rgbcW[0]
+ 0.2492311682812913 * s->rgbcW[1]
+ 0.0545394016263241 * s->rgbcW[2];
s->rgbpW[1] = 0.3054822636273227 * s->rgbcW[0]
+ 0.5921282520433844 * s->rgbcW[1]
+ 0.1023894843292929 * s->rgbcW[2];
s->rgbpW[2] = -0.0139683251072516 * s->rgbcW[0]
+ 0.0278065725014340 * s->rgbcW[1]
+ 0.9861617526058175 * s->rgbcW[2];
/* Background induction factor */
s->n = s->Yb/ s->Wxyz[1];
s->nn = pow((1.64 - pow(0.29, s->n)), 1.41); /* Pre computed value */
/* Lightness contrast factor ?? */
{
double k;
k = 1.0 / (5.0 * s->La + 1.0);
s->Fl = 0.2 * pow(k , 4.0) * 5.0 * s->La
+ 0.1 * pow(1.0 - pow(k , 4.0) , 2.0) * pow(5.0 * s->La , 1.0/3.0);
}
/* Background and Chromatic brightness induction factors */
s->Nbb = 0.725 * pow(1.0/s->n, 0.2);
s->Ncb = s->Nbb;
/* Base exponential nonlinearity */
s->z = 1.0 + pow(s->n , 0.5);
/* Post-adapted cone response of white */
tt = pow(s->Fl * s->rgbpW[0], 0.73);
s->rgbaW[0] = (40.0 * tt / (tt + 2.0)) + 1.0;
tt = pow(s->Fl * s->rgbpW[1], 0.73);
s->rgbaW[1] = (40.0 * tt / (tt + 2.0)) + 1.0;
tt = pow(s->Fl * s->rgbpW[2], 0.73);
s->rgbaW[2] = (40.0 * tt / (tt + 2.0)) + 1.0;
/* Achromatic response of white */
s->Aw = (2.0 * s->rgbaW[0] + s->rgbaW[1] + (1.0/20.0) * s->rgbaW[2] - 3.05) * s->Nbb;
#ifdef DIAG
printf("Scene parameters:\n");
printf("Viewing condition Ev = %d\n",s->Ev);
printf("Ref white Wxyz = %f %f %f\n", s->Wxyz[0], s->Wxyz[1], s->Wxyz[2]);
printf("Relative liminance of background Yb = %f\n", s->Yb);
printf("Adapting liminance La = %f\n", s->La);
printf("Flare Yf = %f\n", s->Yf);
printf("Flare color Fxyz = %f %f %f\n", s->Fxyz[0], s->Fxyz[1], s->Fxyz[2]);
printf("Internal parameters:\n");
printf("Surround Impact C = %f\n", s->C);
printf("Chromatic Induction Nc = %f\n", s->Nc);
printf("Adaptation Degree F = %f\n", s->F);
printf("Pre-computed values\n");
printf("Sharpened cone white rgbW = %f %f %f\n", s->rgbW[0], s->rgbW[1], s->rgbW[2]);
printf("Degree of chromatic adaptation D = %f\n", s->D);
printf("Chromatically transformed white rgbcW = %f %f %f\n", s->rgbcW[0], s->rgbcW[1], s->rgbcW[2]);
printf("Hunter-P-E cone response white rgbpW = %f %f %f\n", s->rgbpW[0], s->rgbpW[1], s->rgbpW[2]);
printf("Background induction factor n = %f\n", s->n);
printf("Lightness contrast factor Fl = %f\n", s->Fl);
printf("Background brightness induction factor Nbb = %f\n", s->Nbb);
printf("Chromatic brightness induction factor Ncb = %f\n", s->Ncb);
printf("Base exponential nonlinearity z = %f\n", s->z);
printf("Post adapted cone response white rgbaW = %f %f %f\n", s->rgbaW[0], s->rgbaW[1], s->rgbaW[2]);
printf("Achromatic response of white Aw = %f\n", s->Aw);
#endif
return 0;
}
/* Conversions */
static int XYZ_to_cam(
struct _cam97s3 *s,
double Jab[3],
double XYZ[3]
) {
int i;
double xyz[3], rgb[3], rgbp[3], rgba[3], rgbc[3];
double a, b, nab, J, C, h, e, A, ss;
double ttd, tt;
/* Add in flare */
xyz[0] = s->Fsc * XYZ[0] + s->Fsxyz[0];
xyz[1] = s->Fsc * XYZ[1] + s->Fsxyz[1];
xyz[2] = s->Fsc * XYZ[2] + s->Fsxyz[2];
/* Spectrally sharpened cone responses */
rgb[0] = 0.8562 * xyz[0] + 0.3372 * xyz[1] - 0.1934 * xyz[2];
rgb[1] = -0.8360 * xyz[0] + 1.8327 * xyz[1] + 0.0033 * xyz[2];
rgb[2] = 0.0357 * xyz[0] - 0.0469 * xyz[1] + 1.0112 * xyz[2];
/* Chromaticaly transformed sample value */
rgbc[0] = (s->D * (1.0/s->rgbW[0]) + 1.0 - s->D ) * rgb[0];
rgbc[1] = (s->D * (1.0/s->rgbW[1]) + 1.0 - s->D ) * rgb[1];
rgbc[2] = (s->D * (1.0/s->rgbW[2]) + 1.0 - s->D ) * rgb[2];
/* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */
rgbp[0] = 0.6962394300923847 * rgbc[0]
+ 0.2492311682812913 * rgbc[1]
+ 0.0545394016263241 * rgbc[2];
rgbp[1] = 0.3054822636273227 * rgbc[0]
+ 0.5921282520433844 * rgbc[1]
+ 0.1023894843292929 * rgbc[2];
rgbp[2] = -0.0139683251072516 * rgbc[0]
+ 0.0278065725014340 * rgbc[1]
+ 0.9861617526058175 * rgbc[2];
/* Post-adapted cone response of sample. */
/* rgba[] has a minimum value of 1.0 for XYZ[] = 0 and no flare. */
/* We add linear segments at the ends of this conversion to */
/* allow numerical handling of a wider range of values */
for (i = 0; i < 3; i++) {
if (rgbp[i] < 0.0) {
tt = pow(s->Fl * -rgbp[i], 0.73);
if (tt < 78.0)
rgba[i] = (2.0 - 39.0 * tt) / (tt + 2.0);
else
rgba[i] = (2.0 - tt) / 2.0;
} else {
tt = pow(s->Fl * rgbp[i], 0.73);
if (tt < 78.0)
rgba[i] = (41.0 * tt + 2.0) / (tt + 2.0);
else
rgba[i] = (tt + 2.0) / 2.0;
}
}
/* Preliminary red-green & yellow-blue opponent dimensions */
a = rgba[0] - 12.0 * rgba[1]/11.0 + rgba[2]/11.0;
b = (1.0/9.0) * (rgba[0] + rgba[1] - 2.0 * rgba[2]);
nab = sqrt(a * a + b * b); /* Normalised a, b */
/* Hue angle */
h = (180.0/CAM_PI) * atan2(b,a);
h = (h < 0.0) ? h + 360.0 : h;
/* Eccentricity factor */
{
double r, e1, e2, h1, h2;
if (h <= 20.14)
e1 = 0.8565, e2 = 0.8, h1 = 0.0, h2 = 20.14;
else if (h <= 90.0)
e1 = 0.8, e2 = 0.7, h1 = 20.14, h2 = 90.0;
else if (h <= 164.25)
e1 = 0.7, e2 = 1.0, h1 = 90.0, h2 = 164.25;
else if (h <= 237.53)
e1 = 1.0, e2 = 1.2, h1 = 164.25, h2 = 237.53;
else
e1 = 1.2, e2 = 0.8565, h1 = 237.53, h2 = 360.0;
r = (h-h1)/(h2-h1);
#ifdef CIECAM97S3_SPLINE_E
r = r * r * (3.0 - 2.0 * r);
#endif
e = e1 + r * (e2-e1);
}
/* Achromatic response */
/* Note that the minimum values of rgba[] for XYZ = 0 is 1.0, */
/* hence magic 3.05 below comes from the following weighting of rgba[], */
/* to base A at 0.0 */
A = (2.0 * rgba[0] + rgba[1] + (1.0/20.0) * rgba[2] - 3.05) * s->Nbb;
/* Lightness */
J = spow(A/s->Aw, s->C * s->z); /* J/100 - keep Sign */
/* Saturation */
/* Note that the minimum values for rgba[] for XYZ = 0 is 1.0 */
/* Hence magic 3.05 below comes from the following weighting of rgba[] */
ttd = rgba[0] + rgba[1] + (21.0/20.0) * rgba[2];
ttd = fabs(ttd);
if (ttd < 3.05) { /* If not physically realisable, limit denominator */
ttd = 3.05; /* hence limit max ss value */
}
ss = (50000.0/13.0 * s->Nc * s->Ncb * nab * e) / ttd;
/* Chroma - Keep C +ve and make sure J doesn't force it to 0 */
tt = fabs(J);
if (tt < 0.01)
tt = 0.01;
C = 0.7487 * pow(ss, 0.973) * pow(tt, 0.945 * s->n) * s->nn;
/* Helmholtz-Kohlraush effect */
if (s->hk) {
double kk = C/300.0 * sin(CAM_PI * fabs(0.5 * (h - 90.0))/180.0);
if (kk > 0.9) /* Limit kk to a reasonable range */
kk = 0.9;
J = J + (1.0 - J) * kk;
}
J *= 100.0; /* Scale J */
/* Compute Jab value */
Jab[0] = J;
if (nab > 1e-10) {
Jab[1] = C * a/nab;
Jab[2] = C * b/nab;
} else {
Jab[1] = 0.0;
Jab[2] = 0.0;
}
#ifdef DIAG
printf("Processing:\n");
printf("XYZ = %f %f %f\n", XYZ[0], XYZ[1], XYZ[2]);
printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]);
printf("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2]);
printf("Chromatically transformed sample value rgbc = %f %f %f\n", rgbc[0], rgbc[1], rgbc[2]);
printf("Hunt-P-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]);
printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]);
printf("Prelim red green a = %f, b = %f\n", a, b);
printf("Hue angle h = %f\n", h);
printf("Eccentricity factor e = %f\n", e);
printf("Achromatic response A = %f\n", A);
printf("Lightness J = %f\n", J);
printf("Saturation ss = %f\n", ss);
printf("Chroma C = %f\n", C);
printf("Jab = %f %f %f\n", Jab[0], Jab[1], Jab[2]);
#endif
return 0;
}
static int cam_to_XYZ(
struct _cam97s3 *s,
double XYZ[3],
double Jab[3]
) {
int i;
double xyz[3], rgb[3], rgbp[3], rgba[3], rgbc[3];
double ja, jb, aa, ab, a, b, J, C, h, e, A, ss;
double tt, ttA, tte;
J = Jab[0] * 0.01; /* J/100 */
ja = Jab[1];
jb = Jab[2];
/* Compute hue angle */
h = (180.0/CAM_PI) * atan2(jb, ja);
h = (h < 0.0) ? h + 360.0 : h;
/* Compute chroma value */
C = sqrt(ja * ja + jb * jb); /* Must be Always +ve */
/* Helmholtz-Kohlraush effect */
if (s->hk) {
double kk = C/300.0 * sin(CAM_PI * fabs(0.5 * (h - 90.0))/180.0);
if (kk > 0.9) /* Limit kk to a reasonable range */
kk = 0.9;
J = (J - kk)/(1.0 - kk);
}
/* Eccentricity factor */
{
double r, e1, e2, h1, h2;
if (h <= 20.14)
e1 = 0.8565, e2 = 0.8, h1 = 0.0, h2 = 20.14;
else if (h <= 90.0)
e1 = 0.8, e2 = 0.7, h1 = 20.14, h2 = 90.0;
else if (h <= 164.25)
e1 = 0.7, e2 = 1.0, h1 = 90.0, h2 = 164.25;
else if (h <= 237.53)
e1 = 1.0, e2 = 1.2, h1 = 164.25, h2 = 237.53;
else
e1 = 1.2, e2 = 0.8565, h1 = 237.53, h2 = 360.0;
r = (h-h1)/(h2-h1);
#ifdef CIECAM97S3_SPLINE_E
r = r * r * (3.0 - 2.0 * r);
#endif
e = e1 + r * (e2-e1);
}
/* Achromatic response */
A = spow(J, 1.0/(s->C * s->z)) * s->Aw; /* Keep sign of J */
/* Saturation - keep +ve and make sure J = 0 doesn't blow it up. */
tt = fabs(J);
if (tt < 0.01)
tt = 0.01;
ss = pow(C/(0.7487 * pow(tt, 0.945 * s->n) * s->nn), 1.0/0.973); /* keep +ve */
/* Compute a & b, taking care of numerical problems */
aa = fabs(ja);
ab = fabs(jb);
ttA = (A/s->Nbb)+3.05; /* Common factor */
tte = 50000.0/13.0 * e * s->Nc * s->Ncb; /* Common factor */
if (aa < 1e-10 && ab < 1e-10) {
a = ja;
b = jb;
} else if (aa > ab) {
double tanh = jb/ja;
double sign = (h > 90.0 && h <= 270.0) ? -1.0 : 1.0;
if (ttA < 0.0)
sign = -sign;
a = (ss * ttA)
/ (sign * sqrt(1.0 + tanh * tanh) * tte + (ss * (11.0/23.0 + (108.0/23.0) * tanh)));
b = a * tanh;
} else { /* ab > aa */
double itanh = ja/jb;
double sign = (h > 180.0 && h <= 360.0) ? -1.0 : 1.0;
if (ttA < 0.0)
sign = -sign;
b = (ss * ttA)
/ (sign * sqrt(1.0 + itanh * itanh) * tte + (ss * (108.0/23.0 + (11.0/23.0) * itanh)));
a = b * itanh;
}
{ /* Check if we have a limited saturation because it is non-realisable */
double tts;
double nab = sqrt(a * a + b * b); /* Normalised a, b */
tts = (nab * tte) / 3.05; /* Limited saturation number */
if (tts < ss) { /* Saturation exceeds it anyway so must have limited denom. */
a *= ss/tts; /* Rescale a & b to account for extra ss */
b *= ss/tts; /* even though denom was limited (since nab was in numerator). */
}
}
/* Post-adapted cone response of sample */
rgba[0] = (20.0/61.0) * ttA
+ ((41.0 * 11.0)/(61.0 * 23.0)) * a
+ ((288.0 * 1.0)/(61.0 * 23.0)) * b;
rgba[1] = (20.0/61.0) * ttA
- ((81.0 * 11.0)/(61.0 * 23.0)) * a
- ((261.0 * 1.0)/(61.0 * 23.0)) * b;
rgba[2] = (20.0/61.0) * ttA
- ((20.0 * 11.0)/(61.0 * 23.0)) * a
- ((20.0 * 315.0)/(61.0 * 23.0)) * b;
/* Hunt-Pointer_Estevez cone space */
/* (with linear segments at the ends0 */
tt = 1.0/s->Fl;
for (i = 0; i < 3; i++) {
if (rgba[i] < 1.0) {
double ta = rgba[i] > -38.0 ? rgba[i] : -38.0;
rgbp[i] = -tt * pow((2.0 - 2.0 * rgba[i] )/(39.0+ ta), 1.0/0.73);
} else {
double ta = rgba[i] < 40.0 ? rgba[i] : 40.0;
rgbp[i] = tt * pow((2.0 * rgba[i] -2.0)/(41.0 - ta), 1.0/0.73);
}
}
/* Chromaticaly transformed sample value */
rgbc[0] = 1.7605948990728097 * rgbp[0]
- 0.7400833814121892 * rgbp[1]
- 0.0205291236096116 * rgbp[2];
rgbc[1] = -0.9170843265341294 * rgbp[0]
+ 2.0826033118941054 * rgbp[1]
- 0.1655098145167107 * rgbp[2];
rgbc[2] = 0.0507964678367941 * rgbp[0]
- 0.0692054676442407 * rgbp[1]
+ 1.0184084918427683 * rgbp[2];
/* Spectrally sharpened cone responses */
rgb[0] = rgbc[0]/(s->D * (1.0/s->rgbW[0]) + 1.0 - s->D);
rgb[1] = rgbc[1]/(s->D * (1.0/s->rgbW[1]) + 1.0 - s->D);
rgb[2] = rgbc[2]/(s->D * (1.0/s->rgbW[2]) + 1.0 - s->D);
/* XYZ values */
xyz[0] = 0.9873999149199270 * rgb[0]
- 0.1768250198556842 * rgb[1]
+ 0.1894251049357572 * rgb[2];
xyz[1] = 0.4504351090445316 * rgb[0]
+ 0.4649328977527109 * rgb[1]
+ 0.0846319932027575 * rgb[2];
xyz[2] = -0.0139683251072516 * rgb[0]
+ 0.0278065725014340 * rgb[1]
+ 0.9861617526058175 * rgb[2];
/* Subtract flare */
XYZ[0] = s->Fisc * (xyz[0] - s->Fsxyz[0]);
XYZ[1] = s->Fisc * (xyz[1] - s->Fsxyz[1]);
XYZ[2] = s->Fisc * (xyz[2] - s->Fsxyz[2]);
#ifdef DIAG
printf("Processing:\n");
printf("Jab = %f %f %f\n", Jab[0], Jab[1], Jab[2]);
printf("Chroma C = %f\n", C);
printf("Saturation ss = %f\n", ss);
printf("Lightness J = %f\n", J * 100.0);
printf("Achromatic response A = %f\n", A);
printf("Eccentricity factor e = %f\n", e);
printf("Hue angle h = %f\n", h);
printf("Prelim red green a = %f, b = %f\n", a, b);
printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]);
printf("Hunt-P-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]);
printf("Chromatically transformed sample value rgbc = %f %f %f\n", rgbc[0], rgbc[1], rgbc[2]);
printf("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2]);
printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]);
printf("XYZ = %f %f %f\n", XYZ[0], XYZ[1], XYZ[2]);
#endif
return 0;
}
|