File: printcal.html

package info (click to toggle)
argyll 3.3.0%2Brepack-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 33,944 kB
  • sloc: ansic: 402,917; javascript: 36,570; xml: 1,551; sh: 520; makefile: 428
file content (592 lines) | stat: -rwxr-xr-x 24,969 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
  <head>
    <title>printcal</title>
    <meta http-equiv="content-type" content="text/html;
      charset=windows-1252">
    <meta name="author" content="Graeme W. Gill">
  </head>
  <body>
    <h2> profile/printcal</h2>
    <h3>Summary</h3>
    Create a printer linearization calibration file from <a
      href="File_Formats.html#.ti3">.ti3</a> test chart patch values.<br>
    <br>
    This is often very useful in preparing a raw printer for profiling,
    by establishing per-channel ink limits, and linearizing the channel
    response.<br>
    It is typically not so useful when used with "RGB" printers, since
    these already have a well controlled response, and the RGB channels
    are not native colorant channels.<br>
    <h3>Usage Summary</h3>
    &nbsp;<span style="font-family: monospace;">printcal</span><small
      style="font-family: monospace;"> [-<i>options</i>] [prevcal]
      inoutfile<br>
      &nbsp;<a href="#v">-v verbosity</a> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
      Set verbosity level<br>
    </small><small style="font-family: monospace;">&nbsp;<a href="#p">-p
        [2]</a>&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Plot
      graphs.<br>
      &nbsp;<a moz-do-not-send="true" href="#w">-w</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;






      Save colorant 3D plot to inoutname_r.x3d.html and
      inoutname_c.x3d.html<br>
      &nbsp;<a href="#i">-i</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;










      &nbsp; &nbsp; &nbsp;&nbsp; Initial calibration, set targets,
      create .cal<br>
    </small><small style="font-family: monospace;">&nbsp;<a href="#r">-r</a>
      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;
      &nbsp;&nbsp; Re-calibrate against previous .cal and create new
      .cal</small><br style="font-family: monospace;">
    <span style="font-family: monospace;"></span><small
      style="font-family: monospace;">&nbsp;<a href="#e">-e</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
&nbsp;
&nbsp;










      &nbsp; &nbsp;&nbsp; Verify against previous .cal<br>
    </small><small style="font-family: monospace;">&nbsp;<a href="#I">-I</a>
      &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp;
      &nbsp;&nbsp; Create imitation target from .ti3 and null
      calibration<br>
    </small><small style="font-family: monospace;"><tt>

        </tt></tt></small>&nbsp; <small style="font-family: monospace;"><a
        href="#d">-d</a> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;
      &nbsp; &nbsp; &nbsp;&nbsp; Go through the motions but don't write
      any files<br>
      &nbsp;<a moz-do-not-send="true" href="#z">-z</a>
      res&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;





      Resolution of created calibration curves (default 256)<br>
      &nbsp;<a moz-do-not-send="true" href="#s">-s</a>
      smoothing&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Extra curve
      smoothing (default 1.0)<br style="font-family: monospace;">
    </small> <small><span style="font-family: monospace;">&nbsp;</span><a
        style="font-family: monospace;" href="#A">-A "manufacturer"</a><span
        style="font-family: monospace;">&nbsp; Set the manufacturer
        description string</span><br style="font-family: monospace;">
      <span style="font-family: monospace;">&nbsp;</span><a
        style="font-family: monospace;" href="#M">-M "model"</a><span
        style="font-family: monospace;">
        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Set the model
        description string</span><br style="font-family: monospace;">
      <span style="font-family: monospace;">&nbsp;</span><a
        style="font-family: monospace;" href="#D">-D "description"</a><span
        style="font-family: monospace;">&nbsp;&nbsp; Set the profile
        Description string </span><br style="font-family: monospace;">
      <tt>&nbsp;</tt><tt><a href="#C">-C "copyright"</a></tt><tt>
        &nbsp;&nbsp;&nbsp; Set the copyright string</tt><tt><br>
      </tt><tt> </tt><tt>&nbsp;</tt><tt><a href="#x">-x# percent</a></tt><tt>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
Set
initial










        maximum device % target (override auto)</tt><tt><br>
      </tt></small><small><span style="font-family: monospace;"><small>&nbsp;<a
            href="#m">-m# percent</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;










          Set initial dev target to % of auto maximum<br>
        </small>&nbsp;<a href="#n">-n# deltaE</a>
        &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Set initial white
        minimum deltaE target<br>
        &nbsp;<a href="#t">-t# percent</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
Set
initial










        50% transfer curve percentage target<br style="font-family:
          monospace;">
        <span style="font-family: monospace;">&nbsp;&nbsp; # = c, r,
          0&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; First channel</span><br
          style="font-family: monospace;">
        <span style="font-family: monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
m,
g,
1&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;










          Second channel</span><br style="font-family: monospace;">
        <span style="font-family: monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
y,
b,
2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;










          Third channel</span><br style="font-family: monospace;">
        <span style="font-family: monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
k,&nbsp;&nbsp;&nbsp;
3&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
Fourth










          channel, etc.<br>
          &nbsp;<a href="#a">-a</a>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
Create
an










          Adobe Photoshop .AMP file as well as a .cal<br
            style="font-family: monospace;">
        </span><span style="font-family: monospace;">&nbsp;</span><a
          style="font-family: monospace;" href="#p1">prevcal</a><span
          style="font-family: monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
Base
name










          of previous .cal file for recal or verify.</span><br
          style="font-family: monospace;">
        <span style="font-family: monospace;">&nbsp;</span><a
          style="font-family: monospace;" href="#p2">inoutname</a><span
          style="font-family: monospace;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
Base
name










          of input .ti3 file, output .cal file</span><br>
      </span><span style="font-family: monospace;"></span></small><small><span
        style="font-family: monospace;"></span><span style="font-family:
        monospace;"></span><span style="font-family: monospace;"></span></small><br>
    <h3>Options<br>
    </h3>
    <b><a name="v"></a>-v</b>&nbsp; Turn on verbose mode. Gives progress
    information as the calibration is created. An argument greater than
    1 increases the verbosity. An argument of 2 or greater will also
    dump various curve values. Setting verbose will report the ideal
    power value to apply to the test chart in targen.<br>
    <br>
    <a name="p"></a><span style="font-weight: bold;">-p</span> Turns on
    plot mode. This causes various graphs to be plotted as the
    calibration is created. The channels will be plotted in the graph
    colors: Blue, Red, Yellow, Black, Green, Purple, Brown, Orange,
    Grey, White. Using <b>-p 2</b> will display extra graphs, such as
    relative to absolute Delta E equivalence, and fit of the raw
    measurement data.<br>
    <br>
    <a name="w"></a><span style="font-weight: bold;">-w</span> Save
    colorant 3D plot to inoutname_r.x3d.html and inoutname_c.x3d.html.
    The first plot is the uncalibrated colorant response, with each cone
    representing a 5% increment of raw device values. The second plot is
    the calibrated and maximum device value limited response, with each
    cone representing 5% increments of the calibrated device values.
    Both these plots are in L*a*b* space.<br>
    <br>
    <a name="i"></a><span style="font-weight: bold;">-i</span> Select
    initial calibration mode. Initial calibration mode allows setting
    the targets for the calibration, such as maximum device percentage,
    minimum white level, and the transfer curve shape. The second last
    parameter <span style="font-weight: bold;"><span
        style="font-weight: bold;"></span>prevcal</span> is not used in
    this mode.<br>
    <br>
    <a name="r"></a><span style="font-weight: bold;">-r</span> Turns on
    re-calibration mode. This is used for calibrations after the initial
    one, where the aim is to return the devices response to the same
    state as it was after the initial caibration. Parameters that affect
    the calibration targets are ignored. The second last parameter <span
      style="font-weight: bold;"><span style="font-weight: bold;"></span>prevcal</span>
    is used to establish what the targets for the calibration are.<br>
    <br>
    <a name="e"></a><span style="font-weight: bold;">-e</span> Turns on
    verify mode. In this mode the test chart input is verified against
    the expected response in the <span style="font-weight: bold;"><span
        style="font-weight: bold;"></span>prevcal</span> file. This
    means that the test chart <u>has to be printed</u> with the
    calibration curves active in the workflow. <b>Note</b> that if a
    calibration is created that sets any <small><span
        style="font-family: monospace;"><a href="#n"
          moz-do-not-send="true">-n# deltaE</a> </span></small>parameters,



    then a verification will probably fail, since the trajectories of
    each ink from a non-white media color were not actually measured in
    the initial calibration.<span style="font-family: monospace;"></span><br>
    <br>
    <a name="I"></a><span style="font-weight: bold;">-I</span> Similar
    to <span style="font-weight: bold;">-i</span>, except that rather
    than creating a linear target curve and corresponding calibration,
    it takes the given behaviour as an absolute target and create a
    corresponding set of calibration curves. This .cal can then be used
    to recalibrate a similar device (or the same device at some other
    time) to imitate the behaviour of the initial device. The second
    last parameter <span style="font-weight: bold;"><span
        style="font-weight: bold;"></span>prevcal</span> is not used in
    this mode. Parameters that affect the calibration targets are
    ignored.<br>
    <br>
    

    <a name="d"></a><span style="font-weight: bold;">-d</span> Disables
    the writing of any files, causing printcal to go through the motions
    without changing anything.<br>
    <br>
    <a name="z"></a>The <b>-z</b> parameter allows setting the
    resolution of the created calibration curves.<br>
    <br>
    <a name="s"></a>The <b>-s</b> parameter allows setting smoothing
    applied to the measured points in creating curves. The default value
    is 1.0, and increasing this value (say to 1.5, or 2.0 etc.) will
    increase the smoothness at the cost of accuracy. <br>
    <br>
    <a name="A"></a>The <b>-A</b> parameter allows setting of the
    device manufacturer description string in the calibration file. The
    parameter should be a string that identifies the manufacturer of the
    device being profiled. With most command line shells, it will be
    necessary to enclose the parameter with double quotes, so that
    spaces and other special characters are included in the parameter,
    and not mistaken for the start of another flag or as a final command
    line parameters. By default no device manufacturer description
    string will be put in the calibration file.<br>
    <br>
    <a name="M"></a>The <b>-M</b> parameter allows setting of the
    device mode description string in the calibration file. The
    parameter should be a string that identifies the particular model of
    device being profiled. With most command line shells, it will be
    necessary to enclose the parameter with double quotes, so that
    spaces and other special characters are included in the parameter,
    and not mistaken for the start of another flag or as a final command
    line parameters. By default no model description string will be put
    in the calibration file.<br>
    <br>
    <a name="D"></a>The <b>-D</b> parameter allows setting of the
    profile description string in the calibration file. The parameter
    should be a string that describes the device and profile. On many
    systems, it will be this string that will be used to identify the
    profile from a list of possible profiles. With most command line
    shells, it will be necessary to enclose the parameter with double
    quotes, so that spaces and other special characters are included in
    the parameter, and not mistaken for the start of another flag or as
    a final command line parameter. By default no profile description
    string will be put in the calibration file.<br>
    <br>
    <a name="C"></a>The <b>-C</b> parameter allows setting of the
    profile copyright string in the calibration file. The parameter
    should be a string that describes the copyright (if any) claimed on
    the profile being generated. With most command line shells, it will
    be necessary to enclose the parameter with double quotes, so that
    spaces and other special characters are included in the parameter,
    and not mistaken for the start of another flag or as a final command
    line parameters. By default no copyright string will be put in the
    calibration file.<br>
    <br>
    <a name="x"></a> The <b>-x</b> parameter allows overriding the
    default auto maximum device target value computed from the raw
    device response for the initial calibration. The default uses a
    heuristic to decide when the response of the device to each channels
    colorant value reaches the point of diminishing returns, while the <span
      style="font-weight: bold;">-x</span> parameter allows this default
    to be overridden. The <span style="font-weight: bold;">-x</span>
    parameter can be used multiple times, once for each channel that is
    being set. The <span style="font-weight: bold;">-x</span> should be
    followed by the channel number between 0 and 15, or the aliases <span
      style="font-weight: bold;">r</span>, <span style="font-weight:
      bold;">g</span> or <span style="font-weight: bold;">g</span>, or
    <span style="font-weight: bold;">c</span>, <span
      style="font-weight: bold;">m</span>, <span style="font-weight:
      bold;">y</span> or <span style="font-weight: bold;">k,</span> and
    the channel number should then be followed by the device value as a
    percentage. <span style="font-weight: bold;">NOTE</span> that you
    will probably get sub-optimal results if you force a device maximum
    that is beyond the point of maximum response of a device channel,
    since this will have the effect of <span style="text-decoration:
      underline;">reducing</span> the device response. If you want to
    set a conservative target to allow for recalibration later, see the
    <b>-m</b> flag below.<br>
    <br>
    <a name="m"></a> The <b>-m</b> parameter allows modifying the
    default auto maximum device target value for the initial
    calibration. The auto maximum is computed as described above, and is
    then scaled by the <b>-m</b> parameter value. Typically this will
    be a scale down (ie. <b>90%</b>) to allow some margin to increase
    the channel value if the channel density drops in a future
    recalibration. Scaling the maximum down will reduce gamut, but
    allows scope for stable behaviour using calibration. The <span
      style="font-weight: bold;">-m</span> paramater can be used
    multiple times, once for each channel that is being set. The <span
      style="font-weight: bold;">-m</span> should be followed by the
    channel number between 0 and 15, or the aliases <span
      style="font-weight: bold;">r</span>, <span style="font-weight:
      bold;">g</span> or <span style="font-weight: bold;">g</span>, or
    <span style="font-weight: bold;">c</span>, <span
      style="font-weight: bold;">m</span>, <span style="font-weight:
      bold;">y</span> or <span style="font-weight: bold;">k,</span> and
    the channel number should then be followed by the deltaE value.<span
      style="font-family: monospace;"></span><br>
    <br>
    <a name="n"></a> The <b>-n</b> parameter allows overriding the
    default minimum deltaE of a colorant to white of 0. This can be used
    to set a minimum colorant level in order to emulate media darker or
    of a different tint. The <span style="font-weight: bold;">-n</span>
    paramater can be used multiple times, once for each channel that is
    being set. The <span style="font-weight: bold;">-n</span> should be
    followed by the channel number between 0 and 15, or the aliases <span
      style="font-weight: bold;">r</span>, <span style="font-weight:
      bold;">g</span> or <span style="font-weight: bold;">g</span>, or
    <span style="font-weight: bold;">c</span>, <span
      style="font-weight: bold;">m</span>, <span style="font-weight:
      bold;">y</span> or <span style="font-weight: bold;">k,</span> and
    the channel number should then be followed by the deltaE value.<br>
    <b>Note</b> that setting a minimum deltaE will probably lead to some
    degree of mismatch when attempting to <u>verify</u> a calibration,
    since the trajectories of each ink from a non-white media color were
    not actually measured in the initial calibration.<span
      style="font-family: monospace;"></span><br>
    <br>
    <a name="t"></a> The <b>-t</b> parameter allows setting a target
    linearization curve that is other than purely visual linear. The
    default is to create a calibration curve that results in a perfectly
    even change in output for each change in the calibrated device
    value, as measured by steps in delta E94. The <span
      style="font-weight: bold;">-t</span> parameter allows setting a
    target curve above or below the perfectly visual linear, by setting
    the aim value at 50% input. An aim higher than 50% will cause that
    channel to become more intense by the 50% mark, while a value lower
    than 50% will cause the channel to become less intense by the 50%
    mark than perfectly linear.The <span style="font-weight: bold;">-t</span>
    should be followed by the channel number between 0 and 15, or the
    aliases <span style="font-weight: bold;">r</span>, <span
      style="font-weight: bold;">g</span> or <span style="font-weight:
      bold;">g</span>, or <span style="font-weight: bold;">c</span>, <span
      style="font-weight: bold;">m</span>, <span style="font-weight:
      bold;">y</span> or <span style="font-weight: bold;">k,</span> and
    the channel number should then be followed by the device value as a
    percentage.<br>
    <br>
    <a name="a"></a><span style="font-weight: bold;">-a</span> Creates
    an Adobe Photoshop <span style="font-weight: bold;">.AMP</span>
    format curves file as well as a .cal.<br>
    <span style="font-weight: bold;"></span><br>
    <a name="p1"></a> The optional second last parameter is the file
    base name for a previous <a href="File_Formats.html#CAL">.cal</a>
    calibration file, used as the target reference for recalibrate and
    verify modes. <br>
    <br>
    <a name="p2"></a> The final parameter is the file base name for the
    <a href="File_Formats.html#.ti3">.ti3</a> input test point data, and
    the resulting <a href="File_Formats.html#CAL">.cal</a> calibration
    file output. <br>
    <h3><a name="DISCUSSION"></a>Discussion</h3>
    <span style="font-weight: bold;">Printcal</span> is a tool for
    creating per device channel linearization curves for printing
    devices.<br>
    <br>
    As input it takes a .ti3 file containing the results of printing a
    test chart on the <span style="text-decoration: underline;">non-color










      managed</span>, <span style="text-decoration: underline;">non-calibrated</span>
    device, and measuring it. The test chart should consists of step
    wedges for each of the device primary colors, from the media white
    to full individual colorant intensity.<br>
    <br>
    For the initial calibration (<span style="font-weight: bold;">-i</span>),
the
range










    of device values to be used and the shape of the target
    linearization curve are established, as well as creating the first
    set of calibration curves. For subsequent re-calibrations (<span
      style="font-weight: bold;">-r</span>), the calibration curves aim
    to reproduce the same response as the original calibration. If a
    test chart is printed with calibration enabled in the worklflow and
    then is measured, it can be used to verify the calibration against
    the expected response (<span style="font-weight: bold;">-e</span>).<br>
    <br>
    As each colorant steps through the test wedge patches from media
    white, they trace out a measured locus in CIE L*a*b* colorspace.
    Each channel response is evaluated by computing the CIE DeltaE to
    media white of the response to a change in each individual channel
    of each locus. This measure is used to determine when the devices
    response to a colorant level is reaching diminishing returns,
    setting a maximum colorant value. This measure can also be used to
    set a minimum colorant value for the purposes of emulating a
    different media color. The default maximum and minimum values for
    each colorant can be overridden using the <span style="font-weight:
      bold;">-x</span> and <span style="font-weight: bold;">-n</span>
    parameters. The automatically determined maximum may be modified
    (scaled) using the <b>-m</b> parameter, which can be useful in
    allowing some margin for future calibrations to compensate for a
    drop in density.<br>
    <br>
    The actual linearization uses a subtly different measure, which is
    the CIE DelataE 94 along each colorant response locus, ensuring that
    after linearization each step in colorant value is subjectively
    even. The linearization aim can be altered from a purely linear
    curve by using the <span style="font-weight: bold;"><span
        style="font-weight: bold;">-t</span></span> parameters.<br>
    <br>
    After the initial calibration, the device can be re-calibrated (<span
      style="font-weight: bold;">-r</span>) by printing a calibration
    test chart under the same conditions as the initial one, but with
    the calibration aimed at reproducing the same response as the
    initial calibration, rather that setting new targets.<br>
    <br>
    The calibration can be verified (<span style="font-weight: bold;">-e</span>)
    by printing a calibration test chart on <span
      style="text-decoration: underline;">non-color managed</span>, <span
      style="text-decoration: underline;"></span>but calibrated device,
    the verification evaluating any discrepancy between the device
    response achieved, and the device response expected. For a numerical
    evaluation the verbose flag (<span style="font-weight: bold;">-v</span>)
    should be used, and for a visual evaluation the plot flag (<span
      style="font-weight: bold;">-p</span>) should be used. <b>Note</b>
    that if a calibration is created that sets any <small><span
        style="font-family: monospace;"><a href="#n"
          moz-do-not-send="true">-n# deltaE</a> </span></small>parameters,




    then a verification will probably fail, since the trajectories of
    each ink from a non-white media color were not actually measured in
    the initial calibration.<br>
    <br>
    If there are several devices of the same or similar model, then one
    device can be used to set the initial calibration target, and then
    the other devices can be re-calibrated against the same .cal file,
    to create matching responses.<br>
    <br>
    An alternative to creating an initial linear target for calibration,
    is to use the <span style="font-weight: bold;">-I</span> option
    with an initial device, which sets the initial target to be that
    devices absolute response. Naturally the corresponding calibration
    will be linear (null). The calibration target can then be used with
    a recalibrate to return that device to its initial response, or to
    make another similar device have the same response. Note though,
    that bad things will happen if the imitated devices response is
    non-monotonic, or if on re-calibration the device is unable to reach
    the same density levels.<br>
    <br>
    <br>
    <br>
    <br>
    <br>
    <br>
    <br>
    <br>
    <br>
    <br>
    <br>
    <br>
  </body>
</html>