1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
/*
* Copyright 1999 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* Example use of dnsqe() */
/* */
/* The problem is to determine the values of X(1), X(2), ..., X(9), */
/* which solve the system of tridiagonal equations */
/* */
/* (3-2*X(1))*X(1) -2*X(2) = -1 */
/* -X(I-1) + (3-2*X(I))*X(I) -2*X(I+1) = -1, I=2-8 */
/* -X(8) + (3-2*X(9))*X(9) = -1 */
/* */
/* Final approximate solution: */
/* */
/* -0.5706545E+00 */
/* -0.6816283E+00 */
/* -0.7017325E+00 */
/* -0.7042129E+00 */
/* -0.7013690E+00 */
/* -0.6918656E+00 */
/* -0.6657920E+00 */
/* -0.5960342E+00 */
/* -0.4164121E+00 */
#include "numlib.h"
/* Compute norm of a vector */
static double denorm(int n, double *x);
int fcn(void *fdata, int n, double *x, double *fvec, int iflag);
double expect[9] = {
-0.5706545E+00,
-0.6816283E+00,
-0.7017325E+00,
-0.7042129E+00,
-0.7013690E+00,
-0.6918656E+00,
-0.6657920E+00,
-0.5960342E+00,
-0.4164121E+00 };
int main(void)
{
int n = 9 /* 9 */; /* Problem vector size */
double x[9]; /* Function input values */
double fvec[9]; /* Function output values */
double ss; /* Search area */
int info, j;
double fnorm;
int nprint = 0; /* Itteration debugging print = off */
double tol;
error_program = "dnsqtest"; /* Set global error reporting string */
/* Driver for dnsqe example. */
/* Not supplying Jacobian, use approximation */
/* The following starting values provide a rough solution. */
for (j = 1; j <= 9; ++j) {
x[j - 1] = -1.f;
}
ss = 0.1;
nprint = 0;
/* Set tol to the square root of the machine precision. */
/* Unless high precision solutions are required, */
/* this is the recommended setting. */
tol = M_SQRT_DIVER;
info = dnsqe(NULL, fcn, NULL, n, x, ss, fvec, tol, tol, 0, nprint);
fnorm = denorm(n, fvec);
fprintf(stdout,"Final L2 norm of the residuals = %e\n",fnorm);
fprintf(stdout,"Exit return value = %d (1 = sucess)\n",info);
fprintf(stdout,"Final approximate solution:\n");
for (j = 0; j < n; j++) {
fprintf(stdout,"x[%d] = %f, expect %f\n",j,x[j], expect[j]);
}
return 0;
} /* main() */
/* Function being solved */
int fcn(void *fdata, int n, double *x, double *fvec, int iflag)
{
double temp, temp1, temp2;
int k;
/* Function Body */
for (k = 0; k < n; ++k) {
temp = (3.0 - 2.0 * x[k]) * x[k];
temp1 = 0.0;
if (k != 0) {
temp1 = x[k-1];
}
temp2 = 0.0;
if (k != ((n)-1))
temp2 = x[k+1];
fvec[k] = temp - temp1 - 2.0 * temp2 + 1.0;
if (iflag == 0)
printf("x[%d] = %f, fvec[%d] + %f\n",k,x[k],k,fvec[k]);
#ifdef DEBUG
printf("~~ x[%d] = %f, fvec[%d] + %f\n",k,x[k],k,fvec[k]);
#endif /* DEBUG */
}
/* Return < 0 to abort */
return 0;
}
/* - - - - - - - - - - - - - - - - - - - */
static double denorm(
int n, /* Size of x[] */
double x[]) /* Input vector */
{
/* Initialized data */
static double rdwarf = 3.834e-20;
static double rgiant = 1.304e19;
/* Local variables */
static double xabs, x1max, x3max;
static int i;
static double s1, s2, s3, agiant, floatn;
double ret_val, td;
s1 = 0.0; /* Large component */
s2 = 0.0; /* Intermedate component */
s3 = 0.0; /* Small component */
x1max = 0.0;
x3max = 0.0;
floatn = (double) (n + 1);
agiant = rgiant / floatn;
for (i = 0; i < n; i++) {
xabs = (td = x[i], fabs(td));
/* Sum for intermediate components. */
if (xabs > rdwarf && xabs < agiant) {
td = xabs; /* Computing 2nd power */
s2 += td * td;
/* Sum for small components. */
} else if (xabs <= rdwarf) {
if (xabs <= x3max) {
if (xabs != 0.0) { /* Computing 2nd power */
td = xabs / x3max;
s3 += td * td;
}
} else { /* Computing 2nd power */
td = x3max / xabs;
s3 = 1.0 + s3 * (td * td);
x3max = xabs;
}
/* Sum for large components. */
} else {
if (xabs <= x1max) { /* Computing 2nd power */
td = xabs / x1max;
s1 += td * td;
} else { /* Computing 2nd power */
td = x1max / xabs;
s1 = 1.0 + s1 * (td * td);
x1max = xabs;
}
}
}
/* Calculation of norm. */
if (s1 != 0.0) { /* Large is present */
ret_val = x1max * sqrt(s1 + s2 / x1max / x1max);
} else { /* Medium and small are present */
if (s2 == 0.0) {
ret_val = x3max * sqrt(s3); /* Small only */
} else {
if (s2 >= x3max) { /* Medium larger than small */
ret_val = sqrt(s2 * (1.0 + x3max / s2 * (x3max * s3)));
} else { /* Small large than medium */
ret_val = sqrt(x3max * (s2 / x3max + x3max * s3));
}
}
}
return ret_val;
}
|